cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 67 results. Next

A130020 Triangle T(n,k), 0<=k<=n, read by rows given by [1,0,0,0,0,0,0,...] DELTA [0,1,1,1,1,1,1,...] where DELTA is the operator defined in A084938 .

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 5, 0, 1, 4, 9, 14, 14, 0, 1, 5, 14, 28, 42, 42, 0, 1, 6, 20, 48, 90, 132, 132, 0, 1, 7, 27, 75, 165, 297, 429, 429, 0, 1, 8, 35, 110, 275, 572, 1001, 1430, 1430, 0, 1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 4862, 0
Offset: 0

Views

Author

Philippe Deléham, Jun 16 2007

Keywords

Comments

Reflected version of A106566.

Examples

			Triangle begins:
  1;
  1, 0;
  1, 1,  0;
  1, 2,  2,   0;
  1, 3,  5,   5,   0;
  1, 4,  9,  14,  14,    0;
  1, 5, 14,  28,  42,   42,    0;
  1, 6, 20,  48,  90,  132,  132,    0;
  1, 7, 27,  75, 165,  297,  429,  429,    0;
  1, 8, 35, 110, 275,  572, 1001, 1430, 1430,    0;
  1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 4862,  0;
  ...
		

Crossrefs

The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A047072, A059365, A099039, A106566, this sequence.
Cf. A000108 (Catalan numbers), A106566 (row reversal), A210736.

Programs

  • Magma
    A130020:= func< n,k | n eq 0 select 1 else (n-k)*Binomial(n+k-1, k)/n >;
    [A130020(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 14 2022
    
  • Mathematica
    T[n_, k_]:= (n-k)Binomial[n+k-1, k]/n; T[0, 0] = 1;
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, Jun 14 2019 *)
  • PARI
    {T(n, k) = if( k<0 || k>=n, n==0 && k==0, binomial(n+k, n) * (n-k)/(n+k))}; /* Michael Somos, Oct 01 2022 */
  • Sage
    @CachedFunction
    def A130020(n, k):
        if n==k: return add((-1)^j*binomial(n, j) for j in (0..n))
        return add(A130020(n-1, j) for j in (0..k))
    for n in (0..10) :
        [A130020(n, k) for k in (0..n)]  # Peter Luschny, Nov 14 2012
    

Formula

T(n, k) = A106566(n, n-k).
Sum_{k=0..n} T(n,k) = A000108(n).
T(n, k) = (n-k)*binomial(n+k-1, k)/n with T(0, 0) = 1. - Jean-François Alcover, Jun 14 2019
Sum_{k=0..floor(n/2)} T(n-k, k) = A210736(n). - G. C. Greubel, Jun 14 2022
G.f.: Sum_{n>=0, k>=0} T(n, k)*x^k*z^n = 1/(1 - z*c(x*z)) where c(z) = g.f. of A000108.

A099039 Riordan array (1,c(-x)), where c(x) = g.f. of Catalan numbers.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 2, -2, 1, 0, -5, 5, -3, 1, 0, 14, -14, 9, -4, 1, 0, -42, 42, -28, 14, -5, 1, 0, 132, -132, 90, -48, 20, -6, 1, 0, -429, 429, -297, 165, -75, 27, -7, 1, 0, 1430, -1430, 1001, -572, 275, -110, 35, -8, 1, 0, -4862, 4862, -3432, 2002, -1001, 429, -154, 44, -9, 1, 0, 16796, -16796, 11934, -7072, 3640, -1638
Offset: 0

Views

Author

Paul Barry, Sep 23 2004

Keywords

Comments

Row sums are generalized Catalan numbers A064310. Diagonal sums are 0^n+(-1)^n*A030238(n-2). Inverse is A026729, as number triangle. Columns have g.f. (xc(-x))^k=((sqrt(1+4x)-1)/2)^k.
Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ... ] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... ] where DELTA is the operator defined in A084938. - Philippe Deléham, May 31 2005

Examples

			Rows begin {1}, {0,1}, {0,-1,1}, {0,2,-2,1}, {0,-5,5,-3,1}, ...
Triangle begins
  1;
  0,    1;
  0,   -1,    1;
  0,    2,   -2,   1;
  0,   -5,    5,  -3,    1;
  0,   14,  -14,   9,   -4,   1;
  0,  -42,   42, -28,   14,  -5,  1;
  0,  132, -132,  90,  -48,  20, -6,  1;
  0, -429,  429, -297, 165, -75, 27, -7, 1;
Production matrix is
  0,  1,
  0, -1,  1,
  0,  1, -1,  1,
  0, -1,  1, -1,  1,
  0,  1, -1,  1, -1,  1,
  0, -1,  1, -1,  1, -1,  1,
  0,  1, -1,  1, -1,  1, -1,  1,
  0, -1,  1, -1,  1, -1,  1, -1,  1,
  0,  1, -1,  1, -1,  1, -1,  1, -1,  1
		

