cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 360 results. Next

A221328 T(n,k)=Number of nXk arrays of occupancy after each element stays put or moves to some horizontal or antidiagonal neighbor, with no occupancy greater than 2.

Original entry on oeis.org

1, 3, 1, 7, 17, 1, 17, 119, 99, 1, 41, 866, 2008, 577, 1, 99, 6328, 46105, 33873, 3363, 1, 239, 46211, 1010078, 2460824, 571358, 19601, 1, 577, 337274, 22181855, 162430981, 131347807, 9637322, 114243, 1, 1393, 2460918, 487335857, 10794156688
Offset: 1

Views

Author

R. H. Hardin Jan 11 2013

Keywords

Comments

Table starts
.1........3............7................17...................41
.1.......17..........119...............866.................6328
.1.......99.........2008.............46105..............1010078
.1......577........33873...........2460824............162430981
.1.....3363.......571358.........131347807..........26135748494
.1....19601......9637322........7010554450........4205264399891
.1...114243....162555929......374176705928......676612123702617
.1...665857...2741882383....19970973695923...108863121975329470
.1..3880899..46248186229..1065911268786396.17515379016294357354
.1.22619537.780082534460.56890876705125765

Examples

			Some solutions for n=3 k=4
..1..2..0..1....2..1..2..0....2..1..0..2....2..1..1..1....2..2..1..2
..1..0..2..1....1..1..0..0....1..1..2..0....0..2..0..1....0..0..0..2
..1..1..2..0....1..2..1..1....1..0..2..0....1..1..0..2....2..0..1..0
		

Crossrefs

Column 2 is A001541
Row 1 is A001333

A228405 Pellian Array, A(n, k) with numbers m such that 2*m^2 +- 2^k is a square, and their corresponding square roots, read downward by diagonals.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 2, 2, 3, 5, 0, 2, 4, 7, 12, 4, 4, 6, 10, 17, 29, 0, 4, 8, 14, 24, 41, 70, 8, 8, 12, 20, 34, 58, 99, 169, 0, 8, 16, 28, 48, 82, 140, 239, 408, 16, 16, 24, 40, 68, 116, 198, 338, 577, 985, 0, 16, 32, 56, 96, 164, 280, 478, 816, 1393, 2378
Offset: 0

Views

Author

Richard R. Forberg, Aug 21 2013

Keywords

Comments

The left column, A(n,0), is A000129(n), Pell Numbers.
The top row, A(0,k), is A077957(k) plus an initial 0, which is the inverse binomial transform of A000129.
These may be considered initializing values, or results, depending the perspective taken, since there are several ways to generate the array. See Formula section for details.
The columns of the array hold all values, in sequential order, of numbers m such that 2m^2 + 2^k or 2m^2 - 2^k are squares, and their corresponding square roots in the next column, which then form the "next round" of m values for k+1.
For example A(n,0) are numbers such that 2m^2 +- 1 are squares, the integer square roots of each are in A(n,1), which are then numbers m such that 2m^2 +- 2 are squares, with those square roots in A(n,2), etc.
A(n, k)/A(n,k-2) = 2; A(n,k)/A(n,k-1) converges to sqrt(2) for large n.
A(n,k)/A(n-1,k) converges to 1 + sqrt(2) for large n.
The other columns of this array hold current OEIS sequences as follows:
A(n,1) = A001333(n); A(n,2) = A163271(n); A(n,3) = A002203(n);
Bisections of these column-oriented sequences also appear in the OEIS, corresponding to the even and odd rows of the array, which in turn correspond to the two different recursive square root equations in the formula section below.
Farey fraction denominators interleave columns 0 and 1, and the corresponding numerators interleave columns 1 and 2, for approximating sqrt(2). See A002965 and A119016, respectively.
The other rows of this array hold current OEIS sequences as follows:
A(1,k) = A016116(k); A(2,k) = A029744(k) less the initial 1;
A(3,k) = A070875(k); A(4,k) = A091523(k) less the initial 8.
The Pell Numbers (A000219) are the only initializing set of numbers where the two recursive square root equations (see below) produce exclusively integer values, for all iterations of k. For any other initial values only even iterations (at k = 2, 4, ...) produce integers.
The numbers in this array, especially the first three columns, are also integer square roots of these expressions: floor(m^2/2), floor(m^2/2 + 1), floor (m^2/2 - 1). See A227972 for specific arrangements and relationships. Also: ceiling(m^2/2), ceiling(m^2/2 + 1), ceiling (m^2/2 -1), m^2+1, m^2-1, m^2*(m^2-1)/2, m^2*(m^2-1)/2, in various different arrangements. Many of these involve: A000129(2n)/2 = A001109(n).
A001109 also appears when multiplying adjacent columns: A(n,k) * A(n,k+1) = (k+1) * A001109(n), for all k.

