cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A110039 Number of 3-regular labeled graphs on 2n vertices with no multiple edges, but loops are allowed. (3-regular = trivalent and a loop incident on a vertex counts as two edges.)

Original entry on oeis.org

1, 1, 8, 730, 188790, 102737670, 102172297920, 167870491048260, 423971126389110300, 1559445481095305703900, 8010574937878696134151200, 55572909620219147733302926200, 506607333530572584517841616582600, 5931728848766374810152582924943605000
Offset: 0

Views

Author

Marni Mishna, Jul 08 2005

Keywords

Comments

Also the same as n X n symmetric matrices with {0,2}-entries on the diagonal and entries from {0,1} elsewhere, with row sum equal to 3.

Examples

			a(1)=1: {(1,1), (1,2), (2,2)}
		

References

  • Goulden, I. P.; Jackson, D. M. Labelled graphs with small vertex degrees and $P$-recursiveness. SIAM J. Algebraic Discrete Methods 7(1986), no. 1, 60--66. MR0819706 (87k:05093)

Crossrefs

Programs

  • Mathematica
    max = 30; f[x_] := Sum[a[n]*(x^n/n!), {n, 0, max}]; a[0] = 1; a[1] = 1; coef = CoefficientList[ 9*x^3*(x^4 - 2)*f''[x] + 3*(x^10 - 2*x^8 - 5*x^6 - 18*x^2 + 8)*f'[x] - x*(x^4 - 4*x^2 + 2)*(x^6 - 2*x^2 + 12)*f[x], x]; Table[a[n], {n, 0, max, 2}]/. Solve[Thread[coef[[2 ;; max]] == 0]][[1]] (* Vaclav Kotesovec, Sep 15 2014 *)

Formula

Differential equation satisfied by the e.g.f. F(t) = sum_n a(n)/2n! t^n: {F(0) = 1, (-t^5+4*t^4+52*t-20*t^2-24)*F(t) + (-144*t+48-12*t^3-12*t^4+6*t^5)*(d/dt)F(t) + (36*t^4-72*t^2)*(d^2/dt^2)F(t)}.
Recurrence: {(123200*n^9 + 30135960*n + 8448*n^10 + 256*n^11 + 105258076*n^3 + 4989600 + 53358140*n^5 + 75458988*n^2 + 91991460*n^4 + 21100464*n^6 + 5718768*n^7 + 1045440*n^8)*a(n) + (-24948000 - 12736*n^9 - 90804600*n - 384*n^10 - 134879084*n^3 - 32082204*n^5 - 145393020*n^2 - 80308236*n^4 - 8713656*n^6 - 1589856*n^7 - 186624*n^8)*a(n + 1) + (11840760*n + 6932520*n^3 + 4989600 + 544320*n^5 + 12084468*n^2 + 2446668*n^4 + 74592*n^6 + 5760*n^7 + 192*n^8)*a(n + 2) + (-1108800 - 2428000*n - 1014166*n^3 - 44740*n^5 - 2148828*n^2 - 278430*n^4 - 3912*n^6 - 144*n^7)*a(n + 3) + (-6435 - 3887*n - 780*n^2 - 52*n^3)*a(n + 4) + (3003 + 1635*n + 297*n^2 + 18*n^3)*a(n + 5) - 3*a(n + 6)}.
Goulden and Jackson give a differential equation satisfied by the e.g.f, which presumably agrees with the above. - N. J. A. Sloane, Sep 02 2013
Recurrence (for n > 5): 3*(9*n^2 - 27*n + 16)*a(n) = 3*(2*n - 1)*(27*n^4 - 108*n^3 + 138*n^2 - 63*n + 4)*a(n-1) - (n-1)*(2*n - 3)*(2*n - 1)*(3*n - 4)*(18*n^2 - 27*n - 13)*a(n-2) + 2*(n-2)*(n-1)*(2*n - 5)*(2*n - 3)*(2*n - 1)*(27*n^3 - 90*n^2 + 57*n + 8)*a(n-3) - 2*(n-3)*(n-2)*(n-1)*(2*n - 7)*(2*n - 5)*(2*n - 3)*(2*n - 1)*(9*n^2 - 9*n - 2)*a(n-4). - Vaclav Kotesovec, Sep 15 2014
a(n) ~ sqrt(2) * 6^n * n^(3*n) / exp(3*n). - Vaclav Kotesovec, Sep 15 2014

Extensions

More terms from Vaclav Kotesovec, Sep 15 2014

A110041 a(n) = number of labeled graphs on n vertices (with no isolated vertices, multi-edges or loops) such that the degree of every vertex is at most 3.

Original entry on oeis.org

1, 0, 1, 4, 41, 512, 8285, 166582, 4054953, 116797432, 3912076929, 150190759240, 6532014077809, 318632936830136, 17286883399233149, 1035508343364348938, 68053563847088272945, 4879593083836366195728, 379847137967853770523937, 31960371880691511556886988
Offset: 0

Views

Author

Marni Mishna, Jul 08 2005

Keywords

Comments

P-recursive.