Crossrefs

The three triangles A059365, A106566 and A099039 are the same except for signs and the leading term.
Cf. A106566 (unsigned version), A059365
The following are all versions of (essentially) the same Catalan triangle: A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.

Programs

  • Mathematica
    T[n_, k_]:= If[n == 0 && k == 0, 1, If[n == 0 && k > 0, 0, (-1)^(n + k)*Binomial[2*n - k - 1, n - k]*k/n]];  Table[T[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* G. C. Greubel, Dec 31 2017 *)
  • PARI
    {T(n,k) = if(n == 0 && k == 0, 1, if(n == 0 && k > 0, 0, (-1)^(n + k)*binomial(2*n - k - 1, n - k)*k/n))};
    for(n=0,15, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 31 2017

Formula

T(n, k) = (-1)^(n+k)*binomial(2*n-k-1, n-k)*k/n for 0 <= k <= n with n > 0; T(0, 0) = 1; T(0, k) = 0 if k > 0. - Philippe Deléham, May 31 2005

A006078 Number of triangulated (n+2)-gons rooted at an exterior edge.

Original entry on oeis.org

1, 1, 5, 12, 45, 143, 511, 1768, 6330, 22610, 81818, 297160, 1086813, 3991995, 14733435, 54587280, 203000094, 757398510, 2834519142, 10637507400, 40023665682, 150946230006, 570534682710, 2160865067312, 8199711750100
Offset: 2

Views

Author

N. J. A. Sloane, E. K. Lloyd (E.K.Lloyd(AT)soton.ac.uk)

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. K. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.

Programs

  • Maple
    G:=(4*(1-x-x^2)-(1-2*x)*(1-4*x)^(1/2)-3*(1-4*x^2)^(1/2))/8/x^2: Gser:=series(G,x=0,35): seq(coeff(Gser,x^n),n=2..28); # Emeric Deutsch, Dec 19 2004
  • Mathematica
    g:=(4*(1-x-x^2)-(1-2*x)*(1-4*x)^(1/2)-3*(1-4*x^2)^(1/2))/8/x^2; gser := Series[g, {x, 0, 26}]; Drop[ CoefficientList[gser, x], 2] (* Jean-François Alcover, Apr 06 2012, after Emeric Deutsch *)
    Drop[CoefficientList[Series[(4(1-x-x^2)- (1-2x)Sqrt[1-4x]- 3Sqrt[1- 4x^2])/(8x^2),{x,0,30}],x],2] (* Harvey P. Dale, Apr 07 2013 *)

Formula

Stockmeyer gives a g.f.
G.f.: (4*(1-x-x^2)-(1-2*x)(1-4*x)^(1/2)-3(1-4*x^2)^(1/2))/(8*x^2). - Emeric Deutsch, Dec 19 2004
a(n) ~ 2^(2*n-1) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 06 2014

Extensions

More terms from Emeric Deutsch, Dec 19 2004

A050144 T(n,k) = M(2n-1,n-1,k-1), 0 <= k <= n, n >= 0, where M(p,q,r) is the number of upright paths from (0,0) to (p,p-q) that meet the line y = x+r and do not rise above it.

Original entry on oeis.org

0, 1, 0, 1, 1, 1, 2, 3, 4, 1, 5, 9, 14, 6, 1, 14, 28, 48, 27, 8, 1, 42, 90, 165, 110, 44, 10, 1, 132, 297, 572, 429, 208, 65, 12, 1, 429, 1001, 2002, 1638, 910, 350, 90, 14, 1, 1430, 3432, 7072, 6188, 3808, 1700, 544, 119, 16, 1
Offset: 0

