cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A007051 a(n) = (3^n + 1)/2.

Original entry on oeis.org

1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842, 29525, 88574, 265721, 797162, 2391485, 7174454, 21523361, 64570082, 193710245, 581130734, 1743392201, 5230176602, 15690529805, 47071589414, 141214768241, 423644304722, 1270932914165, 3812798742494, 11438396227481
Offset: 0

Views

Author

Keywords

Comments

Number of ordered trees with n edges and height at most 4.
Number of palindromic structures using a maximum of three different symbols. - Marks R. Nester
Number of compositions of all even natural numbers into n parts <= 2 (0 is counted as a part), see example. - Adi Dani, May 14 2011
Consider the mapping f(a/b) = (a + 2*b)/(2*a + b). Taking a = 1, b = 2 to start with, and carrying out this mapping repeatedly on each new (reduced) rational number gives the sequence 1/2, 4/5, 13/14, 40/41, ... converging to 1. The sequence contains the denominators = (3^n+1)/2. The same mapping for N, i.e., f(a/b) = (a + N*b)/(a+b) gives fractions converging to N^(1/2). - Amarnath Murthy, Mar 22 2003
Second binomial transform of the expansion of cosh(x). - Paul Barry, Apr 05 2003
The sequence (1, 1, 2, 5, ...) = 3^n/6 + 1/2 + 0^n/3 has binomial transform A007581. - Paul Barry, Jul 20 2003
Number of (s(0), s(1), ..., s(2n+2)) such that 0 < s(i) < 6 and |s(i) - s(i-1)| = 1 for i = 1, 2, ..., 2n+2, s(0) = 1, s(2n+2) = 1. - Herbert Kociemba, Jun 10 2004
Density of regular language L over {1,2,3}^* (i.e., number of strings of length n in L) described by regular expression 11*+11*2(1+2)*+11*2(1+2)*3(1+2+3)*. - Nelma Moreira, Oct 10 2004
Sums of rows of the triangle in A119258. - Reinhard Zumkeller, May 11 2006
Number of n-words from the alphabet A = {a,b,c} which contain an even number of a's. - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Aug 30 2006
Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 1) x = y. - Ross La Haye, Jan 10 2008
a(n+1) gives the number of primitive periodic multiplex juggling sequences of length n with base state <2>. - Steve Butler, Jan 21 2008
a(n) is also the number of idempotent order-preserving and order-decreasing partial transformations (of an n-chain). - Abdullahi Umar, Oct 02 2008
Equals row sums of triangle A147292. - Gary W. Adamson, Nov 05 2008
Equals leftmost column of A071919^3. - Gary W. Adamson, Apr 13 2009
A010888(a(n))=5 for n >= 2, that is, the digital root of the terms >= 5 equals 5. - Parthasarathy Nambi, Jun 03 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=5, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^n*charpoly(A,2). - Milan Janjic, Jan 27 2010
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=6, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=(-1)^(n-1)*charpoly(A,3). - Milan Janjic, Feb 21 2010
It appears that if s(n) is a rational sequence of the form s(1)=2, s(n)= (2*s(n-1)+1)/(s(n-1)+2), n>1 then s(n)=a(n)/(a(n-1)-1).
Form an array with m(1,n)=1 and m(i,j) = Sum_{k=1..i-1} m(k,j) + Sum_{k=1..j-1} m(i,k), which is the sum of the terms to the left of m(i,j) plus the sum above m(i,j). The sum of the terms in antidiagonal(n-1) = a(n). - J. M. Bergot, Jul 16 2013
From Peter Bala, Oct 29 2013: (Start)
An Engel expansion of 3 to the base b := 3/2 as defined in A181565, with the associated series expansion 3 = b + b^2/2 + b^3/(2*5) + b^4/(2*5*14) + .... Cf. A034472.
More generally, for a positive integer n >= 3, the sequence [1, n - 1, n^2 - n - 1, ..., ( (n - 2)*n^k + 1 )/(n - 1), ...] is an Engel expansion of n/(n - 2) to the base n/(n - 1). Cases include A007583 (n = 4), A083065 (n = 5) and A083066 (n = 6). (End)
Diagonal elements (and one more than antidiagonal elements) of the matrix A^n where A=(2,1;1,2). - David Neil McGrath, Aug 17 2014
From M. Sinan Kul, Sep 07 2016: (Start)
a(n) is equal to the number of integer solutions to the following equation when x is equal to the product of n distinct primes: 1/x = 1/y + 1/z where 0 < x < y <= z.
If z = k*y where k is a fraction >= 1 then the solutions can be given as: y = ((k+1)/k)*x and z = (k+1)*x.
Here k can be equal to any divisor of x or to the ratio of two divisors.
For example for x = 2*3*5 = 30 (product of three distinct primes), k would have the following 14 values: 1, 6/5, 3/2, 5/3, 2, 5/2, 3, 10/3, 5, 6, 15/2, 10, 15, 30.
As an example for k = 10/3, we would have y=39, z=130 and 1/39 + 1/130 = 1/30.
Here finding the number of fractions would be equivalent to distributing n balls (distinct primes) to two bins (numerator and denominator) with no empty bins which can be found using Stirling numbers of the second kind. So another definition for a(n) is: a(n) = 2^n + Sum_{i=2..n} Stirling2(i,2)*binomial(n,i).
(End)
a(n+1) is the smallest i for which the Catalan number C(i) (see A000108) is divisible by 3^n for n > 0. This follows from the rule given by Franklin T. Adams-Watters for determining the multiplicity with which a prime divides C(n). We need to find the smallest number in base 3 to achieve a given count. Applied to prime 3, 1 is the smallest digit that counts but requires to be followed by 2 which cannot be at the end to count. Therefore the number in base 3 of the form 1{n-1 times}20 = (3^(n+1) + 1)/2 + 1 = a(n+1)+1 is the smallest number to achieve count n which implies the claim. - Peter Schorn, Mar 06 2020
Let A be a Toeplitz matrix of order n, defined by: A[i,j]=1, if ij; A[i,i]=2. Then, for n>=1, a(n) = det A. - Dmitry Efimov, Oct 28 2021
a(n) is the least number k such that A065363(k) = -(n-1), for n > 0. - Amiram Eldar, Sep 03 2022

