cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 50 results. Next

A002280 a(n) = 6*(10^n - 1)/9.

Original entry on oeis.org

0, 6, 66, 666, 6666, 66666, 666666, 6666666, 66666666, 666666666, 6666666666, 66666666666, 666666666666, 6666666666666, 66666666666666, 666666666666666, 6666666666666666, 66666666666666666, 666666666666666666, 6666666666666666666, 66666666666666666666, 666666666666666666666
Offset: 0

Views

Author

Keywords

Comments

a(n-1) = number of Fibonacci numbers F(k), k <= 10^n, which end in 0. a(1)=6 because there are 6 Fibonacci numbers up to 10^2 which end in 0. - Shyam Sunder Gupta and Benoit Cloitre, Aug 15 2002
a(n) is the total number of holes in a certain triangle fractal (start with 10 triangles, 6 holes) after n iterations. See illustration in links. - Kival Ngaokrajang, Feb 21 2015

Crossrefs

Programs

Formula

a(n) = 6*A002275(n).
From Jaume Oliver Lafont, Feb 03 2009: (Start)
G.f.: 6*x/((1-x)*(1-10*x)).
a(n) = 11*a(n-1) - 10*a(n-2) with a(0)=0, a(1)=6. (End)
a(n) = A178633(n)/A002283(n). - Reinhard Zumkeller, May 31 2010
a(n) = a(n-1) + 6*10^(n-1) with a(0)=0. - Vincenzo Librandi, Jul 22 2010
E.g.f.: 2*exp(x)*(exp(9*x) - 1)/3. - Stefano Spezia, Sep 13 2023
From Elmo R. Oliveira, Jul 21 2025: (Start)
a(n) = A073551(n+1)/2 for n >= 1.
a(n) = A010785(A017233(n-1)) for n >= 1. (End)

A002281 a(n) = 7*(10^n - 1)/9.

Original entry on oeis.org

0, 7, 77, 777, 7777, 77777, 777777, 7777777, 77777777, 777777777, 7777777777, 77777777777, 777777777777, 7777777777777, 77777777777777, 777777777777777, 7777777777777777, 77777777777777777, 777777777777777777, 7777777777777777777, 77777777777777777777, 777777777777777777777
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A178634(n)/A002283(n). - Reinhard Zumkeller, May 31 2010
From Vincenzo Librandi, Jul 22 2010: (Start)
a(n) = a(n-1) + 7*10^(n-1) with n>0, a(0)=0.
a(n) = 11*a(n-1) - 10*a(n-2) with n>1, a(0)=0, a(1)=7. (End)
G.f.: 7*x/((x-1)*(10*x-1)). - Colin Barker, Jan 24 2013
a(n) = 7*A002275(n). - Wesley Ivan Hurt, Mar 24 2015
E.g.f.: 7*exp(x)*(exp(9*x) - 1)/9. - Stefano Spezia, Sep 13 2023
From Elmo R. Oliveira, Jul 20 2025: (Start)
a(n) = (A099915(n) - 1)/2.
a(n) = A010785(A017245(n-1)) for n >= 1. (End)

A002278 a(n) = 4*(10^n - 1)/9.

Original entry on oeis.org

0, 4, 44, 444, 4444, 44444, 444444, 4444444, 44444444, 444444444, 4444444444, 44444444444, 444444444444, 4444444444444, 44444444444444, 444444444444444, 4444444444444444, 44444444444444444, 444444444444444444, 4444444444444444444, 44444444444444444444, 444444444444444444444
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A075415(n)/A002283(n). - Reinhard Zumkeller, May 31 2010
From Vincenzo Librandi, Jul 22 2010: (Start)
a(n) = a(n-1) + 4*10^(n-1) with a(0)=0;
a(n) = 11*a(n-1) - 10*a(n-2) with a(0)=0, a(1)=4. (End)
G.f.: 4*x/((1 - x)*(1 - 10*x)). - Ilya Gutkovskiy, Feb 24 2017
E.g.f.: 4*exp(x)*(exp(9*x) - 1)/9. - Stefano Spezia, Sep 13 2023
a(n) = A007091(A024049(n)). - Michel Marcus, Jun 16 2024
From Elmo R. Oliveira, Jul 19 2025: (Start)
a(n) = 4*A002275(n).
a(n) = A010785(A017209(n-1)) for n >= 1. (End)

A093137 Expansion of (1-7*x)/((1-x)*(1-10*x)).