Views

Author

Keywords

Comments

Let V=(e(1),...,e(n)) consist of q 1's and p-q 0's; let V(h)=(e(1),...,e(h)) and m(h)=(#1's in V(h))-(#0's in V(h)) for h=1,...,n. Then M(p,q,r)=number of V having r=max{m(h)}.
The interpretation of T(n,k) as RU walks in terms of M(.,.,.) in the NAME is erroneous. There seems to be a pattern along subdiagonals:
M(3,1,1) = 4 = T(3,2); M(3,1,2) = 1 = T(4,4); M(5,2,1) = 20 = T(5,3); M(5,2,2) = 7 = T(6,5); M(5,2,3) = 1 = T(7,7); M(7,3,0) = 165 = T(6,2); M(7,3,1) = 110 = T(7,4); M(7,3,2) = 44 = T(8,6); M(7,3,3) = 10 = T(9,8); M(7,3,4) = 1 = T(10,10); M(9,4,0) = 1001 = T(8,3); M(9,4,1) = 637 = T(9,5); M(9,4,2) = 273 = T(10,7); M(9,4,3) = 77 = T(11,9); M(9,4,4) = 13 = T(12,11); M(9,4,5) = 1 = T(13,13); M(11,5,0) = 6188 = T(10,4); M(11,5,1) = 3808 = T(11,6); M(11,5,2) = 1700 = T(12,8); M(11,5,3) = 544 = T(13,...); M(11,5,4) = 119; M(11,5,5) = 16; M(11,5,6) = 1; M(13,6,0) = 38760 = T(12,5); M(13,6,1) = 23256 = T(13,7); M(13,6,2) = 10659 = T(14,9); - R. J. Mathar, Jul 31 2024

Examples

			Triangle begins:
     0
     1    0
     1    1    1
     2    3    4    1
     5    9   14    6    1
    14   28   48   27    8    1
    42   90  165  110   44   10    1
   132  297  572  429  208   65   12    1
   429 1001 2002 1638  910  350   90   14    1
  1430 3432 7072 6188 3808 1700  544  119   16    1
		

References

  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.

Crossrefs

{M(2n, 0, k)} is given by A039599. {M(2n+1, n+1, k+1)} is given by A039598.
Cf. A033184, A050153, A000108 (column 0), A000245 (column 1), A002057 (column 2), A000344 (column 3), A003517 (column 4), A000588 (column 5), A003518 (column 6), A001392 (column 7), A003519 (column 8), A000589 (column 9), A090749 (column 10).

Programs

  • Maple
    A050144 := proc(n,k)
        if n < k then
            0;
        elif k =0 then
            if n =0 then
                0 ;
            else
                A000108(n-1) ;
            end if;
        elif k = 1 then
            add( procname(n-1-j,0)*A000108(j+1),j=0..n-1) ;
        elif k = 2 then
            add( procname(n-j,1)*A000108(j),j=0..n) ;
        else
            add( procname(n-1-j,k-1)*A000108(j),j=0..n-1) ;
        end if;
    end proc:
    seq(seq( A050144(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jul 30 2024
  • Mathematica
    c[n_] := Binomial[2 n, n]/(n + 1);
    t[n_, k_] := Which[k == 0, c[n - 1],
      k == 1, Sum[t[n - 1 - j, 0]*c[j + 1], {j, 0, n - 2}],
      k == 2, Sum[t[n - j, 1]*c[j], {j, 0, n - 1}],
      k > 2, Sum[t[n - 1 - j, k - 1] c[j + 1], {j, 0, n - 2}]]
    t[0, 0] = 0;
    Column[Table[t[n, k], {n, 0, 10}, {k, 0, n}]]
    (* Clark Kimberling, Jul 30 2024 *)

Formula

For n > 0: Sum_{k>=0} T(n, k) = binomial(2*n-1, n); see A001700. - Philippe Deléham, Feb 13 2004 [Erroneous sum-formula deleted. R. J. Mathar, Jul 31 2024]
T(n, k)=0 if n < k; T(0, 0)=0, T(n, 0) = A000108(n-1) for n > 0; T(n, 1) = Sum_{j>=0} T(n-1-j, 0)*A000108(j+1); T(n, 2) = Sum_{j>=0} T(n-j, 1)*A000108(j); for k > 2, T(n, k) = Sum_{j>=0} T(n-1-j, k-1)*A000108(j+1). - Philippe Deléham, Feb 13 2004 [Corrected by Sean A. Irvine, Aug 08 2021]
For the column k=0, g.f.: x*C(x); for the column k=1, g.f.: x*C(x)*(C(x)-1); for the column k, k > 1, g.f.: x*C(x)^2*(C(x)-1)^(k-1); where C(x) = Sum_{n>=0} A000108(n)*x^n is g.f. for Catalan numbers, A000108. - Philippe Deléham, Feb 13 2004
T(n,0) = A033184(n,2). T(n,1) = A033184(n+1,3), T(n,k) = A033184(n+2,k+2) for k>=2. - R. J. Mathar, Jul 31 2024

A052715 Expansion of e.g.f. (1-2*x-sqrt(1-4*x))/2 - x*(1-2*x-sqrt(1-4*x)) - x^2.