Examples

			Graphs listed by edgeset: a(3) = 4: {(1,2), (2,3)}, {(1,3), (2,3)}, {(1,3), (1,2)}, {(2,3), (1,2), (1,3)}.
		

References

  • Goulden, I. P.; Jackson, D. M. Labelled graphs with small vertex degrees and $P$-recursiveness. SIAM J. Algebraic Discrete Methods 7(1986), no. 1, 60--66. MR0819706 (87k:05093) [Gives e.g.f.]

Crossrefs

Formula

Satisfies the linear recurrence: (-150917976*n^2 - 105258076*n^3 - 1925*n^9 - 13339535*n^5 - 45995730*n^4 - 357423*n^7 - 2637558*n^6 - 120543840*n - n^11 - 66*n^10 - 39916800 - 32670*n^8)*a(n) + (22057180*n^4 + 2*n^10 + 69934280*n^3 + 140581872*n^2 + 161254080*n + 4621890*n^5 + 79833600 + 130*n^9 + 3720*n^8 + 61620*n^7 + 653226*n^6)*a(n + 1) +
(3*n^10 + 6932835*n^5 + 5580*n^8 + 92430*n^7 + 979839*n^6 + 241881120*n + 33085770*n^4 + 104901420*n^3 + 210872808*n^2 + 119750400 + 195*n^9)*a(n + 2) + (6932520*n^3 + 39916800 + 136080*n^5 + 24168936*n^2 + 9324*n^6 + 47363040*n + 1223334*n^4 + 6*n^8 + 360*n^7)*a(n + 3) + (6*n^8 + 1431654*n^4 + 372*n^7 + 9996*n^6 + 152040*n^5 + 59875200 + 8545908*n^3 + 31580424*n^2 + 66054960*n)*a(n + 4) + (9100956*n + 6*n^7 + 9646560 + 3631220*n^2 + 335*n^6 + 7929*n^5 + 103085*n^4 + 794709*n^3)*a(n + 5) +
(492*n^6 + 9*n^7 + 11032560 + 11359*n^5 + 143385*n^4 + 1067026*n^3 + 4671483*n^2 + 11110486*n)*a(n + 6) + (1021680 + 1041*n^4 + 17838*n^3 + 150699*n^2 + 626358*n + 24*n^5)*a(n + 7) + (461340 + 7027*n^3 + 9*n^5 + 61461*n^2 + 267044*n + 399*n^4)*a(n + 8) + (100980 + 5751*n^2 + 9*n^4 + 39408*n + 372*n^3)*a(n + 9) + (-6414*n - 588*n^2 - 18*n^3 - 23364)*a(n + 10) + (-48*n - 528)*a(n + 11) + 24*a(n + 12) = 0.
Differential equation satisfied by the exponential generating function: {F(0) = 1, 9*t^4*(t^4 + t + t^2 - 2)^2*(d^2/dt^2)F(t) + 3*t*(-4*t^6 + 8*t^5 - 16*t + t^10 - 16*t^2 + 2*t^7 + 8 - 2*t^4 + 2*t^8 + 10*t^3)*(t^4 + t + t^2 - 2)*(d/dt)F(t) - t^2*(t^4 + t + t^2 - 2)*(t^10 - 2*t^9 - 6*t^7 - 12*t^6 + t^5 - t^4 + 39*t^3 - 10*t^2 + 24)*F(t)}.
Satisfies the recurrence (of order 8): 12*(81*n^4 - 837*n^3 + 2997*n^2 - 4326*n + 1987)*a(n) = 18*(n-1)*(81*n^4 - 810*n^3 + 2709*n^2 - 3435*n + 1036)*a(n-1) + 3*(n-1)*(243*n^6 - 2997*n^5 + 14499*n^4 - 35118*n^3 + 44823*n^2 - 26766*n + 3244)*a(n-2) + 3*(n-2)*(n-1)*(81*n^5 - 1080*n^4 + 4968*n^3 - 9825*n^2 + 7666*n - 178)*a(n-3) + (n-3)*(n-2)*(n-1)*(243*n^5 - 2430*n^4 + 8721*n^3 - 13896*n^2 + 8637*n - 2468)*a(n-4) + (n-4)*(n-3)*(n-2)*(n-1)*(405*n^4 - 3537*n^3 + 11934*n^2 - 15915*n + 6008)*a(n-5) + (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(243*n^5 - 2916*n^4 + 11799*n^3 - 19593*n^2 + 11382*n + 502)*a(n-6) + (n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(162*n^4 - 1026*n^3 + 2241*n^2 - 1884*n + 182)*a(n-7) - (n-7)*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(81*n^4 - 513*n^3 + 972*n^2 - 519*n - 98)*a(n-8). - Vaclav Kotesovec, Sep 10 2014
a(n) ~ 3^(n/2) * exp(sqrt(3*n) - 3*n/2 - 5/4) * n^(3*n/2) / 2^(n + 1/2) * (1 + 23/(24*sqrt(3*n))). - Vaclav Kotesovec, Nov 04 2023, extended Nov 06 2023
Limit_{n->oo} A110041(n)/A110040(n) = exp(2). - Vaclav Kotesovec, Nov 05 2023

Extensions

Edited and extended by Max Alekseyev, Apr 28 2010

A321425 Number of connected labeled almost cubic graphs on 2n nodes.

