cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 36 results. Next

A188777 T(n,k) = Number of n-turn bishop's tours on a k X k board summed over all starting positions.

Original entry on oeis.org

1, 4, 0, 9, 4, 0, 16, 20, 0, 0, 25, 56, 28, 0, 0, 36, 120, 152, 24, 0, 0, 49, 220, 488, 328, 8, 0, 0, 64, 364, 1192, 1720, 584, 0, 0, 0, 81, 560, 2468, 5816, 5464, 840, 0, 0, 0, 100, 816, 4560, 15424, 26360, 15824, 784, 0, 0, 0, 121, 1140, 7760, 34736, 91120, 112680, 40496
Offset: 1

Views

Author

R. H. Hardin, Apr 10 2011

Keywords

Comments

Table starts
.1.4..9..16.....25......36.......49.......64.......81......100.....121....144
.0.4.20..56....120.....220......364......560......816.....1140....1540...2024
.0.0.28.152....488....1192.....2468.....4560.....7760....12400...18860..27560
.0.0.24.328...1720....5816....15424....34736....69776...128528..221448.361528
.0.0..8.584...5464...26360....91120...252720...603696..1288592.2525400
.0.0..0.840..15824..112680...516160..1778608..5082912.12622640
.0.0..0.784..40496..451104..2803552.12139552.41792672
.0.0..0.384..88264.1665344.14497784.80088992
.0.0..0...0.159704.5607456
.0.0..0...0.229296

Examples

			Some n=4 solutions for 4 X 4
..0..0..0..0....0..4..0..1....0..0..0..4....3..0..0..0....0..1..0..0
..0..3..0..0....0..0..3..0....0..0..0..0....0..2..0..0....4..0..2..0
..2..0..4..0....0..2..0..0....0..3..0..1....0..0..4..0....0..3..0..0
..0..1..0..0....0..0..0..0....0..0..2..0....0..0..0..1....0..0..0..0
		

Crossrefs

Row 2 is A002492(n-1).

Formula

Empirical: T(1,k) = k^2.
Empirical: T(2,k) = (4/3)*k^3 - 2*k^2 + (2/3)*k.
Empirical: T(3,k) = 4*T(3,k-1)-5*T(3,k-2)+5*T(3,k-4)-4*T(3,k-5)+T(3,k-6).
Empirical: T(4,k) = 4*T(4,k-1)-4*T(4,k-2)-4*T(4,k-3)+10*T(4,k-4)-4*T(4,k-5)-4*T(4,k-6)+4*T(4,k-7)-T(4,k-8).
Empirical: T(5,k) = 4*T(5,k-1)-3*T(5,k-2)-8*T(5,k-3)+14*T(5,k-4)-14*T(5,k-6)+8*T(5,k-7)+3*T(5,k-8)-4*T(5,k-9)+T(5,k-10).
Empirical: T(6,k) = 4*T(6,k-1)-2*T(6,k-2)-12*T(6,k-3)+17*T(6,k-4)+8*T(6,k-5)-28*T(6,k-6)+8*T(6,k-7)+17*T(6,k-8)-12*T(6,k-9)-2*T(6,k-10)+4*T(6,k-11)-T(6,k-12).

A300192 Triangle read by rows: row n consists of the coefficients of the expansion of the polynomial (x^2 + 2*x + 1)^n + (x^2 - 1)*(x + 1)^n.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 1, 0, 2, 6, 6, 2, 0, 3, 13, 22, 18, 7, 1, 0, 4, 23, 56, 75, 60, 29, 8, 1, 0, 5, 36, 115, 215, 261, 215, 121, 45, 10, 1, 0, 6, 52, 206, 495, 806, 938, 798, 496, 220, 66, 12, 1, 0, 7, 71, 336, 987, 2016, 3031, 3452, 3010, 2003, 1001, 364, 91
Offset: 0

Views

Author

Keywords

Examples

			The triangle T(n, k) begins:
n\k  0  1   2    3    4     5     6     7     8     9    10   11  12  13 14
0:   0  0   1
1:   0  1   2    1
2:   0  2   6    6    2
3:   0  3  13   22   18     7     1
4:   0  4  23   56   75    60    29     8     1
5:   0  5  36  115  215   261   215   121    45    10     1
6:   0  6  52  206  495   806   938   798   496   220    66   12   1
7:   0  7  71  336  987  2016  3031  3452  3010  2003  1001  364  91  14  1
		

References

  • M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972.
  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996.

