A221328
T(n,k)=Number of nXk arrays of occupancy after each element stays put or moves to some horizontal or antidiagonal neighbor, with no occupancy greater than 2.
Original entry on oeis.org
1, 3, 1, 7, 17, 1, 17, 119, 99, 1, 41, 866, 2008, 577, 1, 99, 6328, 46105, 33873, 3363, 1, 239, 46211, 1010078, 2460824, 571358, 19601, 1, 577, 337274, 22181855, 162430981, 131347807, 9637322, 114243, 1, 1393, 2460918, 487335857, 10794156688
Offset: 1
Some solutions for n=3 k=4
..1..2..0..1....2..1..2..0....2..1..0..2....2..1..1..1....2..2..1..2
..1..0..2..1....1..1..0..0....1..1..2..0....0..2..0..1....0..0..0..2
..1..1..2..0....1..2..1..1....1..0..2..0....1..1..0..2....2..0..1..0
A228405
Pellian Array, A(n, k) with numbers m such that 2*m^2 +- 2^k is a square, and their corresponding square roots, read downward by diagonals.
Original entry on oeis.org
0, 1, 1, 0, 1, 2, 2, 2, 3, 5, 0, 2, 4, 7, 12, 4, 4, 6, 10, 17, 29, 0, 4, 8, 14, 24, 41, 70, 8, 8, 12, 20, 34, 58, 99, 169, 0, 8, 16, 28, 48, 82, 140, 239, 408, 16, 16, 24, 40, 68, 116, 198, 338, 577, 985, 0, 16, 32, 56, 96, 164, 280, 478, 816, 1393, 2378
Offset: 0
With row # as n. and column # as k, and n, k =>0, the array begins:
0, 1, 0, 2, 0, 4, 0, 8, ...
1, 1, 2, 2, 4, 4, 8, 8, ...
2, 3, 4, 6, 8, 12, 16, 24, ...
5, 7, 10, 14, 20, 28, 40, 56, ...
12, 17, 24, 34, 48, 68, 96, 136, ...
29, 41, 58, 82, 116, 164, 232, 328, ...
70, 99, 140, 198, 280, 396, 560, 792, ...
169, 239, 338, 478, 676, 956, 1352, 1912, ...
408, 577, 816, 1154, 1632, 2308, 3264, 4616, ...
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
- MacTutor, D'Arcy Thompson on Greek irrationals
- D'Arcy Thompson, Excess and Defect: Or the Little More and the Little Less, Mind, New Series, Vol. 38, No. 149 (Jan., 1929), pp. 43-55 (13 pages). See page 50.
A077443
Numbers k such that (k^2 - 7)/2 is a square.
Original entry on oeis.org
3, 5, 13, 27, 75, 157, 437, 915, 2547, 5333, 14845, 31083, 86523, 181165, 504293, 1055907, 2939235, 6154277, 17131117, 35869755, 99847467, 209064253, 581953685, 1218515763, 3391874643, 7102030325, 19769294173, 41393666187, 115223890395, 241259966797, 671574048197
Offset: 1
a(3)^2 - 2*A077442(2)^2 = 13^2 - 2*9^2 = +7. - _Wolfdieter Lang_, Feb 05 2015
- A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
- Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
- T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, 1964, Theorem 109, pp. 207-208 with Theorem 104, pp. 197-198.
- Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Classes of Gap Balancing Numbers, arXiv:1810.07895 [math.NT], 2018.
- Jeremiah Bartz, Bruce Dearden, and Joel Iiams, Counting families of generalized balancing numbers, The Australasian Journal of Combinatorics (2020) Vol. 77, Part 3, 318-325.
- J. J. O'Connor and E. F. Robertson, History of Pell's Equation
- J. P. Robertson, Solving the Generalized Pell Equation
- Ahmet Tekcan and Alper Erdem, General Terms of All Almost Balancing Numbers of First and Second Type, arXiv:2211.08907 [math.NT], 2022.
- Eric Weisstein's World of Mathematics, Pell Equation.
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
Cf.
A000129,
A001333,
A006452,
A038761,
A038762,
A077442,
A101386,
A124124,
A156649,
A176981,
A216134,
A253811.
-
LinearRecurrence[{0,6,0,-1},{3,5,13,27},50] (* Sture Sjöstedt, Oct 09 2012 *)
Edited: replaced n by a(n) in the name. Moved Pell remarks to the comment section. Added cross references. -
Wolfdieter Lang, Feb 05 2015
A079496
a(0) = a(1) = 1; thereafter a(2*n+1) = 2*a(2*n) - a(2*n-1), a(2*n) = 4*a(2*n-1) - a(2*n-2).
Original entry on oeis.org
1, 1, 3, 5, 17, 29, 99, 169, 577, 985, 3363, 5741, 19601, 33461, 114243, 195025, 665857, 1136689, 3880899, 6625109, 22619537, 38613965, 131836323, 225058681, 768398401, 1311738121, 4478554083, 7645370045, 26102926097, 44560482149, 152139002499, 259717522849, 886731088897
Offset: 0
1 + x + 3*x^2 + 5*x^3 + 17*x^4 + 29*x^5 + 99*x^6 + 169*x^7 + 577*x^8 + ...
- Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
- Indranil Ghosh, Table of n, a(n) for n = 0..2608
- Yurii S. Bystryk, Vitalii L. Denysenko, and Volodymyr I. Ostryk, Lune and Lens Sequences, ResearchGate preprint, 2024. See pp. 47, 56.
- John M. Campbell, An Integral Representation of Kekulé Numbers, and Double Integrals Related to Smarandache Sequences, arXiv:1105.3399 [math.GM], 2011.
- Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126.
- Yujun Yang and Heping Zhang, Kirchhoff Index of linear hexagonal chains, Int. J. Quant. Chem. 108 (2008) 503-512, eq (3.3).
- Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1).
-
H := (n, a, b) -> hypergeom([a - n/2, b - n/2], [1 - n], -1):
a := n -> `if`(n < 3, [1, 1, 3][n+1], 2^(n - 1)*H(n, irem(n, 2), 1/2)):
seq(simplify(a(n)), n=0..26); # Peter Luschny, Sep 03 2019
-
a[1] = 1; a[2] = 3; a[3] = 5; a[n_] := a[n] = (a[n-1]*a[n-2] + 2) / a[n-3]; Table[a[n], {n, 1, 29}] (* Jean-François Alcover, Jul 17 2013, after Paul D. Hanna *)
-
{a(n) = n = abs(n); 2^((4-n)\2) * real( (10 + 7 * quadgen(8)) / 2 * (2 + quadgen(8))^(n-3) ) } /* Michael Somos, Sep 03 2013 */
-
{a(n) = polcoeff( (1 + x - 3*x^2 - x^3) / (1 - 6*x^2 + x^4) + x * O(x^abs(n)), abs(n))} /* Michael Somos, Sep 03 2013 */
A084703
Squares k such that 2*k+1 is also a square.
Original entry on oeis.org
0, 4, 144, 4900, 166464, 5654884, 192099600, 6525731524, 221682772224, 7530688524100, 255821727047184, 8690408031080164, 295218051329678400, 10028723337177985444, 340681375412721826704, 11573138040695364122500, 393146012008229658338304, 13355391270239113019379844
Offset: 0
- D. W. Wilson, Table of n, a(n-1) for n = 1..100 (offset=1)
- Emrah Kılıç, Yücel Türker Ulutaş, and Neşe Ömür, A Formula for the Generating Functions of Powers of Horadam's Sequence with Two Additional Parameters, J. Int. Seq. 14 (2011), Article 11.5.6, table 3, k=2.
- Thomas Koshy, Products Involving Reciprocals of Gibonacci Polynomials, The Fibonacci Quarterly, Vol. 60, No. 1 (2022), pp. 15-24.
- Index entries for linear recurrences with constant coefficients, signature (35,-35,1).
Cf. similar sequences with closed form ((1 + sqrt(2))^(4*r) + (1 - sqrt(2))^(4*r))/8 + k/4: this sequence (k=-1),
A076218 (k=3),
A278310 (k=-5).
-
[4*Evaluate(ChebyshevU(n), 3)^2: n in [0..30]]; // G. C. Greubel, Aug 18 2022
-
b[n_]:= b[n]= If[n<2, n, 34*b[n-1] -b[n-2] +2]; (* b=A001110 *)
a[n_]:= 4*b[n]; Table[a[n], {n, 0, 30}]
4*ChebyshevU[Range[-1,30], 3]^2 (* G. C. Greubel, Aug 18 2022 *)
-
[4*chebyshev_U(n-1, 3)^2 for n in (0..30)] # G. C. Greubel, Aug 18 2022
A123335
a(n) = -2*a(n-1) + a(n-2) for n>1, a(0)=1, a(1)=-1.
Original entry on oeis.org
1, -1, 3, -7, 17, -41, 99, -239, 577, -1393, 3363, -8119, 19601, -47321, 114243, -275807, 665857, -1607521, 3880899, -9369319, 22619537, -54608393, 131836323, -318281039, 768398401, -1855077841, 4478554083, -10812186007, 26102926097, -63018038201, 152139002499
Offset: 0
G.f. = 1 - x + 3*x^2 - 7*x^3 + 17*x^4 - 41*x^5 + 99*x^6 + ... - _Michael Somos_, Apr 19 2022
-
[Round(1/2*((-1-Sqrt(2))^n+(-1+Sqrt(2))^n)): n in [0..30]]; // G. C. Greubel, Oct 12 2017
-
a:= n-> (M-> M[2, 1]+M[2, 2])(<<2|1>, <1|0>>^(-n)):
seq(a(n), n=0..33); # Alois P. Heinz, Jun 22 2021
-
LinearRecurrence[{-2,1},{1,-1},40] (* Harvey P. Dale, Nov 03 2011 *)
-
x='x+O('x^50); Vec((1+x)/(1+2*x-x^2)) \\ G. C. Greubel, Oct 12 2017
-
{a(n) = real((-1 + quadgen(8))^n)}; /* Michael Somos, Apr 19 2022 */
A142238
Numerators of continued fraction convergents to sqrt(3/2).