Examples

			With row # as n. and column # as k, and n, k =>0, the array begins:
0,     1,     0,     2,     0,     4,     0,     8, ...
1,     1,     2,     2,     4,     4,     8,     8, ...
2,     3,     4,     6,     8,    12,    16,    24, ...
5,     7,    10,    14,    20,    28,    40,    56, ...
12,   17,    24,    34,    48,    68,    96,   136, ...
29,   41,    58,    82,   116,   164,   232,   328, ...
70,   99,   140,   198,   280,   396,   560,   792, ...
169,  239,  338,   478,   676,   956,  1352,  1912, ...
408,  577,  816,  1154,  1632,  2308,  3264,  4616, ...
		

Crossrefs

Formula

If using the left column and top row to initialize: A(n,k) = A(n,k-1) + A(n-1,k-1).
If using only the top row to initialize, then each column for k = i is the binomial transform of A(0,k) restricted to k=> i as input to the transform with an appropriate down shift of index. The inverse binomial transform with a similar condition can produce each row from A000129.
If using only the first two rows to initialize then the Pell equation produces each column, as: A(n,k) = 2*A(n-1, k) + A(n-2, k).
If using only the left column (A000219(n) = Pell Numbers) to initialize then the following two equations will produce each row:
A(n,k) = sqrt(2*A(n,k-1) + (-2)^(k-1)) for even rows
A(n,k) = sqrt(2*A(n,k-1) - (-2)^(k-1)) for odd rows.
Interestingly, any portion of the array can also be filled "backwards" given the top row and any column k, using only: A(n,k-1) = A(n-1,k-1) + A(n-1, k), or if given any column and its column number by rearranging the sqrt recursions above.

A077443 Numbers k such that (k^2 - 7)/2 is a square.

Original entry on oeis.org

3, 5, 13, 27, 75, 157, 437, 915, 2547, 5333, 14845, 31083, 86523, 181165, 504293, 1055907, 2939235, 6154277, 17131117, 35869755, 99847467, 209064253, 581953685, 1218515763, 3391874643, 7102030325, 19769294173, 41393666187, 115223890395, 241259966797, 671574048197
Offset: 1

Views

Author

Gregory V. Richardson, Nov 06 2002

Keywords

Comments

Lim_{n -> inf} a(n)/a(n-2) = 3 + 2*sqrt(2) = R1*R2. Lim_{k -> inf} a(2*k-1)/a(2*k) = (9 + 4*sqrt(2))/7 = R1 = A156649 (ratio #1). Lim_{k -> inf} a(2*k)/a(2*k-1) = (11 + 6*sqrt(2))/7 = R2 (ratio #2).
Also gives solutions > 3 to the equation x^2-4 = floor(x*r*floor(x/r)) where r=sqrt(2). - Benoit Cloitre, Feb 14 2004
From Paul Curtz, Dec 15 2012: (Start)
a(n-1) and A006452(n) are companions. Like A000129 and A001333.
Reduced mod 10 this is a sequence of period 12: 3, 5, 3, 7, 5, 7, 7, 5, 7, 3, 5, 3.
(End)
The Pisano periods (periods of the sequence reducing a(n) modulo m) for m>=1 are 1, 1, 8, 4, 12, 8, 6, 4, 24, 12, 24, 8, 28, ... R. J. Mathar, Dec 15 2012
Positive values of x (or y) satisfying x^2 - 6xy + y^2 + 56 = 0. - Colin Barker, Feb 08 2014
From Wolfdieter Lang, Feb 05 2015: (Start)
a(n+1) gives for n >= 0 all positive x solutions of the (generalized) Pell equation x^2 - 2*y^2 = +7.
The corresponding y solutions are given in A077442(n), n >= 0. The, e.g., the Nagell reference for finding all solutions.
Because the primitive Pythagorean triangle (3,4,5) is the only one with the sum of legs equal to 7 all positive solutions (x(n),y(n)) = (a(n+1),A077442(n)) of the Pell equation x^2 - 2*y^2 = +7 satisfy x(n) - y(n) < y(n) if n >= 1; only the first solution (x(0),y(0)) = (3,2) satisfies 3-1 > 1. Proof: Primitive Pythagorean triangles are characterized by the positive integer pairs [u,v] with u+v odd, gcd(u,v) = 1 and u > v. See the Niven et al. reference, Theorem 5.5, p. 232. The leg sum is L = (u+v)^2 - 2*v^2. With L = 7, x = u+v and y = v, every solution (x(n),y(n)) with x(n)-y(n) = u(n) > v(n) = y(n) will correspond to a primitive Pythagorean triangle. Note that because of gcd(x,y) = 1 also gcd(u,v) = 1. But there is only one such triangle with L=7, namely the one with [u(0),v(0)] = [2,1]. All other solutions with n >= 1 must therefore satisfy x(n)-y(n) < y(n). (End)
For n > 0, a(n+1) is the n-th almost Lucas-cobalancing number of first type (see Tekcan and Erdem). - Stefano Spezia, Nov 25 2022

