cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 144 results. Next

A100194 Incrementally largest denominators of the Bernoulli numbers.

Original entry on oeis.org

1, 2, 6, 30, 42, 66, 2730, 14322, 1919190, 56786730, 140100870, 209191710, 2328255930, 2381714790, 7225713885390, 9538864545210, 21626561658972270, 446617991732222310, 115471236091149548610, 5145485882746933233510, 14493038256293268734790
Offset: 1

Views

Author

Eric W. Weisstein, Nov 08 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Reap[For[n = record = 0, n < 1000, n = n + 2, If[(d = Denominator[BernoulliB[n]]) > record, Sow[d]; record = d]]][[2, 1]] (* Jean-François Alcover, Nov 09 2012 *)
  • PARI
    b(n) = if((n==0) || (n>1 && n%2==1), 1, my(d=divisors(n)); prod(k=1, #d, if(isprime(d[k]+1), d[k]+1, 1))); \\ more efficient than denominator(bernfrac(n))
    lista(n) = { my(m=0); for(k=0, n, my(d=b(k)); if(d>m, m=d; print1(d, ", "))); }
    lista(1000); \\ Daniel Suteu, Dec 22 2018

Extensions

a(21) from Seiichi Manyama, Jan 21 2017

A100195 Numbers n such that the denominator of BernoulliB(n) is a record.

Original entry on oeis.org

0, 1, 2, 4, 6, 10, 12, 30, 36, 60, 72, 108, 120, 144, 180, 240, 360, 420, 540, 840, 1008, 1080, 1200, 1260, 1620, 1680, 2016, 2160, 2520, 3360, 3780, 5040, 6480, 7560, 8400, 10080, 12600, 15120, 25200, 30240, 42840, 45360, 55440, 60480, 75600, 85680, 100800
Offset: 1

Views

Author

Eric W. Weisstein, Nov 08 2004

Keywords

Crossrefs

Cf. A100194 (the corresponding Bernoulli denominators), A000367/A002445.

Programs

  • Mathematica
    DeleteDuplicates[Table[{n,Denominator[BernoulliB[n]]},{n,0,101000}],GreaterEqual[#1[[2]],#2[[2]]]&][[;;,1]] (* Harvey P. Dale, Jul 22 2025 *)
  • PARI
    b(n) = if((n==0) || (n>1 && n%2==1), 1, my(d=divisors(n)); prod(k=1, #d, if(isprime(d[k]+1), d[k]+1, 1))); \\ more efficient than denominator(bernfrac(n))
    lista(n) = { my(m=0); for(k=0, n, my(d=b(k)); if(d>m, m=d; print1(k, ", "))); }
    lista(100000); \\ Daniel Suteu, Dec 23 2018

Extensions

Corrected and extended by Daniel Suteu, Dec 23 2018

A106741 Numbers n such that n divides the denominator of 2n-th Bernoulli number.

Original entry on oeis.org

1, 2, 3, 6, 10, 21, 30, 42, 78, 110, 210, 330, 390, 546, 903, 930, 1218, 1806, 1830, 2310, 2530, 2730, 4134, 4290, 6090, 6162, 6510, 7590, 9030, 10230, 12090, 12246, 12810, 14910, 15834, 20130, 20670, 22110, 23478, 23790, 28938, 30030, 30810, 43134
Offset: 1

Views

Author

Benoit Cloitre, May 15 2005

Keywords

Comments

Numbers n such that the congruence k^(2n+1) == k (mod n) is true for 1<=k<=n. - Michel Lagneau, May 02 2012
In 2005, B. C. Kellner proved E. W. Weisstein's conjecture that denom(B_n) = n only if n = 1806. - Jonathan Sondow, Oct 14 2013.

Crossrefs

Programs

  • Maple
    for n from 1 to 10000 do:
        m:=2*n+1: i:=1:
        for k from 1 to n while(k &^ m mod n =k) do: i:=i+1: od:
        if i=n then print(n) fi:
    od: # Michel Lagneau, May 02 2012
    A106741_list := proc(searchlimit) local isA106741, i;
    isA106741 := proc(n)
      numtheory[divisors](2*n);
      map(i->i+1,%);
      select(isprime,%);
      mul(i,i=%) mod n = 0;
      if % then n else NULL fi end:
    seq(isA106741(i),i=1..searchlimit) end:
    A106741_list(30000); # Peter Luschny, May 04 2012
  • Mathematica
    okQ[n_] := AllTrue[Range[n], PowerMod[#, 2n+1, n] == Mod[#, n]&];
    Reap[For[n = 1, n < 50000, n++, If[okQ[n], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jun 11 2019, after Michel Lagneau *)
  • PARI
    is_A106741(n)=denominator(bernfrac(2*n))%n==0 \\ Charles R Greathouse IV, May 02 2012
    
