cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 263 results. Next

A152683 Decimal expansion of log_6 (2).

Original entry on oeis.org

3, 8, 6, 8, 5, 2, 8, 0, 7, 2, 3, 4, 5, 4, 1, 5, 8, 6, 8, 7, 0, 2, 4, 6, 1, 3, 8, 4, 6, 7, 8, 2, 0, 8, 7, 6, 4, 6, 5, 1, 4, 1, 8, 5, 9, 4, 5, 7, 1, 0, 3, 4, 2, 8, 3, 8, 9, 4, 9, 4, 9, 2, 8, 8, 2, 6, 6, 4, 2, 0, 1, 8, 5, 4, 0, 7, 2, 2, 8, 0, 3, 8, 3, 1, 6, 5, 2
Offset: 0

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Comments

The upper bound for the ratio of the number of 3x+1 steps to all steps in the Collatz iteration. - T. D. Noe, Apr 30 2010

Examples

			.38685280723454158687024613846782087646514185945710342838949...
		

Crossrefs

Cf. decimal expansion of log_6(m): this sequence, A152935 (m=3), A153102 (m=4), A153202 (m=5), A153617 (m=7), A153754 (m=8), A154009 (m=9), A154157 (m=10), A154178 (m=11), A154199 (m=12), A154278 (m=13), A154466 (m=14), A154567 (m=15), A154776 (m=16), A154856 (m=17), A154911 (m=18), A155044 (m=19), A155490 (m=20), A155554 (m=21), A155697 (m=22), A155823 (m=23), A155959 (m=24).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Log(2)/Log(6); // G. C. Greubel, Sep 13 2018
  • Mathematica
    RealDigits[Log[6,2],10,120][[1]] (* Harvey P. Dale, Sep 12 2012 *)
  • PARI
    default(realprecision, 100); log(2)/log(6) \\ G. C. Greubel, Sep 13 2018
    

Formula

Equals log(2)/log(6) (A002162/A016629), that is, log(2)/(log(2)+log(3)). - Michel Marcus, Aug 18 2018

A061444 Decimal expansion of log(2 * Pi).

Original entry on oeis.org

1, 8, 3, 7, 8, 7, 7, 0, 6, 6, 4, 0, 9, 3, 4, 5, 4, 8, 3, 5, 6, 0, 6, 5, 9, 4, 7, 2, 8, 1, 1, 2, 3, 5, 2, 7, 9, 7, 2, 2, 7, 9, 4, 9, 4, 7, 2, 7, 5, 5, 6, 6, 8, 2, 5, 6, 3, 4, 3, 0, 3, 0, 8, 0, 9, 6, 5, 5, 3, 1, 3, 9, 1, 8, 5, 4, 5, 2, 0, 7, 9, 5, 3, 8, 9, 4, 8, 6, 5, 9, 7, 2, 7, 1, 9, 0, 8, 3, 9, 5, 2, 4
Offset: 1

Views

Author

Frank Ellermann, Jun 11 2001

Keywords

Comments

Used in formulas for gamma(x), e.g., in Stirling's approximation for m!.
Also decimal expansion of zeta'(0)/zeta(0). - Benoit Cloitre, Sep 28 2002
The value of log(2*Pi) is close to 1 + Sum_{n>=2} log(zeta(n)) = 1.83067035427178011248.... - Arkadiusz Wesolowski, Jul 17 2011

Examples

			1.837877066409345483560659472811235279722794947275566825634303...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Log[2*Pi], 100]][[1]] (* Arkadiusz Wesolowski, Aug 29 2011 *)
  • PARI
    { default(realprecision, 20080); x=log(2*Pi); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b061444.txt", n, " ", d)) } \\ Harry J. Smith, Jul 22 2009

Formula

Equals A002162 + A053510 = A131659 - A094642. - R. J. Mathar, Aug 27 2011
Equals 1 + Sum_{k>=1} zeta(2*k)/(k*(2*k + 1)). - Amiram Eldar, Aug 20 2020

A152814 Decimal expansion of log_19 (2).

