cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A295633 Triangle read by rows: T(n,k) = number of nonequivalent dissections of an n-gon into k polygons by nonintersecting diagonals up to rotation.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 4, 4, 1, 2, 8, 12, 6, 1, 3, 16, 40, 43, 19, 1, 3, 25, 93, 165, 143, 49, 1, 4, 40, 197, 505, 712, 504, 150, 1, 4, 56, 364, 1274, 2548, 2912, 1768, 442, 1, 5, 80, 646, 2878, 7672, 12400, 11976, 6310, 1424, 1, 5, 105, 1050, 5880, 19992, 42840, 58140, 48450, 22610, 4522
Offset: 3

Views

Author

Andrew Howroyd, Nov 24 2017

Keywords

Examples

			Triangle begins: (n >= 3, k >= 1)
1;
1, 1;
1, 1,  1;
1, 2,  4,   4;
1, 2,  8,  12,    6;
1, 3, 16,  40,   43,   19;
1, 3, 25,  93,  165,  143,   49;
1, 4, 40, 197,  505,  712,  504,  150;
1, 4, 56, 364, 1274, 2548, 2912, 1768, 442;
...
		

Crossrefs

Row sums are A003455.
Column k=3 is A003451.
Diagonals include A001683, A220881, A003445, A220882.

Programs

  • PARI
    \\ See A295495 for DissectionsModCyclic()
    T=DissectionsModCyclic(apply(i->y, [1..12]));
    for(n=3, #T, for(k=1, n-2, print1(polcoeff(T[n], k), ", ")); print)

A006342 Coloring a circuit with 4 colors.

Original entry on oeis.org

1, 1, 4, 10, 31, 91, 274, 820, 2461, 7381, 22144, 66430, 199291, 597871, 1793614, 5380840, 16142521, 48427561, 145282684, 435848050, 1307544151, 3922632451, 11767897354, 35303692060, 105911076181, 317733228541, 953199685624, 2859599056870, 8578797170611
Offset: 0

Views

Author

Keywords

Comments

Also equal to the number of set partitions of {1,2,...,n+2} with at most 4 parts such that each part does not contain both i,i+1 for 1<=iMike Zabrocki, Sep 08 2020
Also a(n) equals the number of color-complete multipoles with n terminals (that is, having all the states allowed by the Parity Lemma). - Miquel A. Fiol, May 27 2024

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [3*3^n/8+1/4+3*(-1)^n/8: n in [0..30]]; // Vincenzo Librandi, Aug 20 2011
    
  • Maple
    A006342:=-(-1+2*z)/(z-1)/(3*z-1)/(z+1); # conjectured by Simon Plouffe in his 1992 dissertation
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2]-1 od: seq(a[n], n=1..26); # Zerinvary Lajos, Apr 28 2008
  • Mathematica
    CoefficientList[Series[(1-2 x)/((1-x^2) (1-3 x)),{x,0,30}],x] (* or *) LinearRecurrence[{3,1,-3},{1,1,4},30] (* Harvey P. Dale, Aug 16 2016 *)
  • PARI
    Vec((1 - 2*x) / ((1 - x)*(1 + x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, Nov 07 2017

Formula

G.f.: (1 - 2 x ) / (( 1 - x^2 ) ( 1 - 3 x )).
Binomial transform of A002001 (with interpolated zeros). Partial sums of A054878. E.g.f.: exp(x)(3*cosh(2*x) + 1)/4; a(n) = 3*3^n/8 + 1/4 + 3(-1)^n/8 = Sum_{k=0..n} (3^k + 3(-1)^k)/4. - Paul Barry, Sep 03 2003
a(n) = 2*a(n-1) + 3*a(n-2) - 1, n > 1. - Gary Detlefs, Jun 21 2010
a(n) = a(n-1) + A054878(n-2). - Yuchun Ji, Sep 12 2017
From Colin Barker, Nov 07 2017: (Start)
a(n) = (3^(n+1) + 5) / 8 for n even.
a(n) = (3^(n+1) - 1) / 8 for n odd.
a(n) = 3*a(n-1) + a(n-2) - 3*a(n-3) for n > 2.
(End)
a(n) = 3*a(n-1) + (3*(-1)^n - 1)/2 for n > 0. - Yuchun Ji, Dec 05 2019

A221184 Number of colored quivers in the 4-mutation class of a quiver of Dynkin type A_n.

Original entry on oeis.org

1, 1, 3, 19, 118, 931, 7756, 68685, 630465, 5966610, 57805410, 571178751, 5737638778, 58455577800, 602859152496, 6283968796705, 66119469155523, 701526880303315, 7498841128986109, 80696081185766970, 873654669882574580
Offset: 0

Views

Author

N. J. A. Sloane, Jan 22 2013

Keywords

Comments

Also, number of nonequivalent dissections of a polygon into n+1 hexagons by nonintersecting diagonals up to rotation. - Andrew Howroyd, Nov 20 2017
Number of oriented polyominoes composed of n+1 hexagonal cells of the hyperbolic regular tiling with Schläfli symbol {6,oo}. A stereographic projection of this tiling on the Poincaré disk can be obtained via the Christensson link. For oriented polyominoes, chiral pairs are counted as two. - Robert A. Russell, Jan 23 2024

Crossrefs

Column k=6 of A295224.
Polyominoes: A004127 (unoriented), A369473 (chiral), A143546 (achiral), A001683(n+2) {3,oo}, A005034 {4,oo}, A005038 {5,oo}.