Examples

			From _Adi Dani_, May 14 2011: (Start)
a(3)=14 because all compositions of even natural numbers into 3 parts <=2 are
for 0: (0,0,0)
for 2: (0,1,1), (1,0,1), (1,1,0), (0,0,2), (0,2,0), (2,0,0)
for 4: (0,2,2), (2,0.2), (2,2,0), (1,1,2), (1,2,1), (2,1,1)
for 6: (2,2,2).
(End)
		

References

  • J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 47.
  • Adi Dani, Quasicompositions of natural numbers, Proceedings of III congress of mathematicians of Macedonia, Struga Macedonia 29 IX -2 X 2005 pages 225-238.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E11.
  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
  • P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 60.
  • P. Ribenboim, The Little Book of Big Primes, Springer-Verlag, NY, 1991, p. 53.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = 3*a(n-1) - 1.
Binomial transform of Chebyshev coefficients A011782. - Paul Barry, Mar 16 2003
From Paul Barry, Mar 16 2003: (Start)
a(n) = 4*a(n-1) - 3*a(n-2) for n > 1, a(0)=1, a(1)=2.
G.f.: (1 - 2*x)/((1 - x)*(1 - 3*x)). (End)
E.g.f.: exp(2*x)*cosh(x). - Paul Barry, Apr 05 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k)*2^(n-2*k). - Paul Barry, May 08 2003
This sequence is also the partial sums of the first 3 Stirling numbers of second kind: a(n) = S(n+1, 1) + S(n+1, 2) + S(n+1, 3) for n >= 0; alternatively it is the number of partitions of [n+1] into 3 or fewer parts. - Mike Zabrocki, Jun 21 2004
For c=3, a(n) = (c^n)/c! + Sum_{k=1..c-2}((k^n)/k!*(Sum_{j=2..c-k}(((-1)^j)/j!))) or = Sum_{k=1..c} g(k, c)*k^n where g(1, 1) = 1, g(1, c) = g(1, c-1) + ((-1)^(c-1))/(c-1)! for c > 1, and g(k, c) = g(k-1, c-1)/k for c > 1 and 2 <= k <= c. - Nelma Moreira, Oct 10 2004
The i-th term of the sequence is the entry (1, 1) in the i-th power of the 2 X 2 matrix M = ((2, 1), (1, 2)). - Simone Severini, Oct 15 2005
If p[i]=fibonacci(2i-3) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= det A. - Milan Janjic, May 08 2010
INVERT transform of A001519: [1, 1, 2, 5, 13, 34, ...]. - Gary W. Adamson, Jun 13 2011
a(n) = M^n*[1,1,1,0,0,0,...], leftmost column term; where M = an infinite bidiagonal matrix with all 1's in the superdiagonal and (1,2,3,...) in the main diagonal and the rest zeros. - Gary W. Adamson, Jun 23 2011
a(n) = M^n*[1,1,1,0,0,0,...], top entry term; where M is an infinite bidiagonal matrix with all 1's in the superdiagonal, (1,2,3,...) as the main diagonal, and the rest zeros. - Gary W. Adamson, Jun 24 2011
a(n) = A201730(n,0). - Philippe Deléham, Dec 05 2011
a(n) = A006342(n) + A006342(n-1). - Yuchun Ji, Sep 19 2018
From Dmitry Efimov, Oct 29 2021: (Start)
a(2*m+1) = Product_{k=-m..m} (2+i*tan(Pi*k/(2*m+1))),
a(2*m) = Product_{k=-m..m-1} (2+i*tan(Pi*(2*k+1)/(4*m))),
where i is the imaginary unit. (End)