Original entry on oeis.org

1, 4, 34, 334, 3334, 33334, 333334, 3333334, 33333334, 333333334, 3333333334, 33333333334, 333333333334, 3333333333334, 33333333333334, 333333333333334, 3333333333333334, 33333333333333334, 333333333333333334, 3333333333333333334, 33333333333333333334
Offset: 0

Views

Author

Paul Barry, Mar 24 2004

Keywords

Comments

Second binomial transform of 3*A001045(3n)/3+(-1)^n. Partial sums of A093138. A convex combination of 10^n and 1. In general the second binomial transform of k*Jacobsthal(3n)/3+(-1)^n is 1,1+k,1+11k,1+111k,... This is the case for k=3.
a(n) is the number of n-length sequences of decimal digits whose sum is divisible by 3. - Geoffrey Critzer, Jan 18 2014
This sequence appears in a family of curious cubic identities based on the Armstrong number 407 = A005188(13). See the formula section. For the analog identities based on 153 = A005188(10) see a comment on A246057 with the van der Poorten et al. reference and A281857. For those based on 370 = A005188(11) see A067275, A002277 and A281858. - Wolfdieter Lang, Feb 08 2017

Examples

			a(1)^2 = 16
a(2)^2 = 1156
a(3)^2 = 111556
a(4)^2 = 11115556
a(5)^2 = 1111155556
a(6)^2 = 111111555556
a(7)^2 = 11111115555556
a(8)^2 = 1111111155555556
a(9)^2 = 111111111555555556, etc... (see A102807). - _Philippe Deléham_, Oct 03 2011
Curious cubic identities: 407 = 4^3 + 0^3 + 7^3, 340067 = 34^3 + (00)^3 + 67^3, 334000677 = 334^3 + (000)^3 + 677^3, ... - _Wolfdieter Lang_, Feb 08 2017
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See entry 3334 at p. 168.

Crossrefs

Programs

  • Mathematica
    nn=20; r=Solve[{s==4x s+3 x a+3x b+1,a==4x a+3x s+3x b,b==4x b+3x s+3x a},{s,a,b}]; CoefficientList[Series[s/.r,{x,0,nn}],x] (* Geoffrey Critzer, Jan 18 2014 *)
    Table[3*10^n/9 + 6/9, {n, 0, 20}] (* or *) NestList[10 # - 6 &, 1, 20] (* Michael De Vlieger, Feb 08 2017 *)
    LinearRecurrence[{11,-10},{1,4},20] (* Harvey P. Dale, Oct 07 2017 *)
  • PARI
    Vec((1-7*x)/((1-x)*(1-10*x)) + O (x^30)) \\ Michel Marcus, Feb 09 2017

Formula

a(n) = 3*10^n/9 + 6/9.
a(n) = 10*a(n-1)-6 with a(0)=1. - Vincenzo Librandi, Aug 02 2010
a(n)^3 + 0(n)^3 + A067275(n+1)^3 = concatenation(a(n), 0(n), A067275(n+1)) = A281859(n), where 0(n) denotes n 0's, n >= 1. - Wolfdieter Lang, Feb 08 2017
From Elmo R. Oliveira, Aug 17 2024: (Start)
E.g.f.: exp(x)*(exp(9*x) + 2)/3.
a(n) = 11*a(n-1) - 10*a(n-2) for n > 1. (End)

A093143 Expansion of (1-5*x)/(1-10*x).

