A188777
T(n,k) = Number of n-turn bishop's tours on a k X k board summed over all starting positions.
Original entry on oeis.org
1, 4, 0, 9, 4, 0, 16, 20, 0, 0, 25, 56, 28, 0, 0, 36, 120, 152, 24, 0, 0, 49, 220, 488, 328, 8, 0, 0, 64, 364, 1192, 1720, 584, 0, 0, 0, 81, 560, 2468, 5816, 5464, 840, 0, 0, 0, 100, 816, 4560, 15424, 26360, 15824, 784, 0, 0, 0, 121, 1140, 7760, 34736, 91120, 112680, 40496
Offset: 1
Some n=4 solutions for 4 X 4
..0..0..0..0....0..4..0..1....0..0..0..4....3..0..0..0....0..1..0..0
..0..3..0..0....0..0..3..0....0..0..0..0....0..2..0..0....4..0..2..0
..2..0..4..0....0..2..0..0....0..3..0..1....0..0..4..0....0..3..0..0
..0..1..0..0....0..0..0..0....0..0..2..0....0..0..0..1....0..0..0..0
A300192
Triangle read by rows: row n consists of the coefficients of the expansion of the polynomial (x^2 + 2*x + 1)^n + (x^2 - 1)*(x + 1)^n.
Original entry on oeis.org
0, 0, 1, 0, 1, 2, 1, 0, 2, 6, 6, 2, 0, 3, 13, 22, 18, 7, 1, 0, 4, 23, 56, 75, 60, 29, 8, 1, 0, 5, 36, 115, 215, 261, 215, 121, 45, 10, 1, 0, 6, 52, 206, 495, 806, 938, 798, 496, 220, 66, 12, 1, 0, 7, 71, 336, 987, 2016, 3031, 3452, 3010, 2003, 1001, 364, 91
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0: 0 0 1
1: 0 1 2 1
2: 0 2 6 6 2
3: 0 3 13 22 18 7 1
4: 0 4 23 56 75 60 29 8 1
5: 0 5 36 115 215 261 215 121 45 10 1
6: 0 6 52 206 495 806 938 798 496 220 66 12 1
7: 0 7 71 336 987 2016 3031 3452 3010 2003 1001 364 91 14 1
- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972.
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996.
- Paul Barry, On the Connection Coefficients of the Chebyshev-Boubaker polynomials, The Scientific World Journal, Volume 2013 (2013), Article ID 657806, 10 pages.
- Milan Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
- A. M. Mathai and P. N. Rathie, Enumeration of almost cubic maps, Journal of Combinatorial Theory, Series B, Vol 13 (1972), 83-90.
- Franck Ramaharo, A one-variable bracket polynomial for some Turk's head knots, arXiv:1807.05256 [math.CO], 2018.
- Franck Ramaharo, A bracket polynomial for 2-tangle shadows, arXiv:2002.06672 [math.CO], 2020.
-
T := (n, k) -> binomial(2*n, k) + binomial(n, k - 2) - binomial(n, k);
for n from 0 to 10 do seq(T(n, k), k = 0 .. max(2*n, n + 2)) od;
-
T(n, k) := binomial(2*n, k) + binomial(n, k - 2) - binomial(n, k)$
a : []$
for n:0 thru 10 do
a : append(a, makelist(T(n, k), k, 0, max(2*n, n + 2)))$
a;
-
row(n) = Vecrev((x^2 + 2*x + 1)^n + (x^2 - 1)*(x + 1)^n); \\ Michel Marcus, Nov 12 2022
A051895
Partial sums of second pentagonal numbers with even index (A049453).