A015518 a(n) = 2*a(n-1) + 3*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 2, 7, 20, 61, 182, 547, 1640, 4921, 14762, 44287, 132860, 398581, 1195742, 3587227, 10761680, 32285041, 96855122, 290565367, 871696100, 2615088301, 7845264902, 23535794707, 70607384120, 211822152361, 635466457082
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length n between any two distinct vertices of the complete graph K_4. - Paul Barry and Emeric Deutsch, Apr 01 2004
For n >= 1, a(n) is the number of integers k, 1 <= k <= 3^(n-1), whose ternary representation ends in an even number of zeros (see A007417). - Philippe Deléham, Mar 31 2004
Form the digraph with matrix A=[0,1,1,1;1,0,1,1;1,1,0,1;1,0,1,1]. A015518(n) corresponds to the (1,3) term of A^n. - Paul Barry, Oct 02 2004
The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the denominators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 4 times the bottom to get the new top. The limit of the sequence of fractions is 2. - Cino Hilliard, Sep 25 2005
(A046717(n))^2 + (2*a(n))^2 = A046717(2n). E.g., A046717(3) = 13, 2*a(3) = 14, A046717(6) = 365. 13^2 + 14^2 = 365. - Gary W. Adamson, Jun 17 2006
For n >= 2, number of ordered partitions of n-1 into parts of sizes 1 and 2 where there are two types of 1 (singletons) and three types of 2 (twins). For example, the number of possible configurations of families of n-1 male (M) and female (F) offspring considering only single births and twins, where the birth order of M/F/pair-of-twins is considered and there are three types of twins; namely, both F, both M, or one F and one M - where birth order within a pair of twins itself is disregarded. In particular, for a(3)=7, two children could be either: (1) F, then M; (2) M, then F; (3) F,F; (4) M,M; (5) F,F twins; (6) M,M twins; or (7) M,F twins (emphasizing that birth order is irrelevant here when both/all children are the same gender and when two children are within the same pair of twins). - Rick L. Shepherd, Sep 18 2004
a(n) is prime for n = {2, 3, 5, 7, 13, 23, 43, 281, 359, ...}, where only a(2) = 2 corresponds to a prime of the form (3^k - 1)/4. All prime terms, except a(2) = 2, are the primes of the form (3^k + 1)/4. Numbers k such that (3^k + 1)/4 is prime are listed in A007658. Note that all prime terms have prime indices. Prime terms are listed in A111010. - Alexander Adamchuk, Nov 19 2006
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-2, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=charpoly(A,1). - Milan Janjic, Jan 26 2010
Select an odd size subset S from {1,2,...,n}, then select an even size subset from S. - Geoffrey Critzer, Mar 02 2010
a(n) is the number of ternary sequences of length n where the numbers of (0's, 1's) are (even, odd) respectively, and, by symmetry, the number of such sequences where those numbers are (odd, even) respectively. A122983 covers (even, even), and A081251 covers (odd, odd). - Toby Gottfried, Apr 18 2010
An elephant sequence, see A175654. For the corner squares just one A[5] vector, with decimal value 341, leads to this sequence (without the leading 0). For the central square this vector leads to the companion sequence A046717 (without the first leading 1). - Johannes W. Meijer, Aug 15 2010
Let R be the commutative algebra resulting from adjoining the elements of the Klein four-group to the integers (equivalently, K = Z[x,y,z]/{x*y - z, y*z - x, x*z - y, x^2 - 1, y^2 - 1, z^2 - 1}). Then a(n) is equal to the coefficients of x, y, and z in the expansion of (x + y + z)^n. - Joseph E. Cooper III (easonrevant(AT)gmail.com), Nov 06 2010
Pisano period lengths: 1, 2, 2, 4, 4, 2, 6, 8, 2, 4, 10, 4, 6, 6, 4, 16, 16, 2, 18, 4, ... - R. J. Mathar, Aug 10 2012
The ratio a(n+1)/a(n) converges to 3 as n approaches infinity. - Felix P. Muga II, Mar 09 2014
This is a divisibility sequence, also the values of Chebyshev polynomials, and also the number of ways of packing a 2 X n-1 rectangle with dominoes and unit squares. - R. K. Guy, Dec 16 2016
For n>0, gcd(a(n),a(n+1))=1. - Kengbo Lu, Jul 02 2020