Programs

  • Mathematica
    u[n_, k_, r_] := r*Binomial[(k - 1)*n + r, n]/((k - 1)*n + r);
    T[n_, k_] := u[n, k, 1] + (If[EvenQ[n], u[n/2, k, 1], 0] - u[n, k, 2])/2 + DivisorSum[GCD[n - 1, k], EulerPhi[#]*u[(n - 1)/#, k, k/#] &]/k;
    a[n_] := T[n + 1, 6];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd *)
    p=6; Table[Binomial[(p-1)n,n]/(((p-2)n+1)((p-2)n+2))+If[OddQ[n],0,Binomial[(p-1)n/2,n/2]/((p-2)n+2)]+DivisorSum[GCD[p,n-1],EulerPhi[#]Binomial[((p-1)n+1)/#,(n-1)/#]/((p-1)n+1)&,#>1&],{n,30}] (* Robert A. Russell, Jan 23 2024 *)

Formula

a(n) ~ 5^(5*n + 11/2) / (sqrt(Pi) * n^(5/2) * 2^(8*n + 27/2)). - Vaclav Kotesovec, Jun 15 2018
a(n-1) = A004127(n) + A369473(n) = 2*A004127(n) - A143546(n) = 2*A369473(n) + A143546(n). - Robert A. Russell, Jan 23 2024

Extensions

a(0)=1 and a(18)-a(20) corrected by Andrew Howroyd, Nov 20 2017

A369314 Number of chiral pairs of polyominoes composed of n triangular cells of the hyperbolic regular tiling with Schläfli symbol {3,oo}.

Original entry on oeis.org

1, 2, 7, 22, 68, 214, 691, 2240, 7396, 24702, 83469, 284928, 981814, 3410990, 11939752, 42075308, 149180356, 531866972, 1905872189, 6861162880, 24805796984, 90035940942, 327988261992, 1198853954688, 4395798528850
Offset: 4

Views

Author

Robert A. Russell, Jan 19 2024

Keywords

Comments

A stereographic projection of the {3,oo} tiling on the Poincaré disk can be obtained via the Christensson link. Each member of a chiral pair is a reflection but not a rotation of the other.

Examples

			________      ________   ________      ________   ________      ________
\  /\  /\    /\  /\  /   \  /\  /\    /\  /\  /   \  /\  /\    /\  /\  /
 \/__\/__\  /__\/__\/     \/__\/__\  /__\/__\/     \/__\/__\  /__\/__\/
                           \  /          \  /           \  /  \  /
a(4)=1; a(5)=2.             \/            \/             \/    \/
		

Crossrefs

Polyominoes: A001683(n+2) (oriented), A000207 (unoriented), A208355(n-1) (achiral).

Programs

  • Mathematica
    Table[Binomial[2n,n]/(2(n+1)(n+2))-If[OddQ[n],Binomial[n,(n+1)/2]/n,Binomial[n,n/2]/(n+2)]/2+If[Divisible[n-1,3],Binomial[(2n+1)/3,(n-1)/3]/(2n+1),0],{n,4,20}]

Formula

a(n) = C(2n,2)/(2(n+1)(n+2)) - [2\(n+1)]*C(n,(n+1)/2)/(2n) - [2\n]*C(n,n/2)/(2n+4) + [3\(n-1)]*C((2n+1)/3,(n-1)/3)/(2n+1).
a(n) = A001683(n+2) - A000207(n) = (A001683(n+2) - A208355(n-1)) / 2 = A000207(n) - A208355(n-1).

A038775 a(n) is the number of cycles of the permutation that converts forest(n) of depth-first planar planted binary trees into breadth-first representation.

Original entry on oeis.org

1, 2, 3, 6, 10, 12, 17, 26, 34, 50, 56, 68, 82, 94, 113
Offset: 1

Views

Author

Wouter Meeussen, May 04 2000

Keywords

Comments

The first a(n) terms of A038774 add up to Catalan(n) = A000108(n).

Examples

			a(5)=10 since there are 10 cycles in this permutation of forest(5), with lengths 1, 1, 3, 4, 3, 2, 16, 8, 2, 2 summing up to 42=Catalan(5).
		

Crossrefs

Similarly generated sequences: A001683, A002995, A003239, A057507, A057513.

Extensions

a(13)-a(15) from Sean A. Irvine, May 22 2022

A007282 Number of hexaflexagons with 3n triangles that can be folded from a straight strip of paper.

