A344085
Triangle of squarefree numbers first grouped by greatest prime factor, then sorted by omega, then in increasing order, read by rows.
Original entry on oeis.org
1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 35, 42, 70, 105, 210, 11, 22, 33, 55, 77, 66, 110, 154, 165, 231, 385, 330, 462, 770, 1155, 2310, 13, 26, 39, 65, 91, 143, 78, 130, 182, 195, 273, 286, 429, 455, 715, 1001, 390, 546, 858, 910, 1365, 1430, 2002, 2145, 3003, 5005, 2730, 4290, 6006, 10010, 15015, 30030
Offset: 1
Triangle begins:
1
2
3 6
5 10 15 30
7 14 21 35 42 70 105 210
Grouping by greatest prime factor only gives
A339195.
Partition/composition orderings:
A026791,
A026792,
A026793,
A036036,
A036037,
A048793,
A066099,
A080577,
A112798,
A118457,
A124734,
A162247,
A193073,
A211992,
A228100,
A228531,
A246688,
A272020,
A299755,
A296774,
A304038,
A319247,
A329631,
A334301,
A334302,
A334439,
A334442,
A335122,
A344086,
A344087,
A344088,
A344089.
Partition/composition applications:
A001793,
A036043,
A049085,
A070939,
A115623,
A124736,
A129129,
A185974,
A238966,
A294648,
A333483,
A333484,
A333485,
A333486,
A334433,
A334434,
A334435,
A334436,
A334437,
A334438,
A334440,
A334441,
A335123,
A335124.
-
nn=4;
GatherBy[SortBy[Select[Range[Times@@Prime/@Range[nn]],SquareFreeQ[#]&&PrimePi[FactorInteger[#][[-1,1]]]<=nn&],PrimeOmega],FactorInteger[#][[-1,1]]&]
Original entry on oeis.org
1, 6, 25, 88, 280, 832, 2352, 6400, 16896, 43520, 109824, 272384, 665600, 1605632, 3829760, 9043968, 21168128, 49152000, 113311744, 259522560, 590872576, 1337982976, 3014656000, 6761218048, 15099494400, 33587986432, 74440507392
Offset: 0
a(1)=6 because 432516,432561,435126,452136,532146 and 632145 are the only 132-avoiding permutations of 123456, containing exactly three increasing subsequences of length 3.
- Milan Janjic, Two Enumerative Functions
- M. Janjic, On a class of polynomials with integer coefficients, JIS 11 (2008) 08.5.2
- Pudwell, Lara; Scholten, Connor; Schrock, Tyler; Serrato, Alexa Noncontiguous pattern containment in binary trees, ISRN Comb. 2014, Article ID 316535, 8 p. (2014), Section 5.2.
- A. Robertson, H. S. Wilf and D. Zeilberger, Permutation patterns and continued fractions, Electr. J. Combin. 6, 1999, #R38.
- Index entries for linear recurrences with constant coefficients, signature (8,-24,32,-16).
-
Table[(1/3)*2^(n-3)*(n+1)*(n+3)*(n+8), {n,0,50}] (* G. C. Greubel, Aug 22 2015 *)
LinearRecurrence[{8,-24,32,-16},{1,6,25,88},30] (* Harvey P. Dale, Nov 03 2017 *)
-
Vec(((1-x)^2)/(1-2*x)^4 + O(x^30)) \\ Michel Marcus, Aug 22 2015
A046718
Number of permutations of [ n ] with exactly one 132-pattern and two 123-patterns.
Original entry on oeis.org
1, 4, 14, 47, 152, 472, 1408, 4048, 11264, 30464, 80384, 207616, 526336, 1312768, 3227648, 7835648, 18808832, 44695552, 105250816, 245825536, 569901056, 1312292864, 3003121664, 6833569792, 15468593152, 34846277632, 78148272128, 174533378048, 388291887104
Offset: 4
a(4) = 1: 1324.
a(5) = 4: 24315, 24351, 41325, 51324.
a(6) = 14: 354216, 354261, 354612, 354621, 435162, 462135, 524316, 524361, 541326, 561324, 624315, 624351, 641325, 651324.
- Alois P. Heinz, Table of n, a(n) for n = 4..1000
- S. Ekhad, A. Robertson, D. Zeilberger, The number of permutations with a prescribed number of 132 and 123 patterns, arXiv:math/9903170 [math.CO], 1999.
- Index entries for linear recurrences with constant coefficients, signature (8,-24,32,-16).
-
a:= n-> (<<0|1|0|0>, <0|0|1|0>, <0|0|0|1>, <-16|32|-24|8>>^(n-4).