Examples

			a(3)^2 - 2*A077442(2)^2 = 13^2 - 2*9^2 = +7. - _Wolfdieter Lang_, Feb 05 2015
		

References

  • A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
  • Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
  • T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, 1964, Theorem 109, pp. 207-208 with Theorem 104, pp. 197-198.
  • Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,6,0,-1},{3,5,13,27},50] (* Sture Sjöstedt, Oct 09 2012 *)

Formula

a(2n+1) = A038762(n). a(2n) = A101386(n-1).
The same recurrences hold for the odd and the even indices: a(n+2) = 6*a(n) - a(n-2), a(n+1) = 3*a(n) + 2*(2*a(n)^2-14)^0.5 - Richard Choulet, Oct 11 2007
O.g.f.: -x*(x-1)*(3*x^2+8*x+3) / ( (x^2+2*x-1)*(x^2-2*x-1) ). - R. J. Mathar, Nov 23 2007
If n is even a(n) = (1/2)*(3+sqrt(2))*(3+2*sqrt(2))^(-n/2) + (1/2)*(3-sqrt(2))*(3-2*sqrt(2))^(-n/2); if n is odd a(n) = (1/2)*(3+sqrt(2))*(3+2*sqrt(2))^((n-1)/2) + (1/2)*(3-sqrt(2))*(3-2*sqrt(2))^((n-1)/2). - Antonio Alberto Olivares, Apr 20 2008
a(n) = A000129(n+1) + (-1)^n*A176981(n-1), n>1. - R. J. Mathar, Jul 03 2011
a(n) = A000129(n+1) -(-1)^n*A000129(n-2), rephrasing the formula above. - Paul Curtz, Dec 07 2012
a(n) = sqrt(8*A216134(n)^2 + 8*A216134(n) + 9) = 2*A124124(n) + 1. - Raphie Frank, May 24 2013
E.g.f.: cosh(sqrt(2)*x)*(3*cosh(x) - sinh(x)) + sqrt(2)*(2*cosh(x) - sinh(x))*sinh(sqrt(2)*x) - 3. - Stefano Spezia, Nov 25 2022

Extensions

More terms from Richard Choulet, Oct 11 2007
Edited: replaced n by a(n) in the name. Moved Pell remarks to the comment section. Added cross references. - Wolfdieter Lang, Feb 05 2015

A079496 a(0) = a(1) = 1; thereafter a(2*n+1) = 2*a(2*n) - a(2*n-1), a(2*n) = 4*a(2*n-1) - a(2*n-2).

Original entry on oeis.org

1, 1, 3, 5, 17, 29, 99, 169, 577, 985, 3363, 5741, 19601, 33461, 114243, 195025, 665857, 1136689, 3880899, 6625109, 22619537, 38613965, 131836323, 225058681, 768398401, 1311738121, 4478554083, 7645370045, 26102926097, 44560482149, 152139002499, 259717522849, 886731088897
Offset: 0

Views

Author

Benoit Cloitre, Jan 20 2003

Keywords

Comments

a(1)=1, a(n) is the smallest integer > a(n-1) such that sqrt(2)*a(n) is closer and > to an integer than sqrt(2)*a(n-1) (i.e., a(n) is the smallest integer > a(n-1) such that frac(sqrt(2)*a(n)) < frac(sqrt(2)*a(n-1))).
n such that floor(sqrt(2)*n^2) = n*floor(sqrt(2)*n).
The sequence 1,1,3,5,17,... has g.f. (1+x-3x^2-x^3)/(1-6x^2+x^4); a(n) = Sum_{k=0..floor(n/2)} C(n,2k)*2^(n-k-floor((n+1)/2)); a(n) = -(sqrt(2)-1)^n*((sqrt(2)/8-1/4)*(-1)^n - sqrt(2)/8 - 1/4) - (sqrt(2)+1)^n*((sqrt(2)/8-1/4)*(-1)^n - sqrt(2)/8 - 1/4); a(2n) = A001541(n) = A001333(2n); a(2n+1) = A001653(n) = A000129(2n+1). - Paul Barry, Jan 22 2005
The lower principal and intermediate convergents to 2^(1/2), beginning with 1/1, 4/3, 7/5, 24/17, 41/29, form a strictly increasing sequence; essentially, numerators=A143608 and denominators=A079496. - Clark Kimberling, Aug 27 2008
From Richard Choulet, May 09 2010: (Start)
This sequence is a particular case of the following situation: a(0)=1, a(1)=a, a(2)=b with the recurrence relation a(n+3)=(a(n+2)*a(n+1)+q)/a(n) where q is given in Z to have Q=(a*b^2+q*b+a+q)/(a*b) itself in Z.
The g.f is f: f(z)=(1+a*z+(b-Q)*z^2+(a*b+q-a*Q)*z^3)/(1-Q*z^2+z^4); so we have the linear recurrence: a(n+4)=Q*a(n+2)-a(n).
The general form of a(n) is given by:
a(2*m)=sum((-1)^p*binomial(m-p,p)*Q^(m-2*p),p=0..floor(m/2))+(b-Q)*sum((-1)^p*binomial(m-1-p,p)*Q^(m-1-2*p),p=0..floor((m-1)/2)) and
a(2*m+1)=a*sum((-1)^p*binomial(m-p,p)*Q^(m-2*p),p=0..floor(m/2))+(a*b+q-a*Q)*sum((-1)^p*binomial(m-1-p,p)*Q^(m-1-2*p),p=0..floor((m-1)/2)). (End)
The integer square roots of floor(n^2/2 + 1) or (A007590 + 1). - Richard R. Forberg, Aug 01 2013