Original entry on oeis.org

1, 1, 1, 4, 14, 74, 434, 2876, 19848, 143306, 1062149, 8058223, 62259820, 488630360, 3886211100, 31267852668
Offset: 1

Views

Author

N. J. A. Sloane, frb6006(AT)cs.rit.edu (Frank R. Bernhart)

Keywords

References

  • M. Kosters, A theory of hexaflexagons, Nieuw Archief Wisk., 17 (1999), 349-362.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

More terms from Mike Godfrey (m.godfrey(AT)umist.ac.uk), Apr 02 2002

A380361 Triangle read by rows: T(n,k) is the number of embeddings on the sphere of Halin graphs on n unlabeled nodes with circuit rank k up to orientation-preserving homeomorphisms, 3 <= k <= n-1.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 0, 4, 2, 1, 0, 0, 0, 4, 8, 3, 1, 0, 0, 0, 0, 12, 16, 3, 1, 0, 0, 0, 0, 6, 40, 25, 4, 1, 0, 0, 0, 0, 0, 43, 93, 40, 4, 1, 0, 0, 0, 0, 0, 19, 165, 197, 56, 5, 1, 0, 0, 0, 0, 0, 0, 143, 505, 364, 80, 5, 1
Offset: 4

Views

Author

Andrew Howroyd, Jan 25 2025

Keywords

Comments

The circuit rank is equal to the number of leaves on the tree before it is extended into a Halin graph by joining up the leaves.
The main diagonal of the graph corresponds with the wheel graphs which have the greatest circuit rank of all Halin graphs.
T(n,k) is also the number of nonequivalent dissections of a k-gon into n-k polygons by nonintersecting diagonals up to rotation.

Examples

			Triangle begins:
  n\k| 3  4  5  6   7   8    9   10  11  12  13
-----+-----------------------------------------
   4 | 1;
   5 | 0, 1;
   6 | 0, 1, 1;
   7 | 0, 0, 1, 1;
   8 | 0, 0, 1, 2,  1;
   9 | 0, 0, 0, 4,  2,  1;
  10 | 0, 0, 0, 4,  8,  3,   1;
  11 | 0, 0, 0, 0, 12, 16,   3,   1;
  12 | 0, 0, 0, 0,  6, 40,  25,   4,  1;
  13 | 0, 0, 0, 0,  0, 43,  93,  40,  4,  1;
  14 | 0, 0, 0, 0,  0, 19, 165, 197, 56,  5,  1;
  ...
		

Crossrefs

Row sums are A380360.
Column sums are A003455.
Main diagonal is A000012.
Central coefficients are A001683.

Programs

  • PARI
    \\ See PARI Link in A380362 for program code.
    { my(T=A380361rows(12)); for(i=1, #T, print(T[i])) }

Formula

T(n,k) = A295633(k, n-k).

A085167 Permutation of natural numbers induced by the Catalan bijection gma085167 acting on symbolless S-expressions encoded by A014486/A063171.

Original entry on oeis.org

0, 1, 3, 2, 5, 8, 7, 4, 6, 10, 13, 15, 18, 22, 12, 21, 17, 9, 11, 20, 14, 16, 19, 24, 27, 29, 32, 36, 38, 41, 43, 46, 50, 52, 55, 59, 64, 26, 35, 40, 49, 63, 31, 58, 45, 23, 25, 48, 28, 30, 33, 34, 62, 54, 37, 39, 57, 42, 44, 47, 61, 51, 53, 56, 60, 66, 69, 71, 74, 78
Offset: 0

Views

Author

Antti Karttunen, Jun 23 2003

Keywords

Crossrefs

Inverse: A085168. a(n) = A085159(A069770(n)). Occurs in A073200. Cf. also A074679, A074680, A085203.
Number of cycles in range [A014137(n-1)..A014138(n-1)] of this permutation, possibly shifted one term left or right: A001683. [To be checked.].

A111113 a(2^m) = 1, a(2^m+1) = -1 (m>0), otherwise a(n) = 0.

Original entry on oeis.org

0, 0, 1, -1, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Oct 15 2005

Keywords

Examples

			G.f. = x^2 - x^3 + x^4 - x^5 + x^8 - x^9 + x^16 - x^17 + x^32 - x^33 + ...
		

Programs

  • PARI
    {a(n) = if( n<2, 0, [1, -1, 0] [1 + min(2, n - 2^(length(binary(n)) - 1))] )} /* Michael Somos, Aug 03 2009 */
    
  • PARI
    {a(n) = if( n<2, 0, if( n%2, -a(n - 1), n == 2^valuation(n, 2)))} /* Michael Somos, Aug 03 2009 */

Formula

Euler transform of A079559 is sequence offset -1. - Michael Somos, Aug 03 2009
G.f.: (1 - x) * (Sum_{k>0} x^(2^k)). - Michael Somos, Aug 03 2009
|a(n)| = A001683(n)(mod 2) for n > 1. - John M. Campbell, Apr 01 2018

A274326 Number of distinct irregular n-gon flexagons.

Original entry on oeis.org

0, 0, 1, 2, 11, 40
Offset: 2

Views

Author

Christian Schroeder, Jun 18 2016

Keywords

Examples

			a(6) = 11, because there are 11 distinct irregular hexaflexagons.
		

References

  • Les Pook, Flexagons inside out, Cambridge University Press, 2003, p. 84.

Crossrefs

Cf. A001683.
Previous Showing 21-30 of 30 results.