  • PARI
    { for (n=1, 10^6, m = 2*n + 1; for (k=2, n, if ( Mod(k,n)^m != k,  next(2) ); ); print1(n,", "); ); } /* Joerg Arndt, May 04 2012 */
    
  • PARI
    is_A106741(n)={ my(m=2*n+1); for(k=2, n, Mod(k, n)^m - k & return); 1} /* more than twice faster (in PARI 2.4.2) than with "if(...)" */ \\ M. F. Hasler, May 06 2012

Extensions

Terms a(19)-a(29) from Michel Lagneau, May 02 2012
Terms >= 10230 by Joerg Arndt, May 04 2012

A110936 a(n) = denominator(Bernoulli(prime(n) - 1))/prime(n).

Original entry on oeis.org

1, 2, 6, 6, 6, 210, 30, 42, 6, 30, 462, 51870, 330, 42, 6, 30, 6, 930930, 966, 66, 1919190, 42, 6, 690, 46410, 330, 42, 6, 1919190, 14790, 34314, 66, 30, 1974, 30, 14322, 11430510, 798, 6, 30, 6, 39921071190, 66, 4501770, 870, 1229718, 43725066, 42, 6
Offset: 1

Views

Author

Vladeta Jovovic, Jan 21 2006

Keywords

Examples

			From _Peter Luschny_, Mar 30 2019: (Start)
n = 12 -> prime(12) - 1 = 37 - 1 = 36,
D = divisors(36) \ {36} = {1, 2, 3, 4, 6, 9, 12, 18},
P = {p: (p-1) in D, p prime} = {2, 3, 5, 7, 13, 19},
Product(P) = 51870 = a(n).
.
n = 18 -> prime(18) - 1 = 61 - 1 = 60,
D = divisors(60) \ {60} = {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30},
P = {p: (p-1) in D, p prime} = = {2, 3, 5, 7, 11, 13, 31},
Product(P) = 930930 = a(n).
(End)
		

Crossrefs

Programs

  • Maple
    a := proc(n) if not isprime(n+1) then return NULL fi;
    numtheory[divisors](n) minus {n};
    map(i->i+1, %); mul(i, i=select(isprime, %)) end:
    seq(a(n), n=1..226); # Peter Luschny, Mar 30 2019
  • Mathematica
    a[n_] := (p = Prime[n]; Denominator[ BernoulliB[p - 1]]/p); Table[a[n], {n, 1, 49}] (* Jean-François Alcover, Dec 13 2012 *)

Formula

6 divides a(n) for n >= 3. a(n) is squarefree. - Peter Luschny, Mar 30 2019

A120084 Numerators of expansion for Debye function for n=2: D(2,x).

Original entry on oeis.org

1, -1, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -691, 0, 1, 0, -3617, 0, 43867, 0, -174611, 0, 77683, 0, -236364091, 0, 657931, 0, -3392780147, 0, 1723168255201, 0, -7709321041217, 0, 151628697551, 0, -26315271553053477373, 0, 154210205991661, 0, -261082718496449122051
Offset: 0

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

Denominators are found under A120085.
This sequence appears to coincide with A120082.

Examples

			Rationals r(n): [1, -1/3, 1/24, 0, -1/2160, 0, 1/120960, 0, -1/6048000, 0, 1/287400960, ...].
		

Crossrefs

Programs

  • Magma
    [Numerator(2*(n+1)*Bernoulli(n)/Factorial(n+2)): n in [0..50]]; // G. C. Greubel, May 02 2023
    
  • Mathematica
    max = 38; Numerator[CoefficientList[Integrate[Normal[Series[(2*(t^2/(Exp[t]-1)))/x^2, {t, 0, max}]], {t, 0, x}], x]] (* Jean-François Alcover, Oct 04 2011 *)
    Table[Numerator[2*(n+1)*BernoulliB[n]/(n+2)!], {n,0,50}] (* G. C. Greubel, May 02 2023 *)
  • SageMath
    [numerator(2*(n+1)*bernoulli(n)/factorial(n+2)) for n in range(51)] # G. C. Greubel, May 02 2023

Formula

a(n) = numerator(r(n)), with r(n) = [x^n]( 1 - x/3 + Sum_{k >= 1} (B(2*k)/((k+1)*(2*k)!))*x^(2*k) ), |x|<2*Pi. B(2*k) = A000367(k)/A002445(k) (Bernoulli numbers).
a(n) = numerator(2*B(n)/((n+2)*n!)), n >= 0. See the comment on the e.g.f. D(2,x) in A120085. - Wolfdieter Lang, Dec 03 2022

A160327 Decimal expansion of (e-1)/(e+1).