Examples

			1 + x + 3*x^2 + 5*x^3 + 17*x^4 + 29*x^5 + 99*x^6 + 169*x^7 + 577*x^8 + ...
		

References

  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.

Crossrefs

Programs

  • Maple
    H := (n, a, b) -> hypergeom([a - n/2, b - n/2], [1 - n], -1):
    a := n -> `if`(n < 3, [1, 1, 3][n+1], 2^(n - 1)*H(n, irem(n, 2), 1/2)):
    seq(simplify(a(n)), n=0..26); # Peter Luschny, Sep 03 2019
  • Mathematica
    a[1] = 1; a[2] = 3; a[3] = 5; a[n_] := a[n] = (a[n-1]*a[n-2] + 2) / a[n-3]; Table[a[n], {n, 1, 29}] (* Jean-François Alcover, Jul 17 2013, after Paul D. Hanna *)
  • PARI
    {a(n) = n = abs(n); 2^((4-n)\2) * real( (10 + 7 * quadgen(8)) / 2 * (2 + quadgen(8))^(n-3) ) }  /* Michael Somos, Sep 03 2013 */
    
  • PARI
    {a(n) = polcoeff( (1 + x - 3*x^2 - x^3) / (1 - 6*x^2 + x^4) + x * O(x^abs(n)), abs(n))} /* Michael Somos, Sep 03 2013 */

Formula

a(2n+1) - a(2n) = a(2n) - a(2n-1) = A001542(n).
a(2n+1) = ceiling((2+sqrt(2))/4*(3+2*sqrt(2))^n), a(2n) = ceiling(1/2*(3+2*sqrt(2))^n).
G.f.: (1 + x - 3*x^2 - x^3)/(1 - 6*x^2 + x^4).
a(n)*a(n+3) - a(n+1)*a(n+2) = 2. - Paul D. Hanna, Feb 22 2003
a(n) = 6*a(n-2) - a(n-4). - R. J. Mathar, Apr 04 2008
a(-n) = a(n) = A010914(n-3)*2^floor((4 - n)/2). - Michael Somos, Sep 03 2013
a(n) = (sqrt(2)*sqrt(2+(3-2*sqrt(2))^n+(3+2*sqrt(2))^n))/(2+sqrt(2)+(-1)^n*(-2+sqrt(2))). - Gerry Martens, Jun 06 2015
a(n) = 2^(n - 1)*H(n, n mod 2, 1/2) for n >= 3 where H(n, a, b) = hypergeom([a - n/2, b - n/2], [1 - n], -1). - Peter Luschny, Sep 03 2019
a(n) == Pell(n)^(-1) (mod Pell(n+1)) where Pell(n) = A000129(n), use the identity a(n)*Pell(n) - A084068(n-1)*Pell(n+1) = 1, taken modulo Pell(n+1). - Gary W. Adamson, Nov 21 2023
E.g.f.: cosh(x)*(cosh(sqrt(2)*x) + sinh(sqrt(2)*x)/sqrt(2)). - Stefano Spezia, Apr 21 2025

Extensions

a(0)=1 added by Michael Somos, Sep 03 2013

A084703 Squares k such that 2*k+1 is also a square.