Original entry on oeis.org
0, 7, 33, 90, 190, 345, 567, 868, 1260, 1755, 2365, 3102, 3978, 5005, 6195, 7560, 9112, 10863, 12825, 15010, 17430, 20097, 23023, 26220, 29700, 33475, 37557, 41958, 46690, 51765, 57195, 62992, 69168, 75735, 82705, 90090, 97902, 106153, 114855, 124020, 133660
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
-
I:=[0, 7, 33, 90]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Apr 27 2012
-
Table[(n(4n-1)(n-1))/2,{n,40}] (* Harvey P. Dale, Mar 11 2011 *)
CoefficientList[Series[x*(7+5*x)/(1-x)^4,{x,0,50}],x] (* Vincenzo Librandi, Apr 27 2012 *)
-
a(n) = n*(n+1)*(4*n+3)/2; \\ Altug Alkan, Apr 20 2018
A116955
a(n+1) = a(n) + (if a(n) is odd then (next odd square) else (next even square)), a(0) = 1.
Original entry on oeis.org
1, 10, 14, 30, 66, 130, 230, 374, 570, 826, 1150, 1550, 2034, 2610, 3286, 4070, 4970, 5994, 7150, 8446, 9890, 11490, 13254, 15190, 17306, 19610, 22110, 24814, 27730, 30866, 34230, 37830, 41674, 45770, 50126, 54750, 59650, 64834, 70310, 76086, 82170, 88570
Offset: 0
-
A116955:=n->2*(15+n-3*n^2+2*n^3)/3: 1,seq(A116955(n), n=1..60); # Wesley Ivan Hurt, Feb 12 2017
-
LinearRecurrence[{4,-6,4,-1},{1,10,14,30,66},50] (* Harvey P. Dale, Aug 21 2016 *)
A168574
a(n) = (4*n + 3)*(1 + 2*n^2)/3.
Original entry on oeis.org
1, 7, 33, 95, 209, 391, 657, 1023, 1505, 2119, 2881, 3807, 4913, 6215, 7729, 9471, 11457, 13703, 16225, 19039, 22161, 25607, 29393, 33535, 38049, 42951, 48257, 53983, 60145, 66759, 73841, 81407, 89473, 98055, 107169, 116831, 127057, 137863, 149265, 161279
Offset: 0
-
[(4*n+3)*(1+2*n^2)/3 : n in [0..40]]; // Vincenzo Librandi, Aug 06 2011
-
Table[ (4*n+3)*(1+2*n^2)/3 , {n,0,25}] (* G. C. Greubel, Jul 26 2016 *)
LinearRecurrence[{4,-6,4,-1},{1,7,33,95},40] (* Harvey P. Dale, May 16 2019 *)
-
a(n)=(4*n+3)*(1+2*n^2)/3 \\ Charles R Greathouse IV, Jul 26 2016
A249120
Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the numbers of A210843 multiplied by A000330(k), and the first element of column k is in row A000217(k).
Original entry on oeis.org
1, 4, 13, 5, 35, 20, 86, 65, 194, 175, 14, 415, 430, 56, 844, 970, 182, 1654, 2075, 490, 3133, 4220, 1204, 30, 5773, 8270, 2716, 120, 10372, 15665, 5810, 390, 18240, 28865, 11816, 1050, 31449, 51860, 23156, 2580, 53292, 91200, 43862, 5820, 55, 88873, 157245, 80822, 12450, 220, 146095, 266460, 145208, 25320, 715
Offset: 1
Triangle begins:
1;
4;
13, 5;
35, 20;
86, 65;
194, 175, 14;
415, 430, 56;
844, 970, 182;
1654, 2075, 490;
3133, 4220, 1204, 30;
5773, 8270, 2716, 120;
10372, 15665, 5810, 390;
18240, 28865, 11816, 1050;
31449, 51860, 23156, 2580;
53292, 91200, 43862, 5820, 55;
88873, 157245, 80822, 12450, 220;
146095, 266460, 145208, 25320, 715;
236977, 444365, 255360, 49620, 1925;
379746, 730475, 440286, 93990, 4730;
601656, 1184885, 746088, 173190, 10670;
943305, 1898730, 1244222, 311160, 22825, 91;
...
For n = 6 the sum of all divisors of all positive integers <= 6 is [1] + [1+2] + [1+3] + [1+2+4] + [1+5] + [1+2+3+6] = 1 + 3 + 4 + 7 + 6 + 12 = 33. On the other hand the 6th row of triangle is 194, 175, 14, so the alternating row sum is 194 - 175 + 14 = 33, equaling the sum of all divisors of all positive integers <= 6.