References

  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.

Crossrefs

a(n) = A080926(n-1) + 1 = (1/3)*A054878(n+1) = (1/3)*abs(A084567(n+1)).
First differences of A033113 and A039300.
Partial sums of A046717.
The following sequences (and others) belong to the same family: A000129, A001333, A002532, A002533, A002605, A015518, A015519, A026150, A046717, A063727, A083098, A083099, A083100, A084057.
Cf. A046717.

Programs

  • Magma
    [Round(3^n/4): n in [0..30]]; // Vincenzo Librandi, Jun 24 2011
    
  • Mathematica
    Table[(3^n-(-1)^n)/4,{n,0,30}] (* Alexander Adamchuk, Nov 19 2006 *)
  • Maxima
    a(n):= round(3^n/4)$ /* Dimitri Papadopoulos, Nov 28 2023 */
  • PARI
    a(n)=round(3^n/4)
    
  • Python
    for n in range(0, 20): print(int((3**n-(-1)**n)/4), end=', ') # Stefano Spezia, Nov 30 2018
    
  • Sage
    [round(3^n/4) for n in range(0,27)]
    

Formula

G.f.: x/((1+x)*(1-3*x)).
a(n) = (3^n - (-1)^n)/4 = floor(3^n/4 + 1/2).
a(n) = 3^(n-1) - a(n-1). - Emeric Deutsch, Apr 01 2004
E.g.f.: (exp(3*x) - exp(-x))/4. Second inverse binomial transform of (5^n-1)/4, A003463. Inverse binomial transform for powers of 4, A000302 (when preceded by 0). - Paul Barry, Mar 28 2003
a(n) = Sum_{k=0..floor(n/2)} C(n, 2k+1)*2^(2k). - Paul Barry, May 14 2003
a(n) = Sum_{k=1..n} binomial(n, k)*(-1)^(n+k)*4^(k-1). - Paul Barry, Apr 02 2003
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*2^(n-2*k)*3^k. - Paul Barry, Jul 13 2004
a(n) = U(n-1, i/sqrt(3))(-i*sqrt(3))^(n-1), i^2=-1. - Paul Barry, Nov 17 2003
G.f.: x*(1+x)^2/(1 - 6*x^2 - 8*x^3 - 3*x^4) = x(1+x)^2/characteristic polynomial(x^4*adj(K_4)(1/x)). - Paul Barry, Feb 03 2004
a(n) = sum_{k=0..3^(n-1)} A014578(k) = -(-1)^n*A014983(n) = A051068(3^(n-1)), for n > 0. - Philippe Deléham, Mar 31 2004
E.g.f.: exp(x)*sinh(2*x)/2. - Paul Barry, Oct 02 2004
a(2*n+1) = A054880(n) + 1. - M. F. Hasler, Mar 20 2008
2*a(n) + (-1)^n = A046717(n). - M. F. Hasler, Mar 20 2008
a(n) = ((1+sqrt(4))^n - (1-sqrt(4))^n)/4. - Al Hakanson (hawkuu(AT)gmail.com), Dec 31 2008
a(n) = abs(A014983(n)). - Zerinvary Lajos, May 28 2009
a(n) = round(3^n/4). - Mircea Merca, Dec 28 2010
a(n) = Sum_{k=1,3,5,...} binomial(n,k)*2^(k-1). - Geoffrey Critzer, Mar 02 2010
From Sergei N. Gladkovskii, Jul 19 2012: (Start)