Original entry on oeis.org

1, 5, 50, 500, 5000, 50000, 500000, 5000000, 50000000, 500000000, 5000000000, 50000000000, 500000000000, 5000000000000, 50000000000000, 500000000000000, 5000000000000000, 50000000000000000, 500000000000000000, 5000000000000000000, 50000000000000000000, 500000000000000000000
Offset: 0

Views

Author

Paul Barry, Mar 24 2004

Keywords

Comments

Partial sums are A093142. A convex combination of 10^n and 0^n.
a(n) is the number of compositions of even natural numbers in n parts <= 9 (0 is counted as a part); also the number of ways of placing of an even number of indistinguishable objects into n distinguishable boxes with the condition that at most 9 objects can be placed in each box. - Adi Dani, May 17 2011
See an A246057 comment with a reference for the k-family satisfying a so-called curious cubic identity involving A246057(k-1), a(k) and A002277(k). - Wolfdieter Lang, Feb 07 2017

Examples

			From _Adi Dani_, May 17 2011: (Start)
a(2)=50: there are 50 compositions of even numbers into 2 parts <= 9:
(0,0);
(0,2),(2,0),(1,1);
(0,4),(4,0),(1,3),(3,1),(2,2);
(0,6),(6,0),(1,5),(5,1),(2,4),(4,2),(3,3);
(0,8),(8,0),(1,7),(7,1),(2,6),(6,2),(3,5),(5,3),(4,4);
(1,9),(9,1),(2,8),(8,2),(3,7),(7,3),(4,6),(6,4),(5,5);
(3,9),(9,3),(4,8),(8,4),(5,7),(7,5),(6,6);
(5,9),(9,5),(6,8),(8,6),(7,7);
(7,9),(9,7),(8,8);
(9,9).
(End)
Curious cubic identities (see a comment above): 1^3 + 5^3 + 3^3 = 153, 16^3 + 50^3 + 33^3 = 165033, 166^3 + 500^3 + 333^3 = 166500333, ... - _Wolfdieter Lang_, Feb 07 2017
		

Crossrefs

Programs

  • Mathematica
    Table[Ceiling[1/2*10^n],{n,0,30}] (* Adi Dani, Jun 20 2011 *)
    Join[{1},NestList[10#&,5,20]] (* Harvey P. Dale, Apr 10 2021 *)
  • PARI
    Vec((1-5*x)/(1-10*x) + O(x^100)) \\ Altug Alkan, Nov 01 2015

Formula

a(n) = 5*10^n/10 for n > 0.
a(n) = Sum_{k=0..n} A134309(n,k)*5^k = Sum_{k=0..n} A055372(n,k)*4^k. - Philippe Deléham, Feb 04 2012
From Elmo R. Oliveira, Aug 21 2024: (Start)
E.g.f.: (exp(10*x) + 1)/2.
a(n) = 10*a(n-1) for n > 1. (End)

Extensions

a(19)-a(21) from Elmo R. Oliveira, Aug 21 2024

A256290 Numbers which have only digits 4 and 5 in base 10.

Original entry on oeis.org

4, 5, 44, 45, 54, 55, 444, 445, 454, 455, 544, 545, 554, 555, 4444, 4445, 4454, 4455, 4544, 4545, 4554, 4555, 5444, 5445, 5454, 5455, 5544, 5545, 5554, 5555, 44444, 44445, 44454, 44455, 44544, 44545, 44554, 44555, 45444, 45445, 45454, 45455, 45544
Offset: 1

Views

Author

M. F. Hasler, Mar 27 2015

Keywords

Crossrefs

Cf. A007088 (digits 0 & 1), A007931 (digits 1 & 2), A032810 (digits 2 & 3), A032834 (digits 3 & 4), A256291 (digits 5 & 6), A256292 (digits 6 & 7), A256340 (digits 7 & 8), A256341 (digits 8 & 9).