Crossrefs

Row sums: A000302 (powers of 4).

Programs

  • Maple
    T := (n, k) -> binomial(2*n, k) + binomial(n, k - 2) - binomial(n, k);
    for n from 0 to 10 do seq(T(n, k), k = 0 .. max(2*n, n + 2)) od;
  • Maxima
    T(n, k) := binomial(2*n, k) + binomial(n, k - 2) - binomial(n, k)$
    a : []$
    for n:0 thru 10 do
      a : append(a, makelist(T(n, k), k, 0, max(2*n, n + 2)))$
    a;
    
  • PARI
    row(n) = Vecrev((x^2 + 2*x + 1)^n + (x^2 - 1)*(x + 1)^n); \\ Michel Marcus, Nov 12 2022

Formula

T(n,k) = binomial(2*n,k) + binomial(n,k-2) - binomial(n,k).
T(n,k) = T(n-1,k-1)+ T(n-1,k) + A034871(n-1,k-1), with T(n,0) = T(0,1) = 0 and T(0,2) = 1
T(n,1) = A001477(n).
T(n,2) = A143689(n).
T(n,3) = n + A002492(n-1) - A000292(n-2).
T(n,n) = A247493(n+1,n).
T(n,n+1) = n + A001791(n).
T(n,n+2) = 1 + A002694(n), n >= 2.
T(n,n+k) = binomial(2*n, n-k) = A094527(n,k), for k >= 3 and n>=k.
G.f.: 1/(1 - y*(x^2 + 2*x + 1)) + (x^2 - 1)/(1 - y*(x + 1)).

A051895 Partial sums of second pentagonal numbers with even index (A049453).

Original entry on oeis.org

0, 7, 33, 90, 190, 345, 567, 868, 1260, 1755, 2365, 3102, 3978, 5005, 6195, 7560, 9112, 10863, 12825, 15010, 17430, 20097, 23023, 26220, 29700, 33475, 37557, 41958, 46690, 51765, 57195, 62992, 69168, 75735, 82705, 90090, 97902, 106153, 114855, 124020, 133660
Offset: 0

Views

Author

Barry E. Williams, Dec 17 1999

Keywords

Comments

For A049453(n+1), the corresponding formula would be a(n)=(n+1)*(6*n+7) and its partial sums would be given by a(n)=(n+1)*(n+2)*(4*n+7)/2.

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Programs

  • Magma
    I:=[0, 7, 33, 90]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Apr 27 2012
    
  • Mathematica
    Table[(n(4n-1)(n-1))/2,{n,40}]  (* Harvey P. Dale, Mar 11 2011 *)
    CoefficientList[Series[x*(7+5*x)/(1-x)^4,{x,0,50}],x] (* Vincenzo Librandi, Apr 27 2012 *)
  • PARI
    a(n) = n*(n+1)*(4*n+3)/2; \\ Altug Alkan, Apr 20 2018

Formula

a(n) = n*(n+1)*(4*n+3)/2.
G.f.: x*(7+5*x)/(1-x)^4. - Colin Barker, Jan 12 2012
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Vincenzo Librandi, Apr 27 2012
a(n) = A002492(n) + A016061(n). - J. M. Bergot, Apr 20 2018

A116955 a(n+1) = a(n) + (if a(n) is odd then (next odd square) else (next even square)), a(0) = 1.