Cf.
A000203,
A000217,
A000330,
A002492,
A003056,
A024916,
A195825,
A196020,
A210843,
A211970,
A236104,
A252117.
Original entry on oeis.org
4, 20, 48, 104, 172, 292, 424, 616, 844, 1140, 1448, 1888, 2340, 2876, 3488, 4224, 4972, 5892, 6824, 7936, 9140, 10460, 11792, 13416, 15092, 16900, 18816, 20960, 23116, 25612, 28120, 30880, 33764, 36812, 39968, 43568, 47180, 50972, 54904, 59240, 63588, 68372, 73168, 78288, 83676, 89276, 94888, 101112
Offset: 1
Illustration of the top view of the pyramid with 16 levels and 4224 unit cubes:
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
. | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ |
. | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
. _ _| | _ _ _ _ _ _ _ _ _ _ _ _ _ _ | |_ _
. _| _ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _ |_
. _| _| _| | _ _ _ _ _ _ _ _ _ _ _ _ | |_ |_ |_
. | _| |_ _| |_ _ _ _ _ _ _ _ _ _ _ _| |_ _| |_ |
. _ _ _| | _ _| | _ _ _ _ _ _ _ _ _ _ | |_ _ | |_ _ _
. | _ _ _|_| | _| |_ _ _ _ _ _ _ _ _ _| |_ | |_|_ _ _ |
. | | | _ _ _| _|_ _| _ _ _ _ _ _ _ _ |_ _|_ |_ _ _ | | |
. | | | | | _ _ _| | _| |_ _ _ _ _ _ _ _| |_ | |_ _ _ | | | | |
. | | | | | | | _ _|_| _| _ _ _ _ _ _ |_ |_|_ _ | | | | | | |
. | | | | | | | | | _ _| |_ _ _ _ _ _| |_ _ | | | | | | | | |
. | | | | | | | | | | | _ _| _ _ _ _ |_ _ | | | | | | | | | | |
. | | | | | | | | | | | | | _|_ _ _ _|_ | | | | | | | | | | | | |
. | | | | | | | | | | | | | | | _ _ | | | | | | | | | | | | | | |
. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
. | | | | | | | | | | | | | | | |_ _| | | | | | | | | | | | | | | |
. | | | | | | | | | | | | | |_|_ _ _ _|_| | | | | | | | | | | | | |
. | | | | | | | | | | | |_|_ |_ _ _ _| _|_| | | | | | | | | | | |
. | | | | | | | | | |_|_ |_ _ _ _ _ _| _|_| | | | | | | | | |
. | | | | | | | |_|_ _ |_ |_ _ _ _ _ _| _| _ _|_| | | | | | | |
. | | | | | |_|_ _ | |_ |_ _ _ _ _ _ _ _| _| | _ _|_| | | | | |
. | | | |_|_ _ |_|_ _| |_ _ _ _ _ _ _ _| |_ _|_| _ _|_| | | |
. | |_|_ _ _ | |_ |_ _ _ _ _ _ _ _ _ _| _| | _ _ _|_| |
. |_ _ _ | |_|_ | |_ _ _ _ _ _ _ _ _ _| | _|_| | _ _ _|
. | |_ |_ _ |_ _ _ _ _ _ _ _ _ _ _ _| _ _| _| |
. |_ |_ |_ | |_ _ _ _ _ _ _ _ _ _ _ _| | _| _| _|
. |_ |_ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _| _|
. |_ _ | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| | _ _|
. | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
. | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
. |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
Note that the above diagram contains a hidden pattern, simpler, which emerges from the front view of every corner of the stepped pyramid. For more information about the hidden pattern see A237593 and A245092.
Cf.
A000203,
A002492,
A004125,
A072481,
A237593,
A239050,
A243980,
A244050,
A245092,
A294015,
A294017,
A294628.