Original entry on oeis.org

2, 3, 5, 4, 0, 8, 9, 1, 3, 3, 6, 6, 6, 3, 8, 2, 3, 6, 4, 4, 6, 9, 6, 5, 4, 6, 0, 0, 3, 6, 8, 4, 1, 8, 5, 3, 8, 3, 5, 4, 0, 6, 7, 7, 6, 6, 2, 7, 8, 1, 6, 0, 4, 7, 2, 8, 8, 1, 3, 2, 3, 6, 8, 5, 0, 2, 8, 5, 7, 3, 0, 2, 1, 3, 2, 0, 5, 4, 4, 8, 1, 7, 5, 2, 4, 4, 0, 0, 4, 5, 8, 7, 4, 7, 8, 3, 6, 3, 6
Offset: 0

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			.23540891336663823644696546003684185383540677662781604728813...
		

Crossrefs

Cf. decimal expansion of log_19(m): this sequence, A153027 (m=3), A153117 (m=4), A153451 (m=5), A153609 (m=6), A153629 (m=7), A153871 (m=8), A154018 (m=9), A154169 (m=10), A154190 (m=11), A154211 (m=12), A154401 (m=13), A154491 (m=14), A154697 (m=15), A154837 (m=16), A154899 (m=17), A154975 (m=18), A155531 (m=20), A155686 (m=21), A155787 (m=22), A155906 (m=23), A156000 (m=24).

Programs

Formula

Equals A002162 / A016642.

A152821 Decimal expansion of log_20 (2).

Original entry on oeis.org

2, 3, 1, 3, 7, 8, 2, 1, 3, 1, 5, 9, 7, 5, 9, 1, 7, 4, 2, 6, 3, 6, 9, 7, 7, 0, 1, 0, 9, 7, 6, 4, 0, 4, 9, 5, 8, 9, 0, 9, 6, 5, 5, 0, 7, 3, 7, 3, 5, 6, 5, 8, 6, 1, 8, 3, 9, 6, 1, 7, 7, 9, 4, 1, 1, 3, 5, 2, 4, 5, 5, 4, 0, 3, 0, 1, 5, 8, 3, 8, 4, 7, 1, 3, 9, 6, 5, 5, 8, 4, 0, 4, 4, 7, 5, 3, 9, 2, 5
Offset: 0

Views

Author

N. J. A. Sloane, Oct 30 2009

Keywords

Examples

			.23137821315975917426369770109764049589096550737356586183961...
		

Crossrefs

Cf. decimal expansion of log_20(m): this sequence, A153035 (m=3), A153124 (m=4), A153454 (m=5), A153610 (m=6), A153630 (m=7), A153872 (m=8), A154019 (m=9), A154170 (m=10), A154191 (m=11), A154212 (m=12), A154433 (m=13), A154492 (m=14), A154705 (m=15), A154838 (m=16), A154900 (m=17), A154976 (m=18), A155115 (m=19), A155687 (m=21), A155789 (m=22), A155907 (m=23), A156015 (m=24).

Programs

Formula

Equals A002162 / A016643 = 1/A155172. - R. J. Mathar, Aug 13 2024

A038608 a(n) = n*(-1)^n.

Original entry on oeis.org

0, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 28, -29, 30, -31, 32, -33, 34, -35, 36, -37, 38, -39, 40, -41, 42, -43, 44, -45, 46, -47, 48, -49, 50, -51, 52, -53, 54, -55, 56, -57, 58, -59, 60, -61, 62, -63, 64, -65
Offset: 0

Views

Author

Vasiliy Danilov (danilovv(AT)usa.net), Jul 1998

Keywords

Comments

a(n) is the determinant of the (n+1) X (n+1) matrix with 0's in the main diagonal and 1's elsewhere. - Franz Vrabec, Dec 01 2007
Sum_{n>0} 1/a(n) = -log(2). - Jaume Oliver Lafont, Feb 24 2009
Pisano period lengths: 1, 2, 6, 4, 10, 6, 14, 8, 18, 10, 22, 12, 26, 14, 30, 16, 34, 18, 38, 20, ... (is this A066043?). - R. J. Mathar, Aug 10 2012
a(n) is the determinant of the (n+1) X (n+1) matrix whose i-th row, j-th column entry is the value of the cubic residue symbol ((j-i)/p) where p is a prime of the form 3k+2 and n < p. - Ryan Wood, Nov 09 2017
a(n-1) is the difference in the number of even minus odd parity derangements (permutations with no fixed points) in symmetric group S_n. - Julian Hatfield Iacoponi, Aug 01 2024