Original entry on oeis.org

4, 6, 2, 1, 1, 7, 1, 5, 7, 2, 6, 0, 0, 0, 9, 7, 5, 8, 5, 0, 2, 3, 1, 8, 4, 8, 3, 6, 4, 3, 6, 7, 2, 5, 4, 8, 7, 3, 0, 2, 8, 9, 2, 8, 0, 3, 3, 0, 1, 1, 3, 0, 3, 8, 5, 5, 2, 7, 3, 1, 8, 1, 5, 8, 3, 8, 0, 8, 0, 9, 0, 6, 1, 4, 0, 4, 0, 9, 2, 7, 8, 7, 7, 4, 9, 4, 9, 0, 6, 4, 1, 5, 1, 9, 6, 2, 4, 9, 0, 5, 8, 4, 3, 4, 8
Offset: 0

Views

Author

Harry J. Smith, May 09 2009

Keywords

Examples

			0.462117157260009758502318483643672548730289280330113038552731815838080...
		

Crossrefs

Cf. A016825 (continued fraction), A086403/A079165 (convergents).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (Exp(1) - 1)/(Exp(1) + 1); // G. C. Greubel, Oct 05 2018
  • Mathematica
    RealDigits[(E-1)/(E+1), 10, 100][[1]] (* G. C. Greubel, Oct 05 2018 *)
  • PARI
    default(realprecision, 20080); x=tanh(1/2)*10; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b160327.txt", n, " ", d));
    
  • PARI
    (exp(1)-1)/(exp(1)+1) \\ Altug Alkan, Oct 05 2018
    

Formula

(e-1)/(e+1) = tanh(1/2).
Equals 2 * Sum_{k>=1} (2^(2*k)-1)*B(2*k)/(2*k)!, where B(2*k) = A000367(k)/A002445(k) are the Bernoulli numbers. - Amiram Eldar, Nov 25 2020
Equals -i * tan(i/2). - Michal Paulovic, Jan 03 2023

A202318 Let (n)_p denote the exponent of prime p in the prime power factorization of n. Then a(n) is defined by the formulas a(1)=1; for n >= 2, (a(n))_2 = (n)_2, (a(n))_3 = (n)_3 and, for p >= 5, (a(n))_p = 1 + ((2n)/(p-1))_p if p-1|2*n, and (a(n))_p = 0 otherwise.

Original entry on oeis.org

1, 10, 21, 20, 11, 2730, 1, 680, 1197, 550, 23, 5460, 1, 290, 7161, 1360, 1, 5757570, 1, 45100, 6321, 230, 47, 185640, 11, 530, 3591, 580, 59, 283933650, 1, 2720, 32361, 10, 781, 840605220, 1, 10, 1659, 1533400, 83, 23830170, 1, 40940, 408177, 470, 1, 36014160, 1, 277750, 2163, 1060, 107, 1882725390
Offset: 1

Views

Author

Keywords

Comments

a(n)=1 iff n has form 6n+-1 and, if d >= 5 is a divisor of n, then 2*d+1 is not prime. The places of 1's form sequence A045979.
If p is an odd prime and p^n is the side length of the odd leg of a primitive Pythagorean triangle (PPT) it constrains the other leg and hypotenuse to be (p^(2n)-1)/2 and (p^(2n)+1)/2 and the area to be (p^n-1)p^n(p^n+1)/4. Now consider the term (p^n-1)p^n(p^n+1): it must at least be divisible by 24 for all odd primes p because the area of a PPT is divisible by 6 (see A127922 for n=1). a(n) equals the common divisor of the term (p^n-1)p^n(p^n+1)/24 for all odd primes p. - Frank M Jackson, Dec 09 2017

Examples

			Let n=6. Since 2*6+1=13 is prime, the max p that should be considered is 13. We have
  (a(6))_2  = (a(6))_3 = 1,
  (a(6))_5  = (12/4)_5 + 1 = 1,
  (a(6))_7  = (12/6)_7 + 1 = 1,
  (a(6))_13 = (12/12)_13 + 1 = 1.
Thus a(6) = 2*3*5*7*13 = 2730.
		