Original entry on oeis.org

1, 10, 14, 30, 66, 130, 230, 374, 570, 826, 1150, 1550, 2034, 2610, 3286, 4070, 4970, 5994, 7150, 8446, 9890, 11490, 13254, 15190, 17306, 19610, 22110, 24814, 27730, 30866, 34230, 37830, 41674, 45770, 50126, 54750, 59650, 64834, 70310, 76086, 82170, 88570
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 15 2006

Keywords

Crossrefs

Cf. A002492.

Programs

Formula

a(n+1) = A002492(n) + 10.
a(n) = 2*(15+n-3*n^2+2*n^3)/3 for n>0. G.f.: -(9*x^4-30*x^3+20*x^2-6*x-1) / (x-1)^4. - Colin Barker, Jul 18 2013

Extensions

More terms from Colin Barker, Jul 18 2013

A168574 a(n) = (4*n + 3)*(1 + 2*n^2)/3.

Original entry on oeis.org

1, 7, 33, 95, 209, 391, 657, 1023, 1505, 2119, 2881, 3807, 4913, 6215, 7729, 9471, 11457, 13703, 16225, 19039, 22161, 25607, 29393, 33535, 38049, 42951, 48257, 53983, 60145, 66759, 73841, 81407, 89473, 98055, 107169, 116831, 127057, 137863, 149265, 161279
Offset: 0

Views

Author

Paul Curtz, Nov 30 2009

Keywords

Comments

Binomial transform of quasi-finite sequence 1, 6, 20, 16, 0, 0, ... (0 continued).
a(n+1) is the sum of the first and last number at the bottom (2nd row) of each block in A172002, 3+4, 13+20, 39+56, ...

Crossrefs

Programs

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 16.
a(n) = A168582(2*n+1) .
a(n+1) = A166911(n) + A002492(n+1).
G.f.: (1 + 3*x + 11*x^2 + x^3)/(1 - x)^4.
E.g.f.: (1/3)*(3 + 18*x + 30*x^2 + 8*x^3)*exp(x). - G. C. Greubel, Jul 26 2016

Extensions

Edited and extended by R. J. Mathar, Mar 25 2010

A249120 Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the numbers of A210843 multiplied by A000330(k), and the first element of column k is in row A000217(k).

Original entry on oeis.org

1, 4, 13, 5, 35, 20, 86, 65, 194, 175, 14, 415, 430, 56, 844, 970, 182, 1654, 2075, 490, 3133, 4220, 1204, 30, 5773, 8270, 2716, 120, 10372, 15665, 5810, 390, 18240, 28865, 11816, 1050, 31449, 51860, 23156, 2580, 53292, 91200, 43862, 5820, 55, 88873, 157245, 80822, 12450, 220, 146095, 266460, 145208, 25320, 715
Offset: 1

Views

Author

Omar E. Pol, Dec 14 2014

Keywords

Comments

Conjecture: gives an identity for the sum of all divisors of all positive integers <= n. Alternating sum of row n equals A024916(n), i.e., Sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k) = A024916(n).
Row n has length A003056(n) hence the first element of column k is in row A000217(k).
Column 1 is A210843.
Column k lists the partial sums of the k-th column of triangle A252117 which gives an identity for sigma.
The first element of column k is A000330(k).
The second element of column k is A002492(k).

Examples

			Triangle begins:
       1;
       4;
      13,       5;
      35,      20;
      86,      65;
     194,     175,      14;
     415,     430,      56;
     844,     970,     182;
    1654,    2075,     490;
    3133,    4220,    1204,     30;
    5773,    8270,    2716,    120;
   10372,   15665,    5810,    390;
   18240,   28865,   11816,   1050;
   31449,   51860,   23156,   2580;
   53292,   91200,   43862,   5820,    55;
   88873,  157245,   80822,  12450,   220;
  146095,  266460,  145208,  25320,   715;
  236977,  444365,  255360,  49620,  1925;
  379746,  730475,  440286,  93990,  4730;
  601656, 1184885,  746088, 173190, 10670;
  943305, 1898730, 1244222, 311160, 22825,   91;
  ...
For n = 6 the sum of all divisors of all positive integers <= 6 is [1] + [1+2] + [1+3] + [1+2+4] + [1+5] + [1+2+3+6] = 1 + 3 + 4 + 7 + 6 + 12 = 33. On the other hand the 6th row of triangle is 194, 175, 14, so the alternating row sum is 194 - 175 + 14 = 33, equaling the sum of all divisors of all positive integers <= 6.
		