Original entry on oeis.org

0, 0, 0, 0, 24, 480, 10080, 241920, 6652800, 207567360, 7264857600, 282291609600, 12067966310400, 563171761152000, 28496491114291200, 1554354060779520000, 90929712555601920000, 5679609738088366080000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Magma
    [n le 3 select 0 else 2*(n-3)*Factorial(n-1)*Catalan(n-2): n in [0..30]]; // G. C. Greubel, May 27 2022
    
  • Maple
    spec := [S,{B=Union(Z,C),C=Prod(B,B),S=Prod(C,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[(1-2x-Sqrt[1-4x])/2-x(1-2x- Sqrt[ 1-4x])- x^2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 18 2016 *)
  • SageMath
    [0]+[4*factorial(n-1)*binomial(2*n-5, n-4) for n in (1..30)] # G. C. Greubel, May 27 2022

Formula

D-finite with recurrence: a(1)=0; a(2)=0; a(3)=0; a(4)=24; 4*(-n-3+2*n^2)*a(n) +2*(-1-3*n)*a(n+1) +a(n+2) =0.
a(n) = n!*A002057(n-4). - R. J. Mathar, Oct 18 2013

A145596 Triangular array of generalized Narayana numbers: T(n, k) = 2*binomial(n + 1, k + 1)*binomial(n + 1, k - 1)/(n + 1).

Original entry on oeis.org

1, 2, 2, 3, 8, 3, 4, 20, 20, 4, 5, 40, 75, 40, 5, 6, 70, 210, 210, 70, 6, 7, 112, 490, 784, 490, 112, 7, 8, 168, 1008, 2352, 2352, 1008, 168, 8, 9, 240, 1890, 6048, 8820, 6048, 1890, 240, 9, 10, 330, 3300, 13860, 27720, 27720, 13860, 3300, 330, 10
Offset: 1

Views

Author

Peter Bala, Oct 14 2008

Keywords

Comments

T(n,k) is the number of walks of n unit steps on the square lattice (i.e., each step in the direction either up (U), down (D), right (R) or left (L)) starting from (0,0) and finishing at points on the horizontal line y = 1, which remain in the upper half-plane y >= 0. An example is given in the Example section below.
The current array is the case r = 1 of the generalized Narayana numbers N_r(n, k) := (r + 1)/(n + 1)*binomial(n + 1, k + r)*binomial(n + 1, k - 1), which count walks of n steps from the origin to points on the horizontal line y = r that remain in the upper half-plane. Case r = 0 gives the table of Narayana numbers A001263 (but with row numbering starting at n = 0). For other cases see A145597 (r = 2), A145598 (r = 3) and A145599 (r = 4).
T(n,k) is the number of preimages of the permutation 21345...(n+2) under West's stack-sorting map that have exactly k descents. - Colin Defant, Sep 15 2018
T(n+k+1,k+1) equals the number of tilings of an octagon with internal angles of 135 degrees and sides of lengths n, k, 1, 1, n, k, 1, 1 using unit rhombi with internal angles 45 degrees and 135 degrees. See Elnitzky, Theorem 5.1. - Peter Bala, Apr 25 2022

Examples

			n\k|..1.....2....3.....4.....5.....6
====================================
.1.|..1
.2.|..2.....2
.3.|..3.....8....3
.4.|..4....20...20.....4
.5.|..5....40...75....40.....5
.6.|..6....70..210...210....70.....6
...
Row 3 entries:
T(3,1) = 3: the 3 walks from (0,0) to (-2,1) of three steps are LLU, LUL and ULL.
T(3,2) = 8: the 8 walks from (0,0) to (0,1) of three steps are UDU, UUD, ULR, URL, RLU, LRU, RUL and LUR.
T(3,3) = 3: the 3 walks from (0,0) to (2,1) of three steps are RRU, RUR and URR.
.
.
*......*......*......y......*......*......*
.
.
*......3......*......8......*......3......*
.
.
*......*......*......o......*......*......* x-axis
.
.
		