G.f.: G(0)/4 where G(k)= 1 - 1/(9^k - 3*x*81^k/(3*x*9^k - 1/(1 + 1/(3*9^k - 27*x*81^k/(9*x*9^k + 1/G(k+1)))))); (continued fraction).
E.g.f.: G(0)/4 where G(k)= 1 - 1/(9^k - 3*x*81^k/(3*x*9^k - (2*k+1)/(1 + 1/(3*9^k - 27*x*81^k/(9*x*9^k + (2*k+2)/G(k+1)))))); (continued fraction). (End)
G.f.: G(0)*x/(2*(1-x)), where G(k) = 1 + 1/(1 - x*(4*k-1)/(x*(4*k+3) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
a(n+1) = Sum_{k = 0..n} A238801(n,k)*2^k. - Philippe Deléham, Mar 07 2014
a(n) = (-1)^(n-1)*Sum_{k=0..n-1} A135278(n-1,k)*(-4)^k = (-1)^(n-1)*Sum_{k=0..n-1} (-3)^k. Equals (-1)^(n-1)*Phi(n,-3), where Phi is the cyclotomic polynomial when n is an odd prime. (For n > 0.) - Tom Copeland, Apr 14 2014
a(n) = 2*A006342(n-1) - n mod 2 if n > 0, a(0)=0. - Yuchun Ji, Nov 30 2018
a(n) = 2*A033113(n-2) + n mod 2 if n > 0, a(0)=0. - Yuchun Ji, Aug 16 2019
a(2*k) = 2*A002452(k), a(2*k+1) = A066443(k). - Yuchun Ji, Aug 14 2019
a(n+1) = 2*Sum_{k=0..n} a(k) if n odd, and 1 + 2*Sum_{k=0..n} a(k) if n even. - Kengbo Lu, May 30 2020
a(n) = F(n) + Sum_{k=1..(n-1)} a(k)*L(n-k), for F(n) and L(n) the Fibonacci and Lucas numbers. - Kengbo Lu and Greg Dresden, Jun 05 2020
From Kengbo Lu, Jun 11 2020: (Start)
a(n) = A002605(n) + Sum_{k = 1..n-2} a(k)*A002605(n-k-1).
a(n) = A006130(n-1) + Sum_{k = 1..n-1} a(k)*A006130(n-k-1). (End)
a(2n) = Sum_{i>=0, j>=0} binomial(n-j-1,i)*binomial(n-i-1,j)* 2^(2n-2i-2j-1)* 3^(i+j). - Kengbo Lu, Jul 02 2020
a(n) = 3*a(n-1) - (-1)^n. - Dimitri Papadopoulos, Nov 28 2023
G.f.: x/((1 + x)*(1 - 3*x)) = Sum_{n >= 0} x^(n+1) * Product_{k = 1..n} (k + 3*x + 1)(1 + k*x) (a telescoping series). Cf. A007482. - Peter Bala, May 08 2024
From Peter Bala, Jun 29 2025: (Start)
For n >= 1, a(n+1) = 2^n * hypergeom([1/2 - (1/2)*n, -(1/2)*n], [-n], -3).
G.f. A(x) = x*exp(Sum_{n >= 1} a(2*n)/a(n)*x^n/n) = x + 2*x^2 + 7*x^3 + 20*x^4 + ....
sqrt(A(x)/x) is the g.f. of A002426.
The following series telescope:
Sum_{n >= 1} (-3)^n/(a(n)*a(n+1)) = -1; Sum_{n >= 1} (-3)^n/(a(n)*a(n+1)*a(n+2)*a(n+3)) = -1/98.
In general, for k >= 0, Sum_{n >= 1} (-3)^n/(a(n)*a(n+1)*...*a(n+2*k+1)) = -1/((a(1)*a(2)*...*a(2*k+1))*a(2*k+1)).
Sum_{n >= 1} 3^n/(a(n)*a(n+1)*a(n+2)) = 1/4; Sum_{n >= 1} 3^n/(a(n)*a(n+1)*a(n+2)* a(n+3)*a(n+4)) = 1/5600.
In general, for k >= 1, Sum_{n >= 1} 3^n/(a(n)*a(n+1)*...*a(n+2*k)) = 1/((a(1)*a(2)*...*a(2*k))*a(2*k)). (End)