<<1, 4, 14, 47>>)[1, 1]:
seq(a(n), n=4..30); # Alois P. Heinz, Oct 01 2012
-
LinearRecurrence[{8, -24, 32, -16}, {1, 4, 14, 47}, 30] (* Jean-François Alcover, Aug 18 2018 *)
-
def LinearRecurrence4(a0,a1,a2,a3,a4,a5,a6,a7):
x, y, z, u = Integer(a0),Integer(a1),Integer(a2),Integer(a3)
yield x
while True:
x, y, z, u = y, z, u, a7*x+a6*y+a5*z+a4*u
yield x
A046718 = LinearRecurrence4(1, 4, 14, 47, 8, -24, 32, -16)
[next(A046718) for i in range(29)] # Peter Luschny, Oct 02 2012
Original entry on oeis.org
0, 3, 14, 48, 144, 400, 1056, 2688, 6656, 16128, 38400, 90112, 208896, 479232, 1089536, 2457600, 5505024, 12255232, 27131904, 59768832, 131072000, 286261248, 622854144, 1350565888, 2919235584, 6291456000, 13522436096
Offset: 0
A276289
Expansion of x*(1 + x)/(1 - 2*x)^3.
Original entry on oeis.org
0, 1, 7, 30, 104, 320, 912, 2464, 6400, 16128, 39680, 95744, 227328, 532480, 1232896, 2826240, 6422528, 14483456, 32440320, 72220672, 159907840, 352321536, 772800512, 1688207360, 3674210304, 7969177600, 17230200832, 37144756224, 79859548160, 171261820928, 366414397440
Offset: 0
Cf.
A001793 (binomial transform of triangular numbers),
A001788 (binomial transform of squares),
A084899 (binomial transform of heptagonal numbers).
-
List([0..40], n-> 2^(n-3)*n*(3*n+1)); # G. C. Greubel, Jun 02 2019
-
[2^(n-3)*n*(3*n+1): n in [0..40]]; // G. C. Greubel, Jun 02 2019
-
a:=series(x*(1+x)/(1-2*x)^3,x=0,31): seq(coeff(a,x,n),n=0..40); # Paolo P. Lava, Mar 27 2019
-
LinearRecurrence[{6, -12, 8}, {0, 1, 7}, 40]
Table[2^(n - 3) n (3 n + 1), {n, 0, 40}]
-
concat(0, Vec(x*(1+x)/(1-2*x)^3 + O(x^40))) \\ Altug Alkan, Aug 27 2016
-
[2^(n-3)*n*(3*n+1) for n in (0..40)] # G. C. Greubel, Jun 02 2019
A344087
Flattened tetrangle of strict integer partitions sorted first by sum, then colexicographically.
Original entry on oeis.org
1, 2, 2, 1, 3, 3, 1, 4, 4, 1, 3, 2, 5, 3, 2, 1, 5, 1, 4, 2, 6, 4, 2, 1, 6, 1, 5, 2, 4, 3, 7, 5, 2, 1, 4, 3, 1, 7, 1, 6, 2, 5, 3, 8, 6, 2, 1, 5, 3, 1, 8, 1, 4, 3, 2, 7, 2, 6, 3, 5, 4, 9, 4, 3, 2, 1, 7, 2, 1, 6, 3, 1, 5, 4, 1, 9, 1, 5, 3, 2, 8, 2, 7, 3, 6, 4, 10
Offset: 0
Tetrangle begins:
0: ()
1: (1)
2: (2)
3: (21)(3)
4: (31)(4)
5: (41)(32)(5)
6: (321)(51)(42)(6)
7: (421)(61)(52)(43)(7)
8: (521)(431)(71)(62)(53)(8)
9: (621)(531)(81)(432)(72)(63)(54)(9)
Positions of first appearances are
A015724.
Taking revlex instead of colex gives
A118457.
The not necessarily strict version is
A211992.
Taking lex instead of colex gives
A344086.
A026793 gives reversed strict partitions in A-S order (sum/length/lex).
A319247 sorts strict partitions by Heinz number.
A329631 sorts reversed strict partitions by Heinz number.
A344090 gives strict partitions in A-S order (sum/length/lex).
Partition/composition orderings:
A026791,
A026792,
A036036,
A036037,
A048793,
A066099,
A080576,
A080577,
A112798,
A124734,
A162247,
A193073,
A211992,
A228100,
A228351,
A228531,
A246688,
A272020,
A299755,
A296774,
A304038,
A319247,
A334301,
A334302,
A334439,
A334442,
A335122,
A339351,
A344085,
A344086,
A344088,
A344089,
A344091.