Crossrefs

Programs

  • Magma
    /* As triangle */  [[2/(n+1)*Binomial(n+1,k+1)*Binomial(n+1,k-1): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Sep 15 2018
  • Maple
    T:= (n, k) -> 2/(n+1)*binomial(n+1, k+1)*binomial(n+1, k-1):
    for n from 1 to 10 do seq(T(n,k), k = 1..n) end do;
  • Mathematica
    t[n_, k_]:=2/(n+1) Binomial[n+1, k+1] Binomial[n+1, k-1]; Table[t[n, k], {n, 3, 10}, {k, n}]//Flatten (* Vincenzo Librandi, Sep 15 2018 *)

Formula

T(n,k) = 2/(n + 1)*binomial(n + 1,k + 1)*binomial(n + 1,k - 1) for 1 <= k <= n. In the notation of [Guy], T(n,k) equals w_n(x,y) at (x,y) = (2*k - n - 1,1).
O.g.f. for column (k + 2): 2/(k + 1) * y^(k+2)/(1 - y)^(k+4) * Jacobi_P(k,2,1,(1 + y)/(1 - y)). The column generating functions begin: column 2: 2*y^2/(1 - y)^4; column 3: y^3*(3 + 2*y)/(1 - y)^6; column 4: y^4*(4 + 8*y + 2*y^2)/(1 - y)^8; the polynomials in the numerators are the row generating polynomials of array A108838.
O.g.f. for array: 1/(2*x*y^3) * (((1 + x)*y - 1)*sqrt(1 - 2*(1 + x)*y + (y - x*y)^2) + x^2*y^2 - 2*x*y + (1 - y)^2) = x*y + (2*x + 2*x^2)*y^2 + (3*x + 8*x^2 + 3*x^3)*y^3 + (4*x + 20*x^2 + 20*x^3 + 4*x^4)*y^4 + ... .
Row sums A002057.
Identities for row polynomials R_n(x) = Sum_{k = 1..n} T(n,k)*x^k (compare with the results in section 1 of [Mansour & Sun]):
x*R_(n-1)(x) = 2*(n - 1)/((n + 1)*(n + 2)) * Sum_{k = 0..n} binomial(n + 2,k) * binomial(2*n - k,n) * (x - 1)^k;
R_n(x) = Sum_{k = 0..floor((n-1)/2)} binomial(n, 2*k + 1) * Catalan(k + 1) * x^(k+1)*(1 + x)^(n-2k-1);
Sum_{k = 1..n} (-1)^(n-k)*binomial(n,k)*R_k(x)*(1 + x)^(n-k) = x^m*Catalan(m) if n = 2*m - 1 is odd, otherwise the sum is zero.
Sum_{k = 1..n} (-1)^(k+1)*binomial(n,k)*R_k(x^2)*(1 + x)^(2*(n-k)) = R_n(1)*x^(n+1) = 4/(n + 3)*binomial(2*n + 1,n - 1)*x^(n+1) = A002057(n-1)*x^(n+1).
Row generating polynomial R_(n+1)(x) = 2/(n + 2)*x*(1 - x)^n * Jacobi_P(n,2,2,(1 + x)/(1 - x)). - Peter Bala, Oct 31 2008
G.f. satisfies x^3*y*A(x,y)^2-A(x,y)*(x^2*y^2+(-2)*x*y+x^2+(-2)*x+1)+x = 0. - Vladimir Kruchinin, Oct 11 2020
The array can be extended to negative values of n: T(-n,k) = 2*binomial(-n + 1, k + 1)*binomial(-n + 1, k - 1)/(-n + 1) = -A108838(n+k-1,k-1) for n >= 2. - Peter Bala, Apr 26 2022
From Sergii Voloshyn, Dec 18 2024: (Start)
Let E be the operator x^2*D*(1/x)*D, where D denotes the derivative operator d/dx. Then 48(1+n)/((n+2)!(n+4)!)* E^n(x^2/(1 - x)^5) = (row n generating polynomial)/(1 - x)^(2*n+5) = 2*binomial(n + 1, k + 1)*binomial(n + 1, k - 1)/(n + 1).
For example, when n = 3 we have 1/3150*E^3(x^2/(1 - x)^5) = x^2 (4 + 20x + 20x^2 + 4x^3)/(1 - x)^11. (End)

A052721 Expansion of e.g.f. x*(1-2*x)*(1 - 2*x - sqrt(1-4*x))/2 - x^3.