Extensions

More terms from Emeric Deutsch, Apr 01 2004
Edited by Ralf Stephan, Aug 30 2004

A002001 a(n) = 3*4^(n-1), n>0; a(0)=1.

Original entry on oeis.org

1, 3, 12, 48, 192, 768, 3072, 12288, 49152, 196608, 786432, 3145728, 12582912, 50331648, 201326592, 805306368, 3221225472, 12884901888, 51539607552, 206158430208, 824633720832, 3298534883328, 13194139533312, 52776558133248, 211106232532992, 844424930131968
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

Second binomial transform of (1,1,4,4,16,16,...) = (3*2^n+(-2)^n)/4. - Paul Barry, Jul 16 2003
Number of vertices (or sides) formed after the (n-1)-th iterate towards building a Koch's snowflake. - Lekraj Beedassy, Jan 24 2005
For n >= 1, a(n) is the number of functions f:{1,2,...,n}->{1,2,3,4} such that for a fixed x in {1,2,...,n} and a fixed y in {1,2,3,4} we have f(x) <> y. - Aleksandar M. Janjic and Milan Janjic, Mar 27 2007
a(n) = (n+1) terms in the sequence (1, 2, 3, 3, 3, ...) dot (n+1) terms in the sequence (1, 1, 3, 12, 48, ...). Example: a(4) = 192 = (1, 2, 3, 3, 3) dot (1, 1, 3, 12, 48) = (1 + 2 + 9 + 36 + 144). - Gary W. Adamson, Aug 03 2010
a(n) is the number of compositions of n when there are 3 types of each natural number. - Milan Janjic, Aug 13 2010
See A178789 for the number of acute (= exterior) angles of the Koch snowflake referred to in the above comment by L. Beedassy. - M. F. Hasler, Dec 17 2013
After 1, subsequence of A033428. - Vincenzo Librandi, May 26 2014
a(n) counts walks (closed) on the graph G(1-vertex; 1-loop x3, 2-loop x3, 3-loop x3, 4-loop x3, ...). - David Neil McGrath, Jan 01 2015
For n > 1, a(n) are numbers k such that (2^(k-1) mod k)/(2^k mod k) = 2; 2^(a(n)-1) == 2^(2n-1) (mod a(n)) and 2^a(n) == 2^(2n-2) (mod a(n)). - Thomas Ordowski, Apr 22 2020
For n > 1, a(n) is the number of 4-colorings of the Hex graph of size 2 X (n-1). More generally, for q > 2, the number of q-colorings of the Hex graph of size 2 X n is given by q*(q - 1)*(q - 2)^(2*n - 2). - Sela Fried, Sep 25 2023
For n > 1, a(n) is the number of pixels in the HEALPix discretization of the sphere of order n-2; HEALPix is a common sphere pixellization scheme in astronomy, cosmology, and nuclear engineering. - Jayson R. Vavrek, Aug 08 2024

Crossrefs

First difference of 4^n (A000302).