Original entry on oeis.org

0, 4, 144, 4900, 166464, 5654884, 192099600, 6525731524, 221682772224, 7530688524100, 255821727047184, 8690408031080164, 295218051329678400, 10028723337177985444, 340681375412721826704, 11573138040695364122500, 393146012008229658338304, 13355391270239113019379844
Offset: 0

Views

Author

Amarnath Murthy, Jun 08 2003

Keywords

Comments

With the exception of 0, a subsequence of A075114. - R. J. Mathar, Dec 15 2008
Consequently, A014105(k) is a square if and only if k = a(n). - Bruno Berselli, Oct 14 2011
From M. F. Hasler, Jan 17 2012: (Start)
Bisection of A079291. The squares 2*k+1 are given in A055792.
A204576 is this sequence written in binary. (End)
a(n+1), n >= 0, is the perimeter squared (x(n) + y(n) + z(n))^2 of the ordered primitive Pythagorean triple (x(n), y(n) = x(n) + 1, z(n)). The first two terms are (x(0)=0, y(0)=1, z(0)=1), a(1) = 2^2, and (x(1)=3, y(1)=4, z(1)=5), a(2) = 12^2. - George F. Johnson, Nov 02 2012

Crossrefs

Cf. similar sequences with closed form ((1 + sqrt(2))^(4*r) + (1 - sqrt(2))^(4*r))/8 + k/4: this sequence (k=-1), A076218 (k=3), A278310 (k=-5).

Programs

  • Magma
    [4*Evaluate(ChebyshevU(n), 3)^2: n in [0..30]]; // G. C. Greubel, Aug 18 2022
    
  • Mathematica
    b[n_]:= b[n]= If[n<2, n, 34*b[n-1] -b[n-2] +2]; (* b=A001110 *)
    a[n_]:= 4*b[n]; Table[a[n], {n, 0, 30}]
    4*ChebyshevU[Range[-1,30], 3]^2 (* G. C. Greubel, Aug 18 2022 *)
  • SageMath
    [4*chebyshev_U(n-1, 3)^2 for n in (0..30)] # G. C. Greubel, Aug 18 2022

Formula

a(n) = 4*A001110(n) = A001542(n)^2.
a(n+1) = A001652(n)*A001652(n+1) + A046090(n)*A046090(n+1) = A001542(n+1)^2. - Charlie Marion, Jul 01 2003
a(n) = A001653(k+n)*A001653(k-n) - A001653(k)^2, for k >= n >= 0; e.g. 144 = 5741*5 - 169^2. - Charlie Marion, Jul 16 2003
G.f.: 4*x*(1+x)/((1-x)*(1-34*x+x^2)). - R. J. Mathar, Dec 15 2008
a(n) = A079291(2n). - M. F. Hasler, Jan 16 2012
From George F. Johnson, Nov 02 2012: (Start)
a(n) = ((17+12*sqrt(2))^n + (17-12*sqrt(2))^n - 2)/8.
a(n+1) = 17*a(n) + 4 + 12*sqrt(a(n)*(2*a(n) + 1)).
a(n-1) = 17*a(n) + 4 - 12*sqrt(a(n)*(2*a(n) + 1)).
a(n-1)*a(n+1) = (a(n) - 4)^2.
2*a(n) + 1 = (A001541(n))^2.
a(n+1) = 34*a(n) - a(n-1) + 8 for n>1, a(0)=0, a(1)=4.
a(n+1) = 35*a(n) - 35*a(n-1) + a(n-2) for n>0, a(0)=0, a(1)=4, a(2)=144.
a(n)*a(n+1) = (4*A029549(n))^2.
a(n+1) - a(n) = 4*A046176(n).
a(n) + a(n+1) = 4*(6*A029549(n) + 1).
a(n) = (2*A001333(n)*A000129(n))^2.
Limit_{n -> infinity} a(n)/a(n-r) = (17+12*sqrt(2))^r. (End)
Empirical: a(n) = A089928(4*n-2), for n > 0. - Alex Ratushnyak, Apr 12 2013
a(n) = 4*A001109(n)^2. - G. C. Greubel, Aug 18 2022
Product_{n>=2} (1 - 4/a(n)) = sqrt(2)/3 + 1/2 (Koshy, 2022, section 3, p. 19). - Amiram Eldar, Jan 23 2025

Extensions

Edited and extended by Robert G. Wilson v, Jun 15 2003

A123335 a(n) = -2*a(n-1) + a(n-2) for n>1, a(0)=1, a(1)=-1.

Original entry on oeis.org

1, -1, 3, -7, 17, -41, 99, -239, 577, -1393, 3363, -8119, 19601, -47321, 114243, -275807, 665857, -1607521, 3880899, -9369319, 22619537, -54608393, 131836323, -318281039, 768398401, -1855077841, 4478554083, -10812186007, 26102926097, -63018038201, 152139002499
Offset: 0

Views

Author

Philippe Deléham, Jun 27 2007

Keywords

Comments

Inverse binomial transform of A077957.
The inverse of the g.f. is 3-x-2/(1+x) which generates 1, 1, -2, +2, -2, +2, ... (-2, +2 periodically continued). - Gary W. Adamson, Jan 10 2011
Pisano period lengths: 1, 1, 8, 4, 12, 8, 6, 4, 24, 12, 24, 8, 28, 6, 24, 8, 16, 24, 40, 12, ... - R. J. Mathar, Aug 10 2012
a(n) is the rational part of the Q(sqrt(2)) integer (sqrt(2) - 1)^n = a(n) + A077985(n-1)*sqrt(2), with A077985(-1) = 0. - Wolfdieter Lang, Dec 07 2014
3^n*a(n) = A251732(n) gives the rational part of the integer in Q(sqrt(2)) giving the length of a variant of Lévy's C-curve at iteration step n. - Wolfdieter Lang, Dec 07 2014
Define u(0) = 1/0, u(1) = -1/1, and u(n) = -(8 + 3*u(n-1)*u(n-2))/(3*u(n-1) + 2*u(n-2)) for n>1. Then u(n) = a(n)/A000219(n). - Michael Somos, Apr 19 2022