Crossrefs

A294630 Partial sums of A294629.

Original entry on oeis.org

4, 20, 48, 104, 172, 292, 424, 616, 844, 1140, 1448, 1888, 2340, 2876, 3488, 4224, 4972, 5892, 6824, 7936, 9140, 10460, 11792, 13416, 15092, 16900, 18816, 20960, 23116, 25612, 28120, 30880, 33764, 36812, 39968, 43568, 47180, 50972, 54904, 59240, 63588, 68372, 73168, 78288, 83676, 89276, 94888, 101112
Offset: 1

Views

Author

Omar E. Pol, Nov 05 2017

Keywords

Comments

a(n) is also the volume of a stepped pyramid with n levels which is another version of the stepped pyramid described in A244050. Both pyramids have the same top view and the same front view, that is to say externally both pyramids are equal, but this pyramid with n levels contains a central chamber whose volume is 4*A072481(n). For more information about the central chamber see the diagrams in A294629.
a(n) is the number of unit cubes of the pyramid with n levels.

Examples

			Illustration of the top view of the pyramid with 16 levels and 4224 unit cubes:
.                 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
.                |  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  |
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.             _ _| |  _ _ _ _ _ _ _ _ _ _ _ _ _ _  | |_ _
.           _|  _ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _  |_
.         _|  _|  _| |  _ _ _ _ _ _ _ _ _ _ _ _  | |_  |_  |_
.        |  _|   |_ _| |_ _ _ _ _ _ _ _ _ _ _ _| |_ _|   |_  |
.   _ _ _| |  _ _|     |  _ _ _ _ _ _ _ _ _ _  |     |_ _  | |_ _ _
.  |  _ _ _|_| |      _| |_ _ _ _ _ _ _ _ _ _| |_      | |_|_ _ _  |
.  | | |  _ _ _|    _|_ _|  _ _ _ _ _ _ _ _  |_ _|_    |_ _ _  | | |
.  | | | | |  _ _ _| |  _| |_ _ _ _ _ _ _ _| |_  | |_ _ _  | | | | |
.  | | | | | | |  _ _|_|  _|  _ _ _ _ _ _  |_  |_|_ _  | | | | | | |
.  | | | | | | | | |  _ _|   |_ _ _ _ _ _|   |_ _  | | | | | | | | |
.  | | | | | | | | | | |  _ _|  _ _ _ _  |_ _  | | | | | | | | | | |
.  | | | | | | | | | | | | |  _|_ _ _ _|_  | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | |  _ _  | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | | |   | | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | | | |_ _| | | | | | | | | | | | | | | |
.  | | | | | | | | | | | | | |_|_ _ _ _|_| | | | | | | | | | | | | |
.  | | | | | | | | | | | |_|_  |_ _ _ _|  _|_| | | | | | | | | | | |
.  | | | | | | | | | |_|_    |_ _ _ _ _ _|    _|_| | | | | | | | | |
.  | | | | | | | |_|_ _  |_  |_ _ _ _ _ _|  _|  _ _|_| | | | | | | |
.  | | | | | |_|_ _  | |_  |_ _ _ _ _ _ _ _|  _| |  _ _|_| | | | | |
.  | | | |_|_ _    |_|_ _| |_ _ _ _ _ _ _ _| |_ _|_|    _ _|_| | | |
.  | |_|_ _ _  |     |_  |_ _ _ _ _ _ _ _ _ _|  _|     |  _ _ _|_| |
.  |_ _ _  | |_|_      | |_ _ _ _ _ _ _ _ _ _| |      _|_| |  _ _ _|
.        | |_    |_ _  |_ _ _ _ _ _ _ _ _ _ _ _|  _ _|    _| |
.        |_  |_  |_  | |_ _ _ _ _ _ _ _ _ _ _ _| |  _|  _|  _|
.          |_  |_ _| |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |_ _|  _|
.            |_ _  | |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |  _ _|
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.                | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
.                |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
Note that the above diagram contains a hidden pattern, simpler, which emerges from the front view of every corner of the stepped pyramid. For more information about the hidden pattern see A237593 and A245092.
		