Programs

Formula

From Paul Barry, Apr 20 2003: (Start)
a(n) = (3*4^n + 0^n)/4 (with 0^0=1).
E.g.f.: (3*exp(4*x) + 1)/4. (End)
With interpolated zeros, this has e.g.f. (3*cosh(2*x) + 1)/4 and binomial transform A006342. - Paul Barry, Sep 03 2003
a(n) = Sum_{j=0..1} Sum_{k=0..n} C(2n+j, 2k). - Paul Barry, Nov 29 2003
G.f.: (1-x)/(1-4*x). The sequence 1, 3, -12, 48, -192, ... has g.f. (1+7*x)/(1+4*x). - Paul Barry, Feb 12 2004
a(n) = 3*Sum_{k=0..n-1} a(k). - Adi Dani, Jun 24 2011
G.f.: 1/(1-3*Sum_{k>=1} x^k). - Joerg Arndt, Jun 24 2011
Row sums of triangle A134316. - Gary W. Adamson, Oct 19 2007
a(n) = A011782(n) * A003945(n). - R. J. Mathar, Jul 08 2009
If p(1)=3 and p(i)=3 for i > 1, and if A is the Hessenberg matrix of order n defined by A(i,j) = p(j-i+1) when i <= j, A(i,j)=-1 when i=j+1, and A(i,j) = 0 otherwise, then, for n >= 1, a(n) = det A. - Milan Janjic, Apr 29 2010
a(n) = 4*a(n-1), a(0)=1, a(1)=3. - Vincenzo Librandi, Dec 31 2010
G.f.: 1 - G(0) where G(k) = 1 - 1/(1-3*x)/(1-x/(x-1/G(k+1))); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 25 2013
G.f.: x+2*x/(G(0)-2), where G(k) = 1 + 1/(1 - x*(3*k+1)/(x*(3*k+4) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
a(n) = ceiling(3*4^(n-1)). - Wesley Ivan Hurt, Dec 17 2013
Construct the power matrix T(n,j) = [A(n)^*j]*[S(n)^*(j-1)] where A(n)=(3,3,3,...) and S(n)=(0,1,0,0,...). (* is convolution operation.) Then T(n,j) counts n-walks containing j loops on the single vertex graph above and a(n) = Sum_{j=1..n} T(n,j). (S(n)^*0=I.) - David Neil McGrath, Jan 01 2015

A214112 T(n,k)=Number of 0..3 colorings of an nx(k+1) array circular in the k+1 direction with new values 0..3 introduced in row major order.

Original entry on oeis.org

1, 1, 4, 4, 11, 25, 10, 111, 121, 172, 31, 670, 3502, 1331, 1201, 91, 4994, 44900, 110985, 14641, 8404, 274, 34041, 825105, 3008980, 3517864, 161051, 58825, 820, 241021, 12777541, 136579852, 201647240, 111505491, 1771561, 411772, 2461, 1678940
Offset: 1

Views

Author

R. H. Hardin Jul 04 2012

Keywords

Comments

Table starts
....1.....1.......4........10..........31............91.............274
....4....11.....111.......670........4994.........34041..........241021
...25...121....3502.....44900......825105......12777541.......214404272
..172..1331..110985...3008980...136579852....4797577911....191154162535
.1201.14641.3517864.201647240.22615881851.1801391900581.170522196557894

Examples

			Some solutions for n=4 k=1
..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
..1..0....1..2....2..3....1..0....1..0....1..0....1..2....1..0....1..0....1..2
..0..1....0..1....3..1....0..1....2..3....2..1....3..0....0..2....2..3....3..1
..1..2....1..0....1..0....1..0....3..2....3..0....0..1....1..3....3..1....0..2
		

Crossrefs

Column 1 is A034494(n-1)
Column 2 is A001020(n-1)
Row 1 is A006342(n-1)

Formula

Empirical for column k:
k=1: a(n) = 8*a(n-1) -7*a(n-2)
k=2: a(n) = 11*a(n-1)
k=3: a(n) = 35*a(n-1) -107*a(n-2) +73*a(n-3)
k=4: a(n) = 68*a(n-1) -66*a(n-2)
k=5: a(n) = 200*a(n-1) -5769*a(n-2) +11744*a(n-3) +43057*a(n-4) -89856*a(n-5) +40625*a(n-6)
k=6: a(n) = 416*a(n-1) -15454*a(n-2) +89758*a(n-3) +90848*a(n-4) -438718*a(n-5) +62801*a(n-6)
k=7: (order 15)
Empirical for row n:
n=1: a(k)=3*a(k-1)+a(k-2)-3*a(k-3)
n=2: a(k)=4*a(k-1)+22*a(k-2)-4*a(k-3)-21*a(k-4)
n=3: a(k)=11*a(k-1)+123*a(k-2)-509*a(k-3)-1615*a(k-4)+7137*a(k-5)-19*a(k-6)-20571*a(k-7)+13176*a(k-8)+13932*a(k-9)-11664*a(k-10)
n=4: (order 26)
n=5: (order 71)