Programs

  • Magma
    [n: n in [1..60000] | Set(IntegerToSequence(n, 10)) subset {5, 4}];
    
  • Magma
    [n: n in [1..100000] | Set(Intseq(n)) subset {4,5}]; // Vincenzo Librandi, Aug 19 2016
    
  • Mathematica
    Flatten[Table[FromDigits[#,10]&/@Tuples[{4,5},n],{n,5}]]
  • PARI
    A256290(n)=vector(#n=binary(n+1)[2..-1],i,10^(#n-i))*n~+10^#n\9*4
    
  • Python
    def A256290(n): return int(bin(n+1)[3:])+(10**((n+1).bit_length()-1)-1<<2)//9 # Chai Wah Wu, Jul 15 2023

Formula

a(n) = A007931(n) + A002277(A000523(n+1)) = A032834(n) + A256077(n) etc.

A352154 Numbers m such that the decimal expansion of 1/m contains the digit 0, ignoring leading and trailing 0's.

Original entry on oeis.org

11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 34, 37, 38, 39, 41, 42, 43, 46, 47, 48, 49, 51, 52, 53, 57, 58, 59, 61, 62, 63, 67, 68, 69, 71, 73, 76, 77, 78, 79, 81, 83, 84, 85, 86, 87, 89, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114
Offset: 1

Views

Author

Keywords

Comments

Leading 0's are not considered, otherwise every integer >= 11 would be a term (see examples).
Trailing 0's are also not considered, otherwise numbers of the form 2^i*5^j with i, j >= 0, apart 1 (A003592) would be terms.
If k is a term, 10*k is also a term; so, terms with no trailing zeros are all primitive.
Some subsequences:
{11, 111, 1111, ...} = A002275 \ {0, 1}
{33, 333, 3333, ...} = A002277 \ {0, 3}.
{77, 777, 7777, ...} = A002281 \ {0, 7}
{11, 101, 1001, 10001, ...} = A000533 \ {1}.

Examples

			m = 13 is a term since 1/13 = 0.0769230769230769230... has a periodic part = '07692307' or '76923070' with a 0.
m = 14 is not a term since 1/14 = 0.0714285714285714285... has a periodic part = '714285' which has no 0 (the only 0 is a leading 0).
		

Crossrefs

Similar with smallest digit k: this sequence (k=0), A352155 (k=1), A352156 (k=2), A352157 (k=3), A352158 (k=4), A352159 (k=5), A352160 (k=6), A352153 (no known term for k=7), A352161 (k=8), no term (k=9).

Programs

  • Maple
    removeInitial0:= proc(L) local i;
      for i from 1 to nops(L) do if L[i] <> 0 then return L[i..-1] fi od;
      []
    end proc:
    filter:= proc(n) local q;
      q:= NumberTheory:-RepeatingDecimal(1/n);
      member(0, removeInitial0(NonRepeatingPart(q))) or member(0, RepeatingPart(q))
    end proc:
    select(filter, [$1..300]); # Robert Israel, Apr 26 2023
  • Mathematica
    f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[ Range@ 200, Min@ f@# == 0 &]

Formula

A352153(a(n)) = 0.

A067275 Number of Fibonacci numbers A000045(k), k <= 10^n, which end in 4.

Original entry on oeis.org

0, 1, 7, 67, 667, 6667, 66667, 666667, 6666667, 66666667, 666666667, 6666666667, 66666666667, 666666666667, 6666666666667, 66666666666667, 666666666666667, 6666666666666667, 66666666666666667, 666666666666666667, 6666666666666666667, 66666666666666666667, 666666666666666666667
Offset: 0