Original entry on oeis.org

0, 0, 0, 0, 0, 120, 2880, 70560, 1935360, 59875200, 2075673600, 79913433600, 3387499315200, 156883562035200, 7884404656128000, 427447366714368000, 24869664972472320000, 1545805113445232640000, 102232975285590589440000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Crossrefs

Programs

  • Maple
    spec := [S,{C=Union(B,Z),B=Prod(C,C),S=Prod(B,B,Z)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    Table[If[n<5, 0, 2*n*(n-2)!*(n-4)*CatalanNumber[n-3]], {n,0,30}] (* G. C. Greubel, May 28 2022 *)
  • SageMath
    def A052721(n):
        if (n<5): return 0
        else: return 2*n*factorial(n-2)*(n-4)*catalan_number(n-3)
    [A052721(n) for n in (0..30)] # G. C. Greubel, May 28 2022

Formula

D-finite with recurrence: a(1)=0, a(2)=0, a(4)=0, a(3)=0, a(5)=120, a(6)=2880, (n+2)*a(n+2) = (6*n^2 + 8*n - 8)*a(n+1) + (40 + 44*n = 4*n^2 - 8*n^3)*a(n).
a(n) = 2*Pi^(-1/2)*4^(n-3)*Gamma(n-5/2)*n*(n-4) for n>3. - Mark van Hoeij, Oct 30 2011
a(n) = n!*A002057(n-5). - R. J. Mathar, Oct 18 2013
From G. C. Greubel, May 28 2022: (Start)
G.f.: 4!*x*(d/dx)( x^5 * Hypergeometric2F0([2, 5/2], [], 4*x) ).
E.g.f.: (x/2)*(1 - 4*x + 2*x^2 - (1-2*x)*sqrt(1-4*x)). (End)

A071721 Expansion of (1+x^2*C^2)*C^2, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.

Original entry on oeis.org

1, 2, 6, 18, 56, 180, 594, 2002, 6864, 23868, 83980, 298452, 1069776, 3863080, 14040810, 51325650, 188574240, 695987820, 2579248980, 9593714460, 35804293200, 134032593240, 503154100020, 1893689067348, 7144084508256
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2002

Keywords

Comments

a(n) = A138156(n) - 4*A138156(n-1). - Alzhekeyev Ascar M, Jul 19 2011
Apparently, for n>=1, the sum of the heights of the first and last peaks in all Dyck n-paths (in paths with one peak the height counts as both first and last). - David Scambler, Oct 05 2012
For n>=1, a(n) is the total number of nonempty subtrees over all binary trees having n+1 internal nodes. Here, a binary tree is a full (each node has two or zero children), rooted, plane (ordered), unlabeled tree. An empty subtree is a tree attached to the root that consists only of an external node. a(n) = 2*A002057(n-2) + A068875(n). - Geoffrey Critzer, Sep 16 2013
From Colin Defant, Sep 15 2018: (Start)
a(n) is the number of permutations pi of [n+1] such that s(pi) avoids the patterns 132, 231, 312, and 321, where s denotes West's stack-sorting map.
a(n) is the number of permutations on [n+1] that avoid the patterns 1342, 2341, 3142, 3241, 3412, and 3421. (End)

Examples

			G.f. = 1 + 2*x + 6*x^2 + 18*x^3 + 56*x^4 + 180*x^5 + 594*x^6 + 2002*x^7 + ... - _Michael Somos_, Apr 22 2022
		

Crossrefs

Row sums of triangles A319251, A319252.
gf=(1+x^2*C^2)*C^m: A000782 (m=1), this sequence (m=2), A071722 (m=3), A071723 (m=4).

Programs

  • Maple
    a := n -> `if`(n=0, 1, 6*binomial(2*n, n-1)/(n+2));
    seq(a(n), n=0..24); # Peter Luschny, Jun 28 2018
  • Mathematica
    Join[{1},Table[6n CatalanNumber[n]/(n+2),{n,30}]] (* Harvey P. Dale, Jun 05 2012 *)
    nn=20;t=(1-(1-4x)^(1/2))/(2x);CoefficientList[Series[D[1+x (y t -y+1)^2,y]/.y->1,{x,0,nn}],x] (* Geoffrey Critzer, Sep 16 2013 *)
  • PARI
    {a(n) = if(n<1, n==0, 6*n*(2*n)!/(n!*(n + 1)!*(n + 2)))}; /* Michael Somos, Apr 22 2022 */
  • Sage
    a = lambda n: n*(n+1)*hypergeometric([1-n, 2-n], [4], 1) if n>0 else 1
    [simplify(a(n)) for n in range(25)] # Peter Luschny, Nov 19 2014
    