Crossrefs

Cf. A002162 (log(2)).
Cf. A001477.
Cf. A003221, A000387 (even, odd derangements).

Programs

Formula

G.f.: -x/(1+x)^2.
E.g.f: -x*exp(-x).
a(n) = -2*a(n-1) - a(n-2) for n >= 2. - Jaume Oliver Lafont, Feb 24 2009
a(n) = A003221(n+1)-A000387(n+1). - Julian Hatfield Iacoponi, Aug 01 2024

Extensions

Edited by Frank Ellermann, Jan 28 2002

A016655 Decimal expansion of log(32) = 5*log(2).

Original entry on oeis.org

3, 4, 6, 5, 7, 3, 5, 9, 0, 2, 7, 9, 9, 7, 2, 6, 5, 4, 7, 0, 8, 6, 1, 6, 0, 6, 0, 7, 2, 9, 0, 8, 8, 2, 8, 4, 0, 3, 7, 7, 5, 0, 0, 6, 7, 1, 8, 0, 1, 2, 7, 6, 2, 7, 0, 6, 0, 3, 4, 0, 0, 0, 4, 7, 4, 6, 6, 9, 6, 8, 1, 0, 9, 8, 4, 8, 4, 7, 3, 5, 7, 8, 0, 2, 9, 3, 1, 6, 6, 3, 4, 9, 8, 2, 0, 9, 3, 4, 3
Offset: 1

Views

Author

Keywords

Comments

The function exp(x) has its maximum curvature where x = -(1/10)*5*log(2) = -log(2)/2 = 0.34657... - Dimitri Papadopoulos, Oct 27 2022
This maximum curvature occurs at the point with coordinates (x_M = -log(2)/2 = -(this constant)/10; y_M = sqrt(2)/2 = A010503) and is equal to 2*sqrt(3)/9 = A212886. - Bernard Schott, Dec 23 2022

Examples

			3.465735902799726547086160607290882840377500671801276270603400047466968...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 2.

Crossrefs

Cf. A000045, A000032, A060851, A195909, A195913, A195697, A016460 (continued fraction).

Programs

Formula

log(2)/2 = (1 - 1/2 - 1/4) + (1/3 - 1/6 - 1/8) + (1/5 - 1/10 - 1/12) + ... [Jolley, Summation of Series, Dover (1961) eq (73)]
Equals 10*log(2)/2 = 5*log(2) = 5*A002162, so 10*(1/2 - 1/4 + 1/6 - 1/8 + 1/10 - ... + (-1)^(k+1)/(2*k) + ...) = log(32). - Eric Desbiaux, Nov 26 2008
-log(2)/2 = lim_{n->oo} ((Sum_{k=2..n} arctanh(1/k)) - log(n)). - Jean-François Alcover, Aug 07 2014, after Steven Finch
Equals log(sqrt(2)) with offset 0. - Michel Marcus, Feb 19 2017
Equals (5/4)*Sum_{k=1..4} (-1)^(k+1) gamma(0, k/4) where gamma(n,x) denotes the generalized Stieltjes constants. - Peter Luschny, May 16 2018
From Amiram Eldar, Jun 29 2020: (Start)
log(2)/2 = arctanh(1/3) = arcsinh(1/sqrt(8)).
log(2)/2 = Integral_{x=0..Pi/4} tan(x) dx.
log(2)/2 = Sum_{k>=0} (-1)^k/(2*k+2).
log(2)/2 = Sum_{k>=1} 1/A060851(k). (End)
log(2)/2 = Sum_{k>=1} (-1)^(k+1) * arctanh(Lucas(2*k+3)/Fibonacci(2*k+3)^2) (Melham and Shannon, 1995). - Amiram Eldar, Jan 15 2022
Equals 10 * Integral_{1..oo} dx/(x*(1+x^2)). [Nahin] - R. J. Mathar, May 22 2024
Equals -10*Integral_{q=0..1} q*log(sin(Pi*q))dq. [Espinosa] - R. J. Mathar, Aug 13 2024
log(2)/2 = Sum_{k>=2} (-1)^(k) * arccoth(k). - Antonio Graciá Llorente, Sep 16 2024
-0.34657359... = Sum_{k>=0} zeta(2k)/((2k+1)*2^(2k)), [Srivastava (2.20)] - R. J. Mathar, Feb 12 2020
Equals 10*Integral_{x=0..1} Ei((1 + sqrt(2))*log(x)) - li(x) dx, where Ei is the exponential integral and li is the logarithmic integral. - Kritsada Moomuang, Jun 06 2025