Crossrefs

Programs

  • GAP
    List([1..50],n->Sum([1..n],m->Sum([1..m],k->8*(Sigma(k)-k+(1/2))))); # Muniru A Asiru, Mar 04 2018
    
  • Maple
    with(numtheory): seq(sum(sum(8*(sigma(j)-j+(1/2)),j=1..k),k=1..n),n=1..50); # Muniru A Asiru, Mar 04 2018
  • Mathematica
    f[n_] := 8 (DivisorSigma[1, n] - n) + 4; Accumulate@ Accumulate@ Array[f, 48] (* Robert G. Wilson v, Dec 12 2017 *)
  • Python
    from math import isqrt
    def A294630(n): return ((((s:=isqrt(n))**2*(s+1)*((s+1)*((s<<1)+1)-6*(n+1))>>1) + sum((q:=n//k)*(-k*(q+1)*(3*k+(q<<1)+1)+3*(n+1)*((k<<1)+q+1)) for k in range(1, s+1))<<2)-(n*(n+1)*((n<<1)+1)<<1))//3 # Chai Wah Wu, Nov 01 2023

Formula

a(n) = 4*A294017(n).
a(n) = A002492(n) - 8*A072481(n).
a(n) = A244050(n) - 4*A072481(n).

A294774 a(n) = 2*n^2 + 2*n + 5.

Original entry on oeis.org

5, 9, 17, 29, 45, 65, 89, 117, 149, 185, 225, 269, 317, 369, 425, 485, 549, 617, 689, 765, 845, 929, 1017, 1109, 1205, 1305, 1409, 1517, 1629, 1745, 1865, 1989, 2117, 2249, 2385, 2525, 2669, 2817, 2969, 3125, 3285, 3449, 3617, 3789, 3965, 4145, 4329, 4517, 4709, 4905
Offset: 0

Views

Author

Bruno Berselli, Nov 08 2017

Keywords

Comments

This is the case k = 9 of 2*n^2 + (1-(-1)^k)*n + (2*k-(-1)^k+1)/4 (similar sequences are listed in Crossrefs section). Note that:
2*( 2*n^2 + (1-(-1)^k)*n + (2*k-(-1)^k+1)/4 ) - k = ( 2*n + (1-(-1)^k)/2 )^2. From this follows an alternative definition for the sequence: Numbers h such that 2*h - 9 is a square. Therefore, if a(n) is a square then its base is a term of A075841.

Crossrefs

1st diagonal of A154631, 3rd diagonal of A055096, 4th diagonal of A070216.
Second column of Mathar's array in A016813 (Comments section).
Subsequence of A001481, A001983, A004766, A020668, A046711 and A057653 (because a(n) = (n+2)^2 + (n-1)^2); A097268 (because it is also a(n) = (n^2+n+3)^2 - (n^2+n+2)^2); A047270; A243182 (for y=1).
Similar sequences (see the first comment): A161532 (k=-14), A181510 (k=-13), A152811 (k=-12), A222182 (k=-11), A271625 (k=-10), A139570 (k=-9), (-1)*A147973 (k=-8), A059993 (k=-7), A268581 (k=-6), A090288 (k=-5), A054000 (k=-4), A142463 or A132209 (k=-3), A056220 (k=-2), A046092 (k=-1), A001105 (k=0), A001844 (k=1), A058331 (k=2), A051890 (k=3), A271624 (k=4), A097080 (k=5), A093328 (k=6), A271649 (k=7), A255843 (k=8), this sequence (k=9).