Formula

a(n) = 6n * (2n)! / [(n+2)n!(n+1)! ], n>0. In terms of Catalan numbers (A000108), a(n) = 6n*Cat(n)/(n+2), n>0. - Ralf Stephan, Mar 11 2004
a(n) = n*(n+1)*hypergeom([1-n, 2-n], [4], 1) for n>=1. - Peter Luschny, Nov 19 2014
D-finite with recurrence -(n+2)*(n-1)*a(n) +2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jul 18 2017
a(n) = 2*Cat(n+1) - 2*Cat(n) = 2*A000245(n) for n>=1. - Colin Defant, Jun 27 2018
From Amiram Eldar, Mar 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 23/18 + 7*Pi/(27*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 43/50 - 82*sqrt(5)*log(phi)/375, where phi is the golden ratio (A001622). (End)
From Michael Somos, Apr 22 2022: (Start)
G.f.: (1 - 3*x + x^2 - (1 - x) * sqrt(1 - 4*x))/x^2.
G.f.: (2 - 2*x + x^2)/(1 - 3*x + x^2 + (1 - x)*sqrt(1 - 4*x)).
G.f.: 1 + 1/((1 - x)/(1 - sqrt(1 - 4*x)) - 1/2).
a(n) = b(n+1) - b(n) for all n in Z if b(0) = 2, b(-1) = -1, a(0) = 0, a(-1) = 3, a(-2) = -1 where b = A068875.
0 = a(n)*(+16*a(n+1) -58*a(n+2) +18*a(n+3)) +a(n+1)*(+18*a(n+1) +15*a(n+2) -13*a(n+3)) +a(n+2)*(+3*a(n+2) +a(n+3)) for all n in Z if a(0) = 0, a(-1) = 3, a(-2) = -1. (End)

A114277 Sum of the lengths of the second ascents in all Dyck paths of semilength n+2.

Original entry on oeis.org

1, 5, 19, 67, 232, 804, 2806, 9878, 35072, 125512, 452388, 1641028, 5986993, 21954973, 80884423, 299233543, 1111219333, 4140813373, 15478839553, 58028869153, 218123355523, 821908275547, 3104046382351, 11747506651599
Offset: 0

Views

Author

Emeric Deutsch, Nov 20 2005

Keywords

Comments

Also number of Dyck paths of semilength n+4 having length of second ascent equal to three. Example: a(1)=5 because we have UD(UUU)DUDDD, UD(UUU)DDUDD, UD(UUU)DDDUD, UUD(UUU)DDDD and UUDD(UUU)DDD (second ascents shown between parentheses). Partial sums of A002057. Column 3 of A114276. a(n)=absolute value of A104496(n+3).
Also number of Dyck paths of semilength n+3 that do not start with a pyramid (a pyramid in a Dyck path is a factor of the form U^j D^j (j>0), starting at the x-axis; here U=(1,1) and D=(1,-1); this definition differs from the one in A091866). Equivalently, a(n)=A127156(n+3,0). Example: a(1)=5 because we have UUDUDDUD, UUDUDUDD, UUUDUDDD, UUDUUDDD and UUUDDUDD. - Emeric Deutsch, Feb 27 2007

Examples

			a(3)=5 because the total length of the second ascents in UD(U)DUD, UD(UU)DD, UUDD(U)D, UUD(U)DD and UUUDDD (shown between parentheses) is 5.
		

Crossrefs

Cf. A014137 (n=1), A014138 (n=2), A001453 (n=3), this sequence (n=4), A143955 (n=5), A323224 (array).

Programs

  • Maple
    a:=n->4*sum(binomial(2*j+3,j)/(j+4),j=0..n): seq(a(n),n=0..28);
  • Mathematica
    Table[4*Sum[Binomial[2j+3,j]/(j+4),{j,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 19 2012 *)
  • Python
    from functools import cache
    @cache
    def B(n, k):
        if n <= 0 or k <= 0: return 0
        if n == k: return 1
        return B(n - 1, k) + B(n, k - 1)
    def A114277(n): return B(n + 5, n + 1)
    print([A114277(n) for n in range(24)]) # Peter Luschny, May 16 2022