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Exp[Re[Limit[Zeta[s] (Zeta[-1]^(s - 1) - Zeta[-(2*n - 1)]^(s - 1)), s -> 1]]]], {n, 1, 54}] (* Mats Granvik, Feb 05 2016 *)
    Table[(lst=Table[p=Prime[m+1]; (p^n-1)p^n(p^n+1), {m, 1, 10}]; GCD@@lst/24), {n, 1, 100}] (* Frank M Jackson, Dec 09 2017 *)
    a[n_] := Product[p^Sum[Floor[(n-1)/((p-1) p^k)], {k, 0, n}], {p, Prime[Range[n]]}]; Array[a[2#+1]/(24 a[2#-1]) &, 100] (* using Jean-François Alcover's program A053657 *)(* Frank M Jackson, Dec 16 2017 *)
  • PARI
    a(n) = {my(r = 1); forprime(p=2, 2*n+1, if (p<=3, r *= p^valuation(n, p), if (! (2*n % (p-1)), r *= p^(1+valuation((2*n)/(p-1), p))););); r;} \\ Michel Marcus, Feb 06 2016

Formula

a(n) = (1/24)*b(2n+1)/b(2n-1), where b(n) = A053657(n).
a(p) = A002445(p)/6, for prime p >= 5.
a(n) = numerator of e^(real(lim_{s -> 1} (zeta(s)*(zeta(-1)^(s-1) - zeta(-(2*n-1))^(s-1))))). - Mats Granvik, Feb 05 2016
a(n) = A036283(n)/6. - Hugo Pfoertner, Dec 18 2022

A300711 a(n) = A000367(n)/A001067(n).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13, 7, 5, 1, 17, 1, 19, 1, 1, 11, 23, 1, 25, 13, 1, 7, 29, 1, 31, 1, 11, 17, 35, 1, 37, 19, 13, 1, 41, 1, 43, 11, 5, 23, 47, 1, 49, 1, 17, 13, 53, 1, 5, 7, 19, 29, 59, 1, 61, 31, 1, 1, 65, 11, 67, 17, 23, 7, 71, 1, 73, 37
Offset: 1

Views

Author

Bernd C. Kellner, Mar 11 2018

Keywords

Comments

a(n) is the trivial factor of the numerator of Bernoulli(2n) that divides 2n.
The remaining part of the (unsigned) numerator equals a product of powers of irregular primes, or 1 if and only if n = 1, 2, 3, 4, 5, 7.
Alternatively, a(n) is the product over all prime powers p^e, where p^e is the highest power of p dividing 2n and p-1 does not divide 2n.

Examples

			a(5) = 5, since Bernoulli(10) = 5/66 and Bernoulli(10)/10 = 1/132.
		

Crossrefs

A111008 equals the first entries and slightly differs, see a(35).

Programs

  • Julia
    using Nemo
    function A300711(n)
        b = bernoulli(n)
        div(numerator(b), numerator(b*QQ(1,n)))
    end
    [A300711(n) for n in 2:2:148] |> println # Peter Luschny, Mar 11 2018
    
  • Maple
    A300711 := proc(n) local P, F, f, divides; divides := (a,b) -> is(irem(b,a) = 0):
    P := 1; F := ifactors(2*n)[2]; for f in F do if not divides(f[1]-1, 2*n) then
    P := P*f[1]^f[2] fi od; P end: seq(A300711(n), n=1..74); # Peter Luschny, Mar 12 2018
  • Mathematica
    Table[Numerator[BernoulliB[n]]/Numerator[BernoulliB[n]/n], {n, 2, 100, 2}]
  • PARI
    a(n) = gcd(numerator(bernfrac(2*n)), 2*n) \\ Jianing Song, Apr 05 2021
    
  • PARI
    upto(N)=bernvec(N);forstep(n=2,2*N,2,print1(gcd(numerator(bernfrac(n)), n),", ")) \\ Jeppe Stig Nielsen, Jun 22 2023

Formula

a(n) = numerator(Bernoulli(2n))/numerator(Bernoulli(2n)/(2n)).
a(n) * A195989(n) = n. - Peter Luschny, Mar 12 2018
From Jianing Song, Apr 05 2021: (Start)
a(n) = gcd(numerator(Bernoulli(2n)), 2n).
a(n) = A002445(n)*(2n)/A075180(2n-1). (End)

A120085 Denominators of expansion for Debye function for n=2: D(2,x).