A020860 Decimal expansion of log(7)/log(2).

Original entry on oeis.org

2, 8, 0, 7, 3, 5, 4, 9, 2, 2, 0, 5, 7, 6, 0, 4, 1, 0, 7, 4, 4, 1, 9, 6, 9, 3, 1, 7, 2, 3, 1, 8, 3, 0, 8, 0, 8, 6, 4, 1, 0, 2, 6, 6, 2, 5, 9, 6, 6, 1, 4, 0, 7, 8, 3, 6, 7, 7, 2, 9, 1, 7, 2, 4, 0, 7, 0, 3, 2, 0, 8, 4, 8, 8, 6, 2, 1, 9, 2, 9, 8, 6, 4, 9, 7, 8, 6, 0, 9, 9, 9, 1, 7, 0, 2, 1, 0, 7, 8
Offset: 1

Views

Author

Keywords

Examples

			2.807354922...
		

Crossrefs

Programs

A244009 Decimal expansion of 1 - log(2).

Original entry on oeis.org

3, 0, 6, 8, 5, 2, 8, 1, 9, 4, 4, 0, 0, 5, 4, 6, 9, 0, 5, 8, 2, 7, 6, 7, 8, 7, 8, 5, 4, 1, 8, 2, 3, 4, 3, 1, 9, 2, 4, 4, 9, 9, 8, 6, 5, 6, 3, 9, 7, 4, 4, 7, 4, 5, 8, 7, 9, 3, 1, 9, 9, 9, 0, 5, 0, 6, 6, 0, 6, 3, 7, 8, 0, 3, 0, 3, 0, 5, 2, 8, 4, 3, 9, 4, 1, 3, 6, 6, 7, 3, 0, 0, 3, 5, 8, 1, 3, 1, 2, 4, 5, 7, 9, 9, 8, 5
Offset: 0

Views

Author

Keywords

Comments

Fraction of numbers which are sqrt-smooth, see A048098 and A063539. - Charles R Greathouse IV, Jul 14 2014
Asymptotic survival probability in the 100 prisoners problem. - Alois P. Heinz, Jul 08 2022

Examples

			0.30685281944005469058276787854...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, pp. 43-44.

Crossrefs

Essentially the same digits as A239354.

Programs

  • Maple
    f:= sum(1/(2*k*(2*k+1)), k=1..infinity):
    s:= convert(evalf(f, 140), string):
    seq(parse(s[i+1]), i=1..106);  # Alois P. Heinz, Jun 17 2014
  • Mathematica
    RealDigits[1-Log[2],10,120][[1]] (* Harvey P. Dale, Sep 23 2016 *)
  • PARI
    1-log(2) \\ Charles R Greathouse IV, Jul 14 2014