Examples

			G.f. = 1 - x + 3*x^2 - 7*x^3 + 17*x^4 - 41*x^5 + 99*x^6 + ... - _Michael Somos_, Apr 19 2022
		

Crossrefs

Cf. A000129, A001333, A077985, A251732, A001541 (bisection), A002315 (bisection).

Programs

  • Magma
    [Round(1/2*((-1-Sqrt(2))^n+(-1+Sqrt(2))^n)): n in [0..30]]; // G. C. Greubel, Oct 12 2017
  • Maple
    a:= n-> (M-> M[2, 1]+M[2, 2])(<<2|1>, <1|0>>^(-n)):
    seq(a(n), n=0..33);  # Alois P. Heinz, Jun 22 2021
  • Mathematica
    LinearRecurrence[{-2,1},{1,-1},40] (* Harvey P. Dale, Nov 03 2011 *)
  • PARI
    x='x+O('x^50); Vec((1+x)/(1+2*x-x^2)) \\ G. C. Greubel, Oct 12 2017
    
  • PARI
    {a(n) = real((-1 + quadgen(8))^n)}; /* Michael Somos, Apr 19 2022 */
    

Formula

a(n) = (-1)^n*A001333(n).
G.f.: (1+x)/(1+2*x-x^2).
a(n) = A077985(n) + A077985(n-1). - R. J. Mathar, Mar 28 2011
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 19 2013
G.f.: 1/(1 + x/(1 + 2*x/(1 - x))). - Michael Somos, Apr 19 2022
E.g.f.: exp(-x)*cosh(sqrt(2)*x). - Stefano Spezia, Feb 01 2023

Extensions

Corrected by N. J. A. Sloane, Oct 05 2008

A142238 Numerators of continued fraction convergents to sqrt(3/2).

Original entry on oeis.org

1, 5, 11, 49, 109, 485, 1079, 4801, 10681, 47525, 105731, 470449, 1046629, 4656965, 10360559, 46099201, 102558961, 456335045, 1015229051, 4517251249, 10049731549, 44716177445, 99482086439, 442644523201, 984771132841, 4381729054565, 9748229241971
Offset: 0

Views

Author

N. J. A. Sloane, Oct 05 2008, following a suggestion from Rob Miller (rmiller(AT)AmtechSoftware.net)

Keywords

Comments

From Charlie Marion, Jan 07 2009: (Start)
In general, denominators, a(k,n) and numerators, b(k,n), of continued
fraction convergents to sqrt((k+1)/k) may be found as follows:
a(k,0) = 1, a(k,1) = 2k; for n>0, a(k,2n) = 2*a(k,2n-1)+a(k,2n-2)
and a(k,2n+1)=(2k)*a(k,2n)+a(k,2n-1);
b(k,0) = 1, b(k,1) = 2k+1; for n>0, b(k,2n) = 2*b(k,2n-1)+b(k,2n-2)
and b(k,2n+1)=(2k)*b(k,2n)+b(k,2n-1).
For example, the convergents to sqrt(3/2) start 1/1, 5/4, 11/9,
49/40, 109/89.
In general, if a(k,n) and b(k,n) are the denominators and numerators,
respectively, of continued fraction convergents to sqrt((k+1)/k)
as defined above, then
k*a(k,2n)^2-a(k,2n-1)*a(k,2n+1)=k=k*a(k,2n-2)*a(k,2n)-a(k,2n-1)^2 and
b(k,2n-1)*b(k,2n+1)-k*b(k,2n)^2=k+1=b(k,2n-1)^2-k*b(k,2n-2)*b(k,2n);
for example, if k=2 and n=3, then b(2,n)=a(n) and
2*a(2,6)^2-a(2,5)*a(2,7)=2*881^2-396*3920=2;
2*a(2,4)*a(2,6)-a(2,5)^2=2*89*881-396^2=2;
b(2,5)*b(2,7)-2*b(2,6)^2=485*4801-2*1079^2=3;
b(2,5)^2-2*b(2,4)*b(2,6)=485^2-2*109*1079=3.

Examples

			The initial convergents are 1, 5/4, 11/9, 49/40, 109/89, 485/396, 1079/881, 4801/3920, 10681/8721, 47525/38804, 105731/86329, ...
		