Views

Author

Joseph L. Pe, Feb 21 2002

Keywords

Comments

Numbers n such that the digits of A000326(n), the n-th pentagonal number, begin with n. [original definition of this sequence]
The sequence 1,7,67.... has a(n) = 6*10^n/9+3/9. It is the second binomial transform of 6*A001045(3n)/3 + (-1)^n. In general the second binomial transform of k*Jacobsthal(3n)/3+(-1)^n is k*10^n/9 + (1-k/9) = 1, 1+k, 1+11k, 1+111k, ... - Paul Barry, Mar 24 2004
Except for the first two terms, these are the 3-automorphic numbers ending in 7. - Eric M. Schmidt, Aug 28 2012
From Wolfdieter Lang, Feb 08 2017: (Start)
This sequence appears in curious identities based on the Armstrong numbers 370 = A005188(11), 371 = A005188(12) and 407 = A005188(13).
For such identities based on 153 = A005188(10) see a comment in A246057 with the van der Poorten et al. reference.
For 370 these identities are A002277(n)^3 + a(n+1)^3 + 0(n)^3 = A002277(n)*10^(2*n) + a(n+1)*10^n + 0(n) = A281858(n), where 0(n) means n 0's.
For 371 these identities are A002277(n)^3 + a(n+1)^3 + (0(n-1)1)^3 = A002277(n)*10^(2*n) + a(n+1)*10^n + 0(n-1)1 = A281860(n), where 0(n-1)1 means n-1 0's followed by a 1.
For 407 these identities are A093137(n)^3 + 0(n)^3 + a(n+1)^3 = concatenation(A093137(n), 0(n), a(n+1)) = A281859(n). (End)

Examples

			a(2) = 7 because 7 of the first 10^2 Fibonacci numbers end in 4.
From _Wolfdieter Lang_, Feb 08 2017: (Start)
Curious cubic identities:
3^3 + 7^3 + 0^3 = 370, 33^3 + 67^3 + (00)^3 = 336700, 333^3 + 667^3 + (000)^3 = 333667000, ...
3^3 + 7^3 + 1^3 = 371, 33^3 + 67^3 + (01)^3 = 336701, 333^3 + 667^3 + (001)^3 = 333667001, ...
4^3 + 0^3 + 7^3 = 407, 34^3 + (00)^3 + 67^3 = 340067 , 334^3 + (000)^3 + 677^3 = 334000677, ... (End)
		

Crossrefs

Programs

  • Mathematica
    s = Fibonacci@ Range[10^5]; Table[Count[Take[s, 10^n], m_ /; Mod[m, 10] == 4], {n, 0, Floor@ Log10@ Length@ s}] (* or *) Table[Boole[n > 0] Ceiling[10^n/15], {n, 0, 20}] (* or *) CoefficientList[Series[x (1 - 4 x)/((1 - x) (1 - 10 x)), {x, 0, 20}], x] (* Michael De Vlieger, Feb 08 2017 *)
  • PARI
    a(n)=(10^n+13)\15 \\ Charles R Greathouse IV, Jun 05 2011

Formula

a(n) = ceiling((2/30)*10^n) - Benoit Cloitre, Aug 27 2002
From Paul Barry, Mar 24 2004: (Start)
G.f.: x*(1 - 4*x)/((1 - x)*(1 - 10*x)).
a(n) = 10^n/15 + 1/3 for n>0. (End)
a(n) = 10*a(n-1) - 3 for n>1. - Vincenzo Librandi, Dec 07 2010 [Immediate consequence of the previous formula, R. J. Mathar]
From Eric M. Schmidt, Oct 28 2012: (Start)
For n>0, a(n) = A199682(n-1)/3 = (2*10^(n-1) + 1)/3.
For n>=2, a(n+1) = a(n) + 6*10^n. (End)
From Elmo R. Oliveira, Jul 22 2025: (Start)
E.g.f.: (-6 + 5*exp(x) + exp(10*x))/15.
a(n) = 11*a(n-1) - 10*a(n-2) for n >= 3.
a(n) = A073553(n)/2 for n >= 1. (End)

Extensions

A073552 merged into this sequence by Eric M. Schmidt, Oct 28 2012

A178631 a(n) = 27*((10^n - 1)/9)^2.