Original entry on oeis.org
1, 5, 11, 49, 109, 485, 1079, 4801, 10681, 47525, 105731, 470449, 1046629, 4656965, 10360559, 46099201, 102558961, 456335045, 1015229051, 4517251249, 10049731549, 44716177445, 99482086439, 442644523201, 984771132841, 4381729054565, 9748229241971
Offset: 0
N. J. A. Sloane, Oct 05 2008, following a suggestion from Rob Miller (rmiller(AT)AmtechSoftware.net)
The initial convergents are 1, 5/4, 11/9, 49/40, 109/89, 485/396, 1079/881, 4801/3920, 10681/8721, 47525/38804, 105731/86329, ...
-
with(numtheory): cf := cfrac (sqrt(3)/sqrt(2),100): [seq(nthnumer(cf,i), i=0..50)]; [seq(nthdenom(cf,i), i=0..50)]; [seq(nthconver(cf,i), i=0..50)];
-
Numerator[Convergents[Sqrt[3/2], 30]] (* Bruno Berselli, Nov 11 2013 *)
LinearRecurrence[{0,10,0,-1},{1,5,11,49},30] (* Harvey P. Dale, Dec 30 2017 *)
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,10,0]^n*[1;5;11;49])[1,1] \\ Charles R Greathouse IV, Jun 21 2015
A216134
Numbers k such that 2 * A000217(k) + 1 is triangular.
Original entry on oeis.org
0, 1, 4, 9, 26, 55, 154, 323, 900, 1885, 5248, 10989, 30590, 64051, 178294, 373319, 1039176, 2175865, 6056764, 12681873, 35301410, 73915375, 205751698, 430810379, 1199208780, 2510946901, 6989500984, 14634871029, 40737797126, 85298279275, 237437281774
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- Ahmet Tekcan and Alper Erdem, General Terms of All Almost Balancing Numbers of First and Second Type, arXiv:2211.08907 [math.NT], 2022.
- Wikipedia, Pell numbers
- Index entries for linear recurrences with constant coefficients, signature (1,6,-6,-1,1).
-
LinearRecurrence[{1, 6, -6, -1, 1}, {0, 1, 4, 9, 26}, 40] (* T. D. Noe, Sep 03 2012 *)
-
Vec( x*(1+3*x-x^2-x^3)/((1-x)*(1+2*x-x^2)*(1-2*x-x^2)) + O(x^66) ) \\ Joerg Arndt, Aug 13 2014
-
isok(n) = ispolygonal(n*(n+1) + 1, 3); \\ Michel Marcus, Aug 13 2014
A228683
T(n,k)=Number of nXk binary arrays with no two ones adjacent horizontally, diagonally or antidiagonally.
Original entry on oeis.org
2, 3, 4, 5, 7, 8, 8, 19, 17, 16, 13, 40, 77, 41, 32, 21, 97, 216, 313, 99, 64, 34, 217, 809, 1152, 1277, 239, 128, 55, 508, 2529, 6737, 6160, 5215, 577, 256, 89, 1159, 8832, 28977, 56549, 32928, 21305, 1393, 512, 144, 2683, 28793, 152048, 333517, 475809, 176032
Offset: 1
Some solutions for n=4 k=4
..0..0..0..1....1..0..0..0....0..0..1..0....0..0..1..0....1..0..0..0
..0..1..0..1....1..0..0..0....0..0..1..0....0..0..1..0....1..0..0..0
..0..0..0..0....0..0..0..1....1..0..1..0....0..0..1..0....1..0..0..0
..0..0..0..1....0..1..0..1....1..0..0..0....0..0..1..0....0..0..0..0
A359574
Array read by antidiagonals: T(m,n) is the number of m X n binary arrays with all 1's connected and a path of 1's from top row to bottom row.
Original entry on oeis.org
1, 3, 1, 6, 7, 1, 10, 28, 17, 1, 15, 88, 144, 41, 1, 21, 245, 920, 730, 99, 1, 28, 639, 5191, 9362, 3692, 239, 1, 36, 1608, 27651, 104989, 94280, 18666, 577, 1, 45, 3968, 143342, 1111283, 2075271, 947760, 94384, 1393, 1, 55, 9689, 733512, 11457514, 42972329, 40792921, 9528128, 477264, 3363, 1
Offset: 1
Array begins:
================================================================
m\n| 1 2 3 4 5 6 7
---+------------------------------------------------------------
1 | 1 3 6 10 15 21 28 ...
2 | 1 7 28 88 245 639 1608 ...
3 | 1 17 144 920 5191 27651 143342 ...
4 | 1 41 730 9362 104989 1111283 11457514 ...
5 | 1 99 3692 94280 2075271 42972329 866126030 ...
6 | 1 239 18666 947760 40792921 1642690309 64270256276 ...
7 | 1 577 94384 9528128 801218515 62618577481 4741764527414 ...
...
Comments