Crossrefs

Programs

  • Maple
    with(numtheory): cf := cfrac (sqrt(3)/sqrt(2),100): [seq(nthnumer(cf,i), i=0..50)]; [seq(nthdenom(cf,i), i=0..50)]; [seq(nthconver(cf,i), i=0..50)];
  • Mathematica
    Numerator[Convergents[Sqrt[3/2], 30]] (* Bruno Berselli, Nov 11 2013 *)
    LinearRecurrence[{0,10,0,-1},{1,5,11,49},30] (* Harvey P. Dale, Dec 30 2017 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,10,0]^n*[1;5;11;49])[1,1] \\ Charles R Greathouse IV, Jun 21 2015

Formula

G.f.'s for numerators and denominators are -(1+5*x+x^2-x^3)/(-1-x^4+10*x^2) and -(1+4*x-x^2)/(-1-x^4+10*x^2).
a(2n) = A041006(2n)/2 = A054320(n), a(2n-1) = A041006(2n-1) = A041038(2n-1) = A001079(n). - M. F. Hasler, Feb 14 2009

A216134 Numbers k such that 2 * A000217(k) + 1 is triangular.

Original entry on oeis.org

0, 1, 4, 9, 26, 55, 154, 323, 900, 1885, 5248, 10989, 30590, 64051, 178294, 373319, 1039176, 2175865, 6056764, 12681873, 35301410, 73915375, 205751698, 430810379, 1199208780, 2510946901, 6989500984, 14634871029, 40737797126, 85298279275, 237437281774
Offset: 0

Views

Author

Raphie Frank, Sep 01 2012

Keywords

Comments

Numbers n such that 2*triangular(n) + 1 is a triangular number. Equivalently, numbers n such that n^2 + n + 1 is a triangular number. - Alex Ratushnyak, Apr 18 2013
For n > 0, a(n) is the n-th almost cobalancing number of first type (see Tekcan and Erdem). - Stefano Spezia, Nov 25 2022

Crossrefs

Cf. A000217, A069017 (triangular numbers of the form k^2 + k + 1).

Programs

  • Mathematica
    LinearRecurrence[{1, 6, -6, -1, 1}, {0, 1, 4, 9, 26}, 40] (* T. D. Noe, Sep 03 2012 *)
  • PARI
    Vec( x*(1+3*x-x^2-x^3)/((1-x)*(1+2*x-x^2)*(1-2*x-x^2)) + O(x^66) ) \\ Joerg Arndt, Aug 13 2014
    
  • PARI
    isok(n) = ispolygonal(n*(n+1) + 1, 3); \\ Michel Marcus, Aug 13 2014

Formula

G.f.: x*(1+3*x-x^2-x^3)/((1-x)*(1+2*x-x^2)*(1-2*x-x^2)). - R. J. Mathar, Sep 08 2012
sqrt(2) = lim_{k->infinity} ((a(2k+1) + a(2k) + 1)/2)/(a(2k+1) - a(2k)) = lim_{k->infinity} A001333(2k + 1)/A000129(2k + 1).
1 + (sqrt 2) = lim_{k->infinity} (a(2k + 1) - a(2k))/(a(2k + 1) - 2*a(2k) + a(2k - 1)) = lim_{k->infinity} A000129(2k + 1)/A000129(2k).
1 + 1/(sqrt 2) = lim_{k->infinity} (a(2k+1) - a(2k))/(a(2k) - a(2k - 1)) = lim_{k->infinity} A000129(2k + 1)/A001333(2k).
a(n) = (2*A000129(n) + (-1)^n*(A000129(2*floor(n/2) - 1) - (-1)^n)/2). - Raphie Frank, Jan 04 2013
From Raphie Frank, Jan 04 2013: (Start)
A124174(n) = a(n)*(a(n) + 1)/2.
A079496(n) = a(n + 1) - a(n).
A000129(2n) = a(2n) - 2*a(2n - 1) + a(2n - 2).
A000129(2n) = a(2n + 1) - 2*a(2n) + a(2n - 1).
A000129(2n + 1) = a(2n + 1) - a(2n).
A001333(2n) = a(2n) - a(2n - 1).
A001333(2n + 1) = (a(2n + 1) + a(2n) + 1)/2.
A006451(n + 1) = (a(n + 2) + a(n))/2.
A006452(n + 2) = (a(n + 2) - a(n))/2.
A124124(n + 2) = (a(n + 2) + a(n))/2 + (a(n + 2) - a(n)).
(End)
a(n + 2) = sqrt(8*a(n)^2 + 8*a(n) + 9) + 3*a(n) + 1; a(0) = 0, a(1) = 1. - Raphie Frank, Feb 02 2013
a(n) = (3/8 + sqrt(2)/4)*(1 + sqrt(2))^n + (-1/8 - sqrt(2)/8)*(-1 + sqrt(2))^n + (3/8 - sqrt(2)/4)*(1 - sqrt(2))^n + (-1/8 + sqrt(2)/8)*(-1 - sqrt(2))^n - 1/2. - Robert Israel, Aug 13 2014
E.g.f.: (1/4)*(-2*cosh(x) - 2*sinh(x) + 2*cosh(sqrt(2)*x)*(cosh(x) + 2*sinh(x)) + sqrt(2)*(cosh(x) + 3*sinh(x))*sinh(sqrt(2)*x)). - Stefano Spezia, Dec 10 2019