Original entry on oeis.org

27, 3267, 332667, 33326667, 3333266667, 333332666667, 33333326666667, 3333333266666667, 333333332666666667, 33333333326666666667, 3333333333266666666667, 333333333332666666666667, 33333333333326666666666667, 3333333333333266666666666667, 333333333333332666666666666667
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2010

Keywords

Examples

			n=1: ..................... 27 = 9 * 3;
n=2: ................... 3267 = 99 * 33;
n=3: ................. 332667 = 999 * 333;
n=4: ............... 33326667 = 9999 * 3333;
n=5: ............. 3333266667 = 99999 * 33333;
n=6: ........... 333332666667 = 999999 * 333333;
n=7: ......... 33333326666667 = 9999999 * 3333333;
n=8: ....... 3333333266666667 = 99999999 * 33333333;
n=9: ..... 333333332666666667 = 999999999 * 333333333.
		

Crossrefs

Programs

  • Magma
    [27*((10^n-1)/9)^2: n in [1..50]]; // Vincenzo Librandi, Dec 28 2010
    
  • Mathematica
    27*(FromDigits/@Table[PadRight[{},n,1],{n,20}])^2 (* or *) LinearRecurrence[ {111,-1110,1000},{27,3267,332667},20] (* Harvey P. Dale, Oct 11 2012 *)
  • Maxima
    A178631(n):=27*((10^n-1)/9)^2$ makelist(A178631(n),n,1,10); /* Martin Ettl, Nov 12 2012 */
    
  • PARI
    a(n)=27*(10^n\9)^2 \\ Charles R Greathouse IV, Jul 02 2013

Formula

a(n) = 27*A002477(n) = A002283(n)*A002277(n).
a(n) = ((A002277(n-1)*10 + 2)*10^(n-1) + A002280(n-1))*10 + 7.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>3, a(1)=27, a(2)=3267, a(3)=332667. - Harvey P. Dale, Oct 11 2012
G.f.: 27*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)). - Ilya Gutkovskiy, Feb 24 2017
E.g.f.: exp(x)*(1 - 2*exp(9*x) + exp(99*x))/3. - Elmo R. Oliveira, Aug 01 2025

A178633 a(n) = 54*((10^n - 1)/9)^2.

Original entry on oeis.org

54, 6534, 665334, 66653334, 6666533334, 666665333334, 66666653333334, 6666666533333334, 666666665333333334, 66666666653333333334, 6666666666533333333334, 666666666665333333333334, 66666666666653333333333334, 6666666666666533333333333334, 666666666666665333333333333334
Offset: 1

Views

Author

Reinhard Zumkeller, May 31 2010

Keywords

Examples

			n = 1:                   54 = 9 * 6;
n = 2:                 6534 = 99 * 66;
n = 3:               665334 = 999 * 666;
n = 4:             66653334 = 9999 * 6666;
n = 5:           6666533334 = 99999 * 66666;
n = 6:         666665333334 = 999999 * 666666;
n = 7:       66666653333334 = 9999999 * 6666666;
n = 8:     6666666533333334 = 99999999 * 66666666;
n = 9:   666666665333333334 = 999999999 * 666666666.
		

References

  • Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.

Crossrefs

Programs

Formula

a(n) = 54*A002477(n) = A002283(n)*A002280(n).
a(n) = ((A002280(n-1)*10 + 5)*10^(n-1) + A002277(n-1))*10 + 4 = (2/3)*(10^n - 1)^2.
From Colin Barker, Dec 07 2015: (Start)
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>3.
G.f.: 54*x*(1+10*x)/((1-x)*(1-10*x)*(1-100*x)). (End)
E.g.f.: 2*exp(x)*(1 - 2*exp(9*x) + exp(99*x))/3. - Elmo R. Oliveira, Aug 01 2025
Previous Showing 11-20 of 50 results. Next