Partition/composition applications:
A001793,
A005183,
A036043,
A049085,
A070939,
A115623,
A124736,
A129129,
A185974,
A238966,
A246867,
A294648,
A333483,
A333484,
A333485,
A333486,
A334433,
A334434,
A334435,
A334436,
A334437,
A334438,
A334440,
A334441,
A335123,
A335124,
A339195.
-
colex[f_,c_]:=OrderedQ[PadRight[{Reverse[f],Reverse[c]}]];
Table[Sort[Select[IntegerPartitions[n],UnsameQ@@#&],colex],{n,0,10}]
A344088
Flattened tetrangle of reversed strict integer partitions sorted first by sum, then colexicographically.
Original entry on oeis.org
1, 2, 1, 2, 3, 1, 3, 4, 2, 3, 1, 4, 5, 1, 2, 3, 2, 4, 1, 5, 6, 1, 2, 4, 3, 4, 2, 5, 1, 6, 7, 1, 3, 4, 1, 2, 5, 3, 5, 2, 6, 1, 7, 8, 2, 3, 4, 1, 3, 5, 4, 5, 1, 2, 6, 3, 6, 2, 7, 1, 8, 9, 1, 2, 3, 4, 2, 3, 5, 1, 4, 5, 1, 3, 6, 4, 6, 1, 2, 7, 3, 7, 2, 8, 1, 9, 10
Offset: 0
Tetrangle begins:
0: ()
1: (1)
2: (2)
3: (12)(3)
4: (13)(4)
5: (23)(14)(5)
6: (123)(24)(15)(6)
7: (124)(34)(25)(16)(7)
8: (134)(125)(35)(26)(17)(8)
9: (234)(135)(45)(126)(36)(27)(18)(9)
Positions of first appearances are
A015724.
The non-reversed version is
A344087.
A026793 gives reversed strict partitions in A-S order (sum/length/lex).
A319247 sorts strict partitions by Heinz number.
A329631 sorts reversed strict partitions by Heinz number.
A344090 gives strict partitions in A-S order (sum/length/lex).
Partition/composition orderings:
A026791,
A026792,
A036036,
A036037,
A048793,
A066099,
A080577,
A112798,
A124734,
A162247,
A193073,
A211992,
A228100,
A228351,
A228531,
A272020,
A299755,
A296774,
A304038,
A334301,
A334302,
A334439,
A334442,
A335122,
A339351,
A344085,
A344086,
A344091.
Partition/composition applications:
A001793,
A005183,
A036043,
A049085,
A070939,
A115623,
A124736,
A129129,
A185974,
A238966,
A246867,
A294648,
A333483,
A333484,
A333485,
A333486,
A334433,
A334434,
A334435,
A334436,
A334437,
A334438,
A334440,
A334441,
A335123,
A335124,
A339195.
-
colex[f_,c_]:=OrderedQ[PadRight[{Reverse[f],Reverse[c]}]];
Table[Sort[Reverse/@Select[IntegerPartitions[n],UnsameQ@@#&],colex],{n,0,10}]
A058395
Square array read by antidiagonals. Based on triangular numbers (A000217) with each term being the sum of 2 consecutive terms in the previous row.
Original entry on oeis.org
1, 0, 1, 3, 1, 1, 0, 3, 2, 1, 6, 3, 4, 3, 1, 0, 6, 6, 6, 4, 1, 10, 6, 9, 10, 9, 5, 1, 0, 10, 12, 15, 16, 13, 6, 1, 15, 10, 16, 21, 25, 25, 18, 7, 1, 0, 15, 20, 28, 36, 41, 38, 24, 8, 1, 21, 15, 25, 36, 49, 61, 66, 56, 31, 9, 1, 0, 21, 30, 45, 64, 85, 102, 104, 80, 39, 10, 1, 28, 21, 36, 55, 81, 113, 146, 168, 160, 111, 48, 11, 1
Offset: 0
The array T(n, k) starts:
[0] 1, 0, 3, 0, 6, 0, 10, 0, 15, 0, ...
[1] 1, 1, 3, 3, 6, 6, 10, 10, 15, 15, ...
[2] 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, ...
[3] 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
[4] 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, ...
[5] 1, 5, 13, 25, 41, 61, 85, 113, 145, 181, ...
[6] 1, 6, 18, 38, 66, 102, 146, 198, 258, 326, ...
[7] 1, 7, 24, 56, 104, 168, 248, 344, 456, 584, ...
[8] 1, 8, 31, 80, 160, 272, 416, 592, 800, 1040, ...