Programs

  • Maple
    seq(2*n^2 + 2*n + 5, n=0..100); # Robert Israel, Nov 10 2017
  • Mathematica
    Table[2n^2+2n+5,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{5,9,17},50] (* Harvey P. Dale, Sep 18 2023 *)
  • PARI
    Vec((5 - 6*x + 5*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Nov 13 2017

Formula

O.g.f.: (5 - 6*x + 5*x^2)/(1 - x)^3.
E.g.f.: (5 + 4*x + 2*x^2)*exp(x).
a(n) = a(-1-n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 5*A000217(n+1) - 6*A000217(n) + 5*A000217(n-1).
n*a(n) - Sum_{j=0..n-1} a(j) = A002492(n) for n>0.
a(n) = Integral_{x=0..2n+4} |3-x| dx. - Pedro Caceres, Dec 29 2020

A300758 a(n) = 2n*(n+1)*(2n+1).

Original entry on oeis.org

0, 12, 60, 168, 360, 660, 1092, 1680, 2448, 3420, 4620, 6072, 7800, 9828, 12180, 14880, 17952, 21420, 25308, 29640, 34440, 39732, 45540, 51888, 58800, 66300, 74412, 83160, 92568, 102660, 113460, 124992, 137280, 150348, 164220, 178920, 194472, 210900, 228228
Offset: 0

Views

Author

Christopher Purcell, Mar 12 2018

Keywords

Comments

The altitude h(n) = a(n)/A001844(n) of the (A005408(n), A046092(n) and A001844(n)) rectangular triangle is an irreducible fraction. - Ralf Steiner, Feb 25 2020
In this case, area A = a(n)/2 = A055112(n). - Bernard Schott, Feb 27 2020

Crossrefs

Formula

a(n) = 12*A000330(n).
G.f.: 12*x*(1+x)/(1-x)^4. - Colin Barker, Mar 12 2018
a(n) = 6*A006331(n) = 4*A059270(n) = 3*A002492(n) = 2*A055112(n). - Omar E. Pol, Apr 04 2018
From Ralf Steiner, Feb 27 2020: (Start)
a(n) = 2*n*A000384(n+1).
a(n) = sqrt(A016754(n)*A060300(n)).
(End)
a(n) = A005408(n) * A046092(n). - Bruce J. Nicholson, Apr 24 2020

Extensions

Edited by N. J. A. Sloane, Aug 01 2019

A181773 Molecular topological indices of the cocktail party graphs.

Original entry on oeis.org

0, 48, 240, 672, 1440, 2640, 4368, 6720, 9792, 13680, 18480, 24288, 31200, 39312, 48720, 59520, 71808, 85680, 101232, 118560, 137760, 158928, 182160, 207552, 235200, 265200, 297648, 332640, 370272, 410640
Offset: 1

Views

Author

Eric W. Weisstein, Jul 10 2011

Keywords

Comments

a(n) is the number of 2 X 2 matrices (all four elements distinct) having entries in {-n,...,0,...,n} with determinant equal to the permanent. - Indranil Ghosh, Dec 25 2016

Crossrefs

Cf. A280059 (2 X 2 matrices, elements can be repeated).

Programs

Formula

a(n) = 8*(n-1)*n*(2n-1).
a(n) = 16*A059270(n-1).
G.f.: 48*x^2*(x+1)/(x-1)^4. - Colin Barker, Oct 17 2012
a(n) = 48*A000330(n-1). - R. J. Mathar, Jan 04 2017
From Omar E. Pol, Jan 05 2017: (Start)
a(n) = 24*A006331(n-1) = 12*A002492(n-1) = 8*A055112(n-1).
a(n) = 2*A069074(n-2), n >= 2. (End)
Previous Showing 21-30 of 36 results. Next