A056982 a(n) = 4^A005187(n). The denominators of the Landau constants.
1, 4, 64, 256, 16384, 65536, 1048576, 4194304, 1073741824, 4294967296, 68719476736, 274877906944, 17592186044416, 70368744177664, 1125899906842624, 4503599627370496, 4611686018427387904, 18446744073709551616, 295147905179352825856, 1180591620717411303424
Offset: 0
References
- J.-P. Delahaye, Pi - die Story (German translation), Birkhäuser, 1999 Basel, p. 84. French original: Le fascinant nombre Pi, Pour la Science, Paris, 1997.
- O. J. Farrell and B. Ross, Solved Problems in Analysis, Dover, NY, 1971; p. 77.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 0..500
- B. Gourevitch, L'univers de Pi
- Edmund Landau, Abschätzung der Koeffzientensumme einer Potenzreihe, Arch. Math. Phys. 21 (1913), 42-50. [Accessible in the USA through the Hathi Trust Digital Library.]
- Edmund Landau, Abschätzung der Koeffzientensumme einer Potenzreihe (Zweite Abhandlung), Arch. Math. Phys. 21 (1913), 250-255. [Accessible in the USA through the Hathi Trust Digital Library.]
- Cristinel Mortici, Sharp bounds of the Landau constants, Math. Comp. 80 (2011), pp. 1011-1018.
- G. N. Watson, The constants of Landau and Lebesgue, Quart. J. Math. Oxford Ser. 1:2 (1930), pp. 310-318.
- Eric Weisstein's World of Mathematics, Gauss-Kummer Series
- Eric Weisstein's World of Mathematics, Ellipse
- Index to divisibility sequences
Crossrefs
Programs
-
Maple
A056982 := n -> denom(binomial(1/2, n))^2: seq(A056982(n), n=0..19); # Peter Luschny, Apr 08 2016 # Alternatively: G := proc(x) hypergeom([1/2,1/2], [1], x)/(1-x) end: ser := series(G(x), x, 20): [seq(coeff(ser,x,n), n=0..19)]: denom(%); # Peter Luschny, Sep 28 2019
-
Mathematica
Table[Power[4, 2 n - DigitCount[2 n, 2, 1]], {n, 0, 19}] (* Michael De Vlieger, May 30 2016, after Harvey P. Dale at A005187 *) G[x_] := (2 EllipticK[x])/(Pi (1 - x)); CoefficientList[Series[G[x], {x, 0, 19}], x] // Denominator (* Peter Luschny, Sep 28 2019 *)
-
PARI
a(n)=my(s=n); while(n>>=1, s+=n); 4^s \\ Charles R Greathouse IV, Apr 07 2012
Formula
a(n) = (denominator(binomial(1/2, n)))^2. - Peter Luschny, Sep 27 2019
Extensions
Edited by N. J. A. Sloane, Feb 18 2004, Jun 05 2007
Comments