Original entry on oeis.org

1, 3, 24, 1, 2160, 1, 120960, 1, 6048000, 1, 287400960, 1, 9153720576000, 1, 597793996800, 1, 96035605585920000, 1, 51090942171709440000, 1, 8831434289681203200000, 1, 169213200472701665280000, 1, 22019713777512667702886400000, 1, 2605883287279605645312000000
Offset: 0

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Comments

Numerators are found under A120084.
D(2,x) := (2/x^2)*Integral_{0..x} t^2/(exp(t)-1) dt is the e.g.f. of 2*B(n)/(n+2), n>=0, with the Bernoulli numbers B(n) = A027641(n)/A027642(n). Proof by using the e.g.f. for {k*B(k-1)} (with 0 for k=0) and integrating termwise (allowed for |x| <= r < rho with small enough rho).
See the Abramowitz-Stegun link for the integral and an expansion. - Wolfdieter Lang, Jul 16 2013

Examples

			Rationals r(n): [1, -1/3, 1/24, 0, -1/2160, 0, 1/120960, 0, -1/6048000, 0, 1/287400960,...].
		

Crossrefs

Cf. A000367/A002445, A027641/A027642, A120080/A120081 (D(3,x) expansion), A120082/A120083 (D(1,x) expansion), A120084, A120086, A120087.

Programs

  • Magma
    [Denominator(2*(n+1)*Bernoulli(n)/Factorial(n+2)): n in [0..50]]; // G. C. Greubel, May 02 2023
    
  • Mathematica
    max = 25; Denominator[CoefficientList[Integrate[Normal[Series[(2*(t^2/(Exp[t]-1)))/x^2, {t, 0, max}]], {t, 0, x}], x]](* Jean-François Alcover, Oct 04 2011 *)
    Table[Denominator[2*(n+1)*BernoulliB[n]/(n+2)!], {n,0,50}] (* G. C. Greubel, May 02 2023 *)
  • SageMath
    [denominator(2*(n+1)*bernoulli(n)/factorial(n+2)) for n in range(51)] # G. C. Greubel, May 02 2023

Formula

a(n) = denominator(r(n)), with r(n) = [x^n]( 1 - x/3 + Sum_{k >= 1} (B(2*k)/((k+1)*(2*k)!))*x^(2*k) ), |x|<2*pi. B(2*k) = A000367(k)/A002445(k) (Bernoulli numbers).
a(n) = denominator(2*B(n)/((n+2)*n!)), n >= 0. See the comment on the e.g.f. D(2,x) above. - Wolfdieter Lang, Jul 16 2013

A138704 Irregular array read by rows: row n contains the continued fraction terms (in order) for the absolute value of B_{2n}, the (2n)th Bernoulli number.

Original entry on oeis.org

1, 0, 6, 0, 30, 0, 42, 0, 30, 0, 13, 5, 0, 3, 1, 19, 3, 11, 1, 6, 7, 10, 1, 5, 1, 2, 2, 54, 1, 33, 1, 2, 3, 2, 529, 8, 20, 2, 6192, 8, 8, 2, 86580, 3, 1, 19, 3, 11, 1425517, 6, 27298231, 14, 1, 2, 1, 14, 601580873, 1, 9, 15, 2, 7, 6, 15116315767, 10, 1, 5, 1, 2, 2, 429614643061, 6
Offset: 0

Views

Author

Leroy Quet, Mar 26 2008

Keywords

Comments

The number of terms in row n is A138705(n).

Examples

			The 12th Bernoulli number is -691/2730. Now 691/2730 has the continued fraction 0 + 1/(3 + 1/(1 + 1/(19 + 1/(3 + 1/11)))). So row 6 is (0,3,1,19,3,11).
		

Crossrefs

Programs

  • Maple
    A138704row := proc(n) local B; B := abs(bernoulli(2*n)) ; numtheory[cfrac](B,20,'quotients') ; end: seq(op(A138704row(n)),n=0..20) ; # R. J. Mathar, Jul 20 2009
  • Mathematica
    Array[ContinuedFraction@ Abs@ BernoulliB[2 #] &, 18, 0] // Flatten (* Michael De Vlieger, Oct 18 2017 *)

Extensions

More terms from R. J. Mathar, Jul 20 2009
Previous Showing 61-70 of 144 results. Next