Formula

Equals Sum_{k>=0} 1/(2*k*(2*k+1)) = A239354 + 1/4 = A188859/2.
From Amiram Eldar, Aug 07 2020: (Start)
Equals Sum_{k>=1} 1/(k*(k+1)*2^k) = Sum_{k>=2} 1/A100381(k).
Equals Sum_{k>=2} (-1)^k * zeta(k)/2^k.
Equals Integral_{x=1..oo} 1/(x^2 + x^3) dx. (End)
Equals log(e/2) = log(A019739) = -log(2/e) = -log(A135002). - Wolfdieter Lang, Mar 04 2022
Equals lim_{n->oo} A024168(n)/n!. - Alois P. Heinz, Jul 08 2022
Equals 1/(4 - 4/(7 - 12/(10 - ... - 2*n*(n-1)/((3*n+1) - ...)))) (an equivalent continued fraction for 1 - log(2) was conjectured by the Ramanujan machine). - Peter Bala, Mar 04 2024
Equals Sum_{k>=1} zeta(2*k)/((2*k + 1)*2^(2*k-1)) (see Finch). - Stefano Spezia, Nov 02 2024

A073000 Decimal expansion of arctangent of 1/2.

Original entry on oeis.org

4, 6, 3, 6, 4, 7, 6, 0, 9, 0, 0, 0, 8, 0, 6, 1, 1, 6, 2, 1, 4, 2, 5, 6, 2, 3, 1, 4, 6, 1, 2, 1, 4, 4, 0, 2, 0, 2, 8, 5, 3, 7, 0, 5, 4, 2, 8, 6, 1, 2, 0, 2, 6, 3, 8, 1, 0, 9, 3, 3, 0, 8, 8, 7, 2, 0, 1, 9, 7, 8, 6, 4, 1, 6, 5, 7, 4, 1, 7, 0, 5, 3, 0, 0, 6, 0, 0, 2, 8, 3, 9, 8, 4, 8, 8, 7, 8, 9, 2, 5, 5, 6, 5, 2, 9
Offset: 0

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

The angle at which you must shoot a cue ball on a standard pool table so that it will strike all four sides and return to its origin. [Barrow] - Robert G. Wilson v, Nov 29 2015

Examples

			Arctan(1/2)
=0.463647609000806116214256231461214402028537054286120263810933088720197864165... radians
=26°.56505117707798935157219372045329467120421429964522102798601631528806582148474...
=26°33'.9030706246793610943316232271976802722528579787132616791609789172839492890...
=26°33'54".184237480761665659897393631860816335171478722795700749658735037036957...
complement = 63°.43494882292201064842780627954670532879578570035477897201398368471...
supplement = 153°.4349488229220106484278062795467053287957857003547789720139836847...
		

References

  • John D. Barrow, One Hundred Essential Things You Didn't Know You Didn't Know, W. W. Norton & Co., NY & London, 2008.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 242.

Crossrefs

Programs

  • Maple
    evalf(arctan(0.5)) ; # R. J. Mathar, Aug 22 2013
  • Mathematica
    RealDigits[ ArcTan[1/2], 10, 110] [[1]]
  • PARI
    default(realprecision,2000); atan(1/2) \\ Anders Hellström, Nov 30 2015