A228683 T(n,k)=Number of nXk binary arrays with no two ones adjacent horizontally, diagonally or antidiagonally.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 8, 19, 17, 16, 13, 40, 77, 41, 32, 21, 97, 216, 313, 99, 64, 34, 217, 809, 1152, 1277, 239, 128, 55, 508, 2529, 6737, 6160, 5215, 577, 256, 89, 1159, 8832, 28977, 56549, 32928, 21305, 1393, 512, 144, 2683, 28793, 152048, 333517, 475809, 176032
Offset: 1

Views

Author

R. H. Hardin Aug 30 2013

Keywords

Comments

Table starts
...2....3......5.......8........13.........21...........34............55
...4....7.....19......40........97........217..........508..........1159
...8...17.....77.....216.......809.......2529.........8832.........28793
..16...41....313....1152......6737......28977.......152048........699833
..32...99...1277....6160.....56549.....333517......2644336......17124415
..64..239...5215...32928....475809....3837761.....46125216.....419022831
.128..577..21305..176032...4008817...44171841....806190208...10258304689
.256.1393..87049..941056..33795201..508425617..14105294112..251170142257
.512.3363.355685.5030848.284980061.5852202757.246929287360.6150224353031

Examples

			Some solutions for n=4 k=4
..0..0..0..1....1..0..0..0....0..0..1..0....0..0..1..0....1..0..0..0
..0..1..0..1....1..0..0..0....0..0..1..0....0..0..1..0....1..0..0..0
..0..0..0..0....0..0..0..1....1..0..1..0....0..0..1..0....1..0..0..0
..0..0..0..1....0..1..0..1....1..0..0..0....0..0..1..0....0..0..0..0
		

Crossrefs

Column 1 is A000079
Column 2 is A001333(n+1)
Diagonal is A067963
Row 1 is A000045(n+2)
Row 2 is A006130(n+1)

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2)
k=3: a(n) = 5*a(n-1) -3*a(n-2) -3*a(n-3)
k=4: a(n) = 6*a(n-1) -2*a(n-2) -8*a(n-3)
k=5: a(n) = 12*a(n-1) -27*a(n-2) -32*a(n-3) +49*a(n-4) +20*a(n-5) -5*a(n-6)
k=6: [order 7]
k=7: [order 12]
Empirical for row n:
n=1: a(n) = a(n-1) +a(n-2)
n=2: a(n) = a(n-1) +3*a(n-2)
n=3: a(n) = 2*a(n-1) +6*a(n-2) -5*a(n-3)
n=4: a(n) = 2*a(n-1) +16*a(n-2) -7*a(n-3) -18*a(n-4)
n=5: [order 7]
n=6: [order 10]
n=7: [order 16]

A359574 Array read by antidiagonals: T(m,n) is the number of m X n binary arrays with all 1's connected and a path of 1's from top row to bottom row.

Original entry on oeis.org

1, 3, 1, 6, 7, 1, 10, 28, 17, 1, 15, 88, 144, 41, 1, 21, 245, 920, 730, 99, 1, 28, 639, 5191, 9362, 3692, 239, 1, 36, 1608, 27651, 104989, 94280, 18666, 577, 1, 45, 3968, 143342, 1111283, 2075271, 947760, 94384, 1393, 1, 55, 9689, 733512, 11457514, 42972329, 40792921, 9528128, 477264, 3363, 1
Offset: 1

Views

Author

Andrew Howroyd, Jan 06 2023

Keywords

Comments

The grid has m rows and n columns.

Examples

			Array begins:
================================================================
m\n| 1   2     3       4         5           6             7
---+------------------------------------------------------------
1  | 1   3     6      10        15          21            28 ...
2  | 1   7    28      88       245         639          1608 ...
3  | 1  17   144     920      5191       27651        143342 ...
4  | 1  41   730    9362    104989     1111283      11457514 ...
5  | 1  99  3692   94280   2075271    42972329     866126030 ...
6  | 1 239 18666  947760  40792921  1642690309   64270256276 ...
7  | 1 577 94384 9528128 801218515 62618577481 4741764527414 ...
  ...
		

Crossrefs

Formula

T(m,n) = A287151(m,n) - 2*A287151(m-1,n) + A287151(m-2,n) for m > 2.
Previous Showing 101-110 of 360 results. Next