A261137 Number of set partitions B'_t(n) of {1,2,...,t} into at most n parts, so that no part contains both 1 and t, or both i and i+1 with 1 <= i < t; triangle B'_t(n), t>=0, 0<=n<=t, read by rows.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 3, 4, 0, 0, 0, 5, 10, 11, 0, 0, 1, 11, 31, 40, 41, 0, 0, 0, 21, 91, 147, 161, 162, 0, 0, 1, 43, 274, 568, 694, 714, 715, 0, 0, 0, 85, 820, 2227, 3151, 3397, 3424, 3425, 0, 0, 1, 171, 2461, 8824, 14851, 17251, 17686, 17721, 17722
Offset: 0

Views

Author

Mark Wildon, Aug 10 2015

Keywords

Comments

B'_t(n) is the number of sequences of t non-identity top-to-random shuffles that leave a deck of n cards invariant.
B't(n) = <chi^t, 1{Sym_n}> where chi is the degree n-1 constituent of the natural permutation character of the symmetric group Sym_n. This gives a combinatorial interpretation of B'_t(n) using sequences of box moves on Young diagrams.
B'_t(t) is the number of set partitions of a set of size t into parts of size at least 2 (A000296); this is also the number of cyclically spaced partitions of a set of size t.
B'_t(n) = B'_t(t) if n > t.

Examples

			Triangle starts:
  1;
  0, 0;
  0, 0, 1;
  0, 0, 0,  1;
  0, 0, 1,  3,   4;
  0, 0, 0,  5,  10,   11;
  0, 0, 1, 11,  31,   40,   41;
  0, 0, 0, 21,  91,  147,  161,  162;
  0, 0, 1, 43, 274,  568,  694,  714,  715;
  0, 0, 0, 85, 820, 2227, 3151, 3397, 3424, 3425;
  ...
		

Crossrefs

For columns n=3-8 see: A001045, A006342, A214142, A214167, A214188, A214239.

Programs

  • Maple
    g:= proc(t, l, h) option remember; `if`(t=0, `if`(l=1, 0, x^h),
           add(`if`(j=l, 0, g(t-1, j, max(h,j))), j=1..h+1))
        end:
    B:= t-> (p-> seq(add(coeff(p, x, j), j=0..i), i=0..t))(g(t, 0$2)):
    seq(B(t), t=0..12);  # Alois P. Heinz, Aug 10 2015
  • Mathematica
    StirPrimedGF[0, x_] := 1; StirPrimedGF[1, x_] := 0;
    StirPrimedGF[n_, x_] := x^n/(1 + x)*Product[1/(1 - j*x), {j, 1, n - 1}];
    StirPrimed[0, 0] := 1; StirPrimed[0, _] := 0;
    StirPrimed[t_, n_] := Coefficient[Series[StirPrimedGF[n, x], {x, 0, t}], x^t];
    BPrimed[t_, n_] := Sum[StirPrimed[t, m], {m, 0, n}]
    (* Second program: *)
    g[t_, l_, h_] := g[t, l, h] = If[t == 0, If[l == 1, 0, x^h], Sum[If[j == l, 0, g[t - 1, j, Max[h, j]]], {j, 1, h + 1}]];
    B[t_] := Function[p, Table[Sum[Coefficient[p, x, j], {j, 0, i}], {i, 0, t}] ][g[t, 0, 0]];
    Table[B[t], {t, 0, 12}] // Flatten (* Jean-François Alcover, May 20 2016, after Alois P. Heinz *)

Formula

B't(n) = Sum{i=0..n} A261139(t,i).
Showing 1-5 of 5 results.