Formula

a(n) = 4*Sum_{j=0..n} binomial(2*j+3, j)/(j+4).
G.f.: C^4/(1-z), where C=(1-sqrt(1-4*z))/(2*z) is the Catalan function.
a(n) = c(n+3) - (c(0) + c(1) + ... + c(n+2)), where c(k)=binomial(2k,k)/(k+1) is a Catalan number (A000108). - Emeric Deutsch, Feb 27 2007
D-finite with recurrence: n*(n+4)*a(n) = (5*n^2 + 14*n + 6)*a(n-1) - 2*(n+1)*(2*n+3)*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 2^(2*n+7)/(3*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 19 2012
a(n) = exp((2*i*Pi)/3)-4*binomial(2*n+5,n+1)*hypergeom([1,3+n,n+7/2],[n+2,n+6],4)/ (n+5). - Peter Luschny, Feb 26 2017
a(n-1) = Sum_{i+j+k+lA000108 Catalan number. - Yuchun Ji, Jan 10 2019

Extensions

More terms from Emeric Deutsch, Feb 27 2007

A000150 Number of dissections of an n-gon, rooted at an exterior edge, asymmetric with respect to that edge.

Original entry on oeis.org

0, 0, 1, 2, 7, 20, 66, 212, 715, 2424, 8398, 29372, 104006, 371384, 1337220, 4847208, 17678835, 64821680, 238819350, 883629164, 3282060210, 12233125112, 45741281820, 171529777432, 644952073662, 2430973096720, 9183676536076
Offset: 0

Views

Author

Keywords

Comments

Number of Dyck paths of length 2n having an odd number of peaks at even height. Example: a(3)=2 because we have UDU(UD)D and U(UD)DUD, where U=(1,1), D=(1,-1) and the peaks at even height are shown between parentheses. - Emeric Deutsch, Nov 13 2004
For n>=1, a(n) is the number of unordered binary trees with n internal nodes in which the left subtree is distinct from the right subtree. - Geoffrey Critzer, Feb 21 2013
Assuming offset -1 this is an analog of A275166: pairs of distinct Catalan numbers with index sum n. - R. J. Mathar, Jul 19 2016

References

  • S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751
  • R. K. Guy, "Dissecting a polygon into triangles," Bull. Malayan Math. Soc., Vol. 5, pp. 57-60, 1958.
  • R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 78, (3.5.26).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. K. Stockmeyer, The charm bracelet problem and its applications, pp. 339-349 of Graphs and Combinatorics (Washington, Jun 1973), Ed. by R. A. Bari and F. Harary. Lect. Notes Math., Vol. 406. Springer-Verlag, 1974.

Crossrefs

a(n) = T(2n+2, n), array T as in A051168, a count of Lyndon words.
Cf. A007595.
A diagonal of the square array described in A051168.

Programs

  • Mathematica
    nn=20;CoefficientList[Series[x/2(((1-(1-4x)^(1/2))/(2x))^2-(1-(1-4x^2)^(1/2))/(2x^2)),{x,0,nn}],x]  (* Geoffrey Critzer, Feb 21 2013 *)

Formula

Let c(x) = (1-sqrt(1-4*x))/(2*x) = g.f. for Catalan numbers (A000108), let d(x) = 1+x*c(x^2). Then g.f. is (c(x)-d(x))/2.
G.f.: (sqrt(1-4*z^2) - sqrt(1-4*z) - 2*z)/(4*z). - Emeric Deutsch, Nov 13 2004
With c(x) defined as above: g.f. = x*(c(x)^2/2 - c(x^2)/2). - Geoffrey Critzer, Feb 21 2013
a(n) = ( 2^(n-3)/sqrt(Pi) ) * ( 4*2^n*GAMMA(n+1/2)/GAMMA(n+2) + ((-1)^n - 1)*GAMMA(n/2)/GAMMA(n/2 + 3/2) ) for n>0. - Mark van Hoeij, Nov 11 2009
a(n) ~ 2^(2*n-1) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 10 2014
a(2n) = A000108(2n) / 2; a(2n+1) = ( A000108(2n+1) - A000108(n) ) / 2. - John Bodeen, Jun 24 2015
D-finite with recurrence +n*(n+1)*(n-2)^2*a(n) -2*n*(2*n-5)*(n-1)^2*a(n-1) -4*n*(n-2)^3*a(n-2) +8*(2*n-5)*(n-3)*(n-1)^2*a(n-3)=0. - R. J. Mathar, Oct 28 2021

Extensions

Additional comments from Clark Kimberling
Previous Showing 21-30 of 67 results. Next