[9] 1, 9, 39, 111, 240, 432, 688, 1008, 1392, 1840, ...
The triangle
A055252 also appears in half of the array.
-
gf := n -> (1 + x)^n / (1 - x^2)^3: ser := n -> series(gf(n), x, 20):
seq(lprint([n], seq(coeff(ser(n), x, k), k = 0..9)), n = 0..9); # Peter Luschny, Apr 12 2023
-
T[0, k_] := If[OddQ[k], 0, (k+2)(k+4)/8];
T[n_, k_] := T[n, k] = If[k == 0, 1, T[n-1, k-1] + T[n-1, k]];
Table[T[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Apr 13 2023 *)
A126182
Let P be Pascal's triangle A007318 and let N be Narayana's triangle A001263, both regarded as lower triangular matrices. Sequence gives triangle obtained from P*N, read by rows.
Original entry on oeis.org
1, 2, 1, 4, 5, 1, 8, 18, 9, 1, 16, 56, 50, 14, 1, 32, 160, 220, 110, 20, 1, 64, 432, 840, 645, 210, 27, 1, 128, 1120, 2912, 3150, 1575, 364, 35, 1, 256, 2816, 9408, 13552, 9534, 3388, 588, 44, 1, 512, 6912, 28800, 53088, 49644, 24822, 6636, 900, 54, 1
Offset: 0
The triangle P begins
1,
1, 1
1, 2, 1
1, 3, 3, 1, ...
and T begins
1,
1, 1,
1, 3, 1,
1, 6, 6, 1,
1, 10, 20, 10, 1, ...
The product P*T gives
1,
2, 1,
4, 5, 1,
8, 18, 9, 1,
16, 56, 50, 14, 1, ...
-
T:=proc(n,k) if k=0 then 2^n elif k<=n then binomial(n+1,k)*sum(binomial(k,n-k-j)*binomial(n+1-k,j)*2^j,j=n-2*k..n-k)/(n+1) else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
t[n_, 0] := 2^n; t[n_, k_] := Binomial[n+1, k]*Sum[Binomial[k, n-k-j]*Binomial[n+1-k, j]*2^j, {j, n-2*k, n-k}]/(n+1); Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 12 2013 *)
nmax = 10; n[x_, y_] := (1-x*(1+y) - Sqrt[(1-x*(1+y))^2 - 4*y*x^2])/(2*x); s = Series[(n[x/(1-x), y]-1)/x, {x, 0, nmax+1}, {y, 0, nmax+1}];t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {y, 0, k}]; Table[t[n, k], {n, 0, nmax}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Apr 16 2015, after Vladimir Kruchinin *)
-
tabl(nn) = {mP = matrix(nn, nn, n, k, binomial(n-1, k-1)); mN = matrix(nn, nn, n, k, binomial(n-1, k-1) * binomial(n, k-1) / k); mprod = mP*mN; for (n=1, nn, for (k=1, n, print1(mprod[n, k], ", ");); print(););} \\ Michel Marcus, Apr 16 2015
A207537
Triangle of coefficients of polynomials u(n,x) jointly generated with A207538; see Formula section.
Original entry on oeis.org
1, 2, 1, 4, 3, 8, 8, 1, 16, 20, 5, 32, 48, 18, 1, 64, 112, 56, 7, 128, 256, 160, 32, 1, 256, 576, 432, 120, 9, 512, 1280, 1120, 400, 50, 1, 1024, 2816, 2816, 1232, 220, 11, 2048, 6144, 6912, 3584, 840, 72, 1, 4096, 13312, 16640, 9984, 2912, 364, 13
Offset: 1
First seven rows:
1;
2, 1;
4, 3;
8, 8, 1;
16, 20, 5,
32, 48, 18, 1;
64, 112, 56, 7;
From _Philippe Deléham_, Mar 03 2012: (Start)
Triangle A201701 begins:
1;
1, 0;
2, 1, 0;
4, 3, 0, 0;
8, 8, 1, 0, 0;
16, 20, 5, 0, 0, 0;
32, 48, 18, 1, 0, 0, 0;
64, 112, 56, 7, 0, 0, 0, 0;
... (End)
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]
v[n_, x_] := u[n - 1, x] + v[n - 1, x]
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207537, |A028297| *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207538, |A133156| *)
(* Prepending 1 and with offset 0: *)
Tpoly[n_] := HypergeometricPFQ[{-n/2, -n/2 + 1/2}, {1/2}, x + 1];
Table[CoefficientList[Tpoly[n], x], {n, 0, 12}] // Flatten (* Peter Luschny, Feb 03 2021 *)
Comments