-
List([1..50],n->Sum([1..n],m->Sum([1..m],k->8*(Sigma(k)-k+(1/2))))); # Muniru A Asiru, Mar 04 2018
-
with(numtheory): seq(sum(sum(8*(sigma(j)-j+(1/2)),j=1..k),k=1..n),n=1..50); # Muniru A Asiru, Mar 04 2018
-
f[n_] := 8 (DivisorSigma[1, n] - n) + 4; Accumulate@ Accumulate@ Array[f, 48] (* Robert G. Wilson v, Dec 12 2017 *)
-
from math import isqrt
def A294630(n): return ((((s:=isqrt(n))**2*(s+1)*((s+1)*((s<<1)+1)-6*(n+1))>>1) + sum((q:=n//k)*(-k*(q+1)*(3*k+(q<<1)+1)+3*(n+1)*((k<<1)+q+1)) for k in range(1, s+1))<<2)-(n*(n+1)*((n<<1)+1)<<1))//3 # Chai Wah Wu, Nov 01 2023
A294774
a(n) = 2*n^2 + 2*n + 5.
Original entry on oeis.org
5, 9, 17, 29, 45, 65, 89, 117, 149, 185, 225, 269, 317, 369, 425, 485, 549, 617, 689, 765, 845, 929, 1017, 1109, 1205, 1305, 1409, 1517, 1629, 1745, 1865, 1989, 2117, 2249, 2385, 2525, 2669, 2817, 2969, 3125, 3285, 3449, 3617, 3789, 3965, 4145, 4329, 4517, 4709, 4905
Offset: 0
Second column of Mathar's array in
A016813 (Comments section).
Similar sequences (see the first comment):
A161532 (k=-14),
A181510 (k=-13),
A152811 (k=-12),
A222182 (k=-11),
A271625 (k=-10),
A139570 (k=-9), (-1)*
A147973 (k=-8),
A059993 (k=-7),
A268581 (k=-6),
A090288 (k=-5),
A054000 (k=-4),
A142463 or
A132209 (k=-3),
A056220 (k=-2),
A046092 (k=-1),
A001105 (k=0),
A001844 (k=1),
A058331 (k=2),
A051890 (k=3),
A271624 (k=4),
A097080 (k=5),
A093328 (k=6),
A271649 (k=7),
A255843 (k=8), this sequence (k=9).
-
seq(2*n^2 + 2*n + 5, n=0..100); # Robert Israel, Nov 10 2017
-
Table[2n^2+2n+5,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{5,9,17},50] (* Harvey P. Dale, Sep 18 2023 *)
-
Vec((5 - 6*x + 5*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Nov 13 2017
A300758
a(n) = 2n*(n+1)*(2n+1).
Original entry on oeis.org
0, 12, 60, 168, 360, 660, 1092, 1680, 2448, 3420, 4620, 6072, 7800, 9828, 12180, 14880, 17952, 21420, 25308, 29640, 34440, 39732, 45540, 51888, 58800, 66300, 74412, 83160, 92568, 102660, 113460, 124992, 137280, 150348, 164220, 178920, 194472, 210900, 228228
Offset: 0
- S. P. Borgatti and M. G. Everett, Notions of Position in Social Network Analysis, Sociological Methodology, 22 (1992), 1-35.
- C. Purcell and P. Rombach, Role colouring graphs in hereditary classes, arXiv:1802.10180 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Cf.
A000330,
A002492,
A006331,
A055112,
A059270,
A005408,
A046092,
A001844,
A000384,
A016754,
A060300.
A181773
Molecular topological indices of the cocktail party graphs.
Original entry on oeis.org
0, 48, 240, 672, 1440, 2640, 4368, 6720, 9792, 13680, 18480, 24288, 31200, 39312, 48720, 59520, 71808, 85680, 101232, 118560, 137760, 158928, 182160, 207552, 235200, 265200, 297648, 332640, 370272, 410640
Offset: 1
Cf.
A280059 (2 X 2 matrices, elements can be repeated).
Comments