Formula

Equals Pi/2 - A105199 = A019669-A105199. - R. J. Mathar, Aug 21 2013
From Peter Bala, Feb 04 2015: (Start)
Arctan(1/2) = 1/2*Sum_{k >= 0} (-1)^k/((2*k + 1)*4^k).
Define a pair of integer sequences A(n) = 4^n*(2*n + 1)!/n! and B(n) = A(n)*Sum_{k = 0..n} (-1)^k/((2*k + 1)*4^k). Both sequences satisfy the same second order recurrence equation u(n) = (12*n + 10)*u(n-1) + 16*(2*n - 1)^2*u(n-2). From this observation we obtain the continued fraction expansion 2*arctan(1/2) = 1 - 2/(24 + 16*3^2/(34 + 16*5^2/(46 + ... + 16*(2*n - 1)^2/((12*n + 10) + ...)))). See A002391, A105531 and A002162 for similar expansions.
Arctan(1/2) = 2/5 * Sum_{k >= 0} (4/5)^k/((2*k + 1)*binomial(2*k,k)).
Define a pair of integer sequences C(n) = 5^n*(2*n + 1)!/n! and D(n) = C(n)*Sum_{k = 0..n} (4/5)^k/((2*k + 1)*binomial(2*k,k)). Both sequences satisfy the same second order recurrence equation u(n) = (24*n + 10)*u(n-1) - 40*n*(2*n - 1)^2*u(n-2). From this observation we obtain the continued fraction expansion 5/2*arctan(1/2) = 1 + 4/(30 - 240/(58 - 600/(82 - ... - 40*n*(2*n - 1)/((24*n + 10) - ... )))).
Arctan(1/2) = 2/25 * Sum_{k >= 0} (24*k + 17)*(4/5)^(2*k)/( (4*k + 1)*(4*k + 3)*binomial(4*k,2*k) ).
Arctan(1/2) = 2/125 * Sum_{k >= 0} (1116*k^2 + 1446*k + 433)*(4/5)^(3*k)/( (6*k + 1)*(6*k + 3)*(6*k + 5)*binomial(6*k,3*k) ). (End)
Equals Integral_{x = 0..oo} exp(-2*x)*sin(x)/x dx. - Peter Bala, Nov 05 2019
Equals 2 * arccot(phi^3), where phi is the golden ratio (A001622). - Amiram Eldar, Jul 06 2023
Equals Sum_{n >= 1} i/(n*P(n, 2*i)*P(n-1, 2*i)) = (1/2)*Sum_{n >= 1} (-1)^(n+1)*4^n/(n*A098443(n)*A098443(n-1)), where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial. The n-th summand of the series is O( 1/(3 + 2*sqrt(2))^n ). - Peter Bala, Mar 16 2024

A228725 Decimal expansion of the generalized Euler constant gamma(1,2).

Original entry on oeis.org

6, 3, 5, 1, 8, 1, 4, 2, 2, 7, 3, 0, 7, 3, 9, 0, 8, 5, 0, 1, 1, 8, 7, 2, 1, 0, 5, 7, 7, 0, 2, 8, 9, 4, 9, 9, 5, 5, 8, 8, 2, 9, 7, 3, 5, 1, 5, 0, 0, 8, 9, 4, 2, 6, 4, 6, 3, 2, 2, 3, 6, 2, 2, 1, 8, 9, 1, 3, 0, 6, 7, 4, 3, 7, 3, 6, 7, 9, 6, 9, 3, 2, 7, 1
Offset: 0

Views

Author

R. J. Mathar, Aug 31 2013

Keywords

Comments

The complement (A239097) is gamma(0,2) = lim_{x->oo} ((Sum_{n=1..x, n even} 1/n) - log(x)/2) = (A001620 - A002162)/2 = -0.05796575... - R. J. Mathar, Sep 06 2013

Examples

			0.63518142273073908501187210577028949955882973515008942646322...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField();
    (EulerGamma + Log(2))/2; // G. C. Greubel, Aug 27 2018
  • Maple
    (gamma+log(2))/2 ; evalf(%) ;
  • Mathematica
    RealDigits[(EulerGamma+Log[2])/2,10,120][[1]] (* Harvey P. Dale, Dec 26 2013 *)
  • PARI
    (Euler+log(2))/2 \\ Charles R Greathouse IV, Jul 21 2015
    

Formula

Equals lim_{x->oo} ((Sum_{n=1..x, n odd} 1/n) - log(x)/2).
Equals (A001620 + A002162)/2.
From Amiram Eldar, Jun 30 2020: (Start)
Equals -Integral_{x=0..1} log(log(1/x))*x dx.
Equals -Integral_{x=0..oo} exp(-2*x)*log(x) dx. (End)
Equals Integral_{x=0..1, y=0..1} log(-log(x*y))*x*y/log(x*y) dx dy. (Apply Theorem 1 or Theorem 2 of Glasser (2019) to one of Amiram Eldar's integrals.) - Petros Hadjicostas, Jun 30 2020
Equals -(psi(1/2) + log(2))/2 = (A020759 - A002162)/2. - Amiram Eldar, Jan 07 2024
Previous Showing 21-30 of 263 results. Next