Original entry on oeis.org

0, 0, 6, 630, 232260, 167712300, 207994906350, 409639268108070, 1206311009131027800, 5069191623021896970600, 29288218834810895163954750, 225729928889064072869657010750, 2263331356064784471285438421502700, 28907890013735339531664032407056442500
Offset: 0

Views

Author

R. J. Mathar, Nov 09 2018

Keywords

Comments

Almost cubic graphs are cubic graphs (A002829) where 2 points have degree 2 and these 2 points are non-adjacent. All other points have degree 3. They are constructed by removing an edge from the cubic graphs.

Examples

			There is 1 unlabeled almost cubic graph on 4 nodes (the kite, obtained by removing an edge of the tetrahedron K_4). This has 6 = binomial(4,2) labeled versions obtained by selecting two out of 4 labels for the points of degree 2.
		

Crossrefs

Programs

  • Mathematica
    terms = 14; egf = HypergeometricPFQ[{1/6, 5/6}, {}, 12x/(x^2 + 8x + 4)^(3/2)] Exp[-Log[1/4 x^2 + 2x + 1]/4 - x/3 + (x^2 + 8x + 4)^(3/2)/(24 x) - 1/(3x) - x^2/24 - 1] + O[x]^terms;
    CoefficientList[egf, x](2 Range[0, terms-1])! 3 Range[0, terms-1] (* Jean-François Alcover, Nov 23 2018, from A002829 *)
  • PARI
    b(n) = sum(i=0, 2*n, sum(k=0, min(floor((3*n-i)/3), floor((2*n-i)/2)), sum(j=0, min(floor((3*n-i-3*k)/2), floor((2*n-i-2*k)/2)), ((-1)^(i+j)*(2*n)!*(2*(3*n-i-2*j-3*k))!)/(2^(5*n-i-2*j-4*k)*3^(2*n-i-2*j-k)*(3*n-i-2*j-3*k)!*i!*j!*k!*(2*n-i-2*j-2*k)!)))); \\ A002829
    vector(20, n, n--; 3*n*b(n)) \\ Michel Marcus, Nov 10 2018

Formula

a(n) = 3*n*A002829(n). [Wormald eq. (2.1)]

Extensions

Terms a(11) and beyond from Andrew Howroyd, Nov 09 2018

A321426 Number of connected labeled fairly cubic graphs on 2n nodes.

Original entry on oeis.org

0, 0, 6, 810, 282660, 195192900, 235439369550, 454833890480970, 1320613138677432600, 5490000743915652564600, 31451199565381549069866750, 240742295353571264522056037250, 2400231508458936741386610203090700, 30511229662020079098420585892148047500
Offset: 0

Views

Author

R. J. Mathar, Nov 09 2018

Keywords

Comments

Fairly cubic graphs are cubic graphs (A002829) where 2 points have degree 2. All other points have degree 3.

Crossrefs

Programs

  • Mathematica
    b[n_] := Sum[Sum[Sum[((-1)^(i+j)(2n)! (2(3n - i - 2j - 3k))!)/ (2^(5n -i - 2j - 4k) 3^(2n - i - 2j - k)(3n - i - 2j - 3k)! i! j! k! (2n - i - 2j - 2k)!), {j, 0, Min[Floor[(3n - i - 3k)/2], Floor[(2n - i - 2k)/2]]}], {k, 0, Min[Floor[(3n - i)/3], Floor[(2n - i)/2]]}], {i, 0, 2n}];
    seq[n_] := Module[{v = Table[0, {n+1}]}, For[k = 2, k <= n, k++, v[[k+1]] = 3k b[k] + 2k(2k - 1)v[[k]] + k(2k - 1)(2k - 2)(2k - 3)v[[k-1]]]; v];
    seq[13] (* Jean-François Alcover, Nov 22 2018, after Andrew Howroyd *)
  • PARI
    \\ here b(n) is A002829
    b(n) = sum(i=0, 2*n, sum(k=0, min(floor((3*n-i)/3), floor((2*n-i)/2)), sum(j=0, min(floor((3*n-i-3*k)/2), floor((2*n-i-2*k)/2)), ((-1)^(i+j)*(2*n)!*(2*(3*n-i-2*j-3*k))!)/(2^(5*n-i-2*j-4*k)*3^(2*n-i-2*j-k)*(3*n-i-2*j-3*k)!*i!*j!*k!*(2*n-i-2*j-2*k)!))));
    seq(n)={my(v=vector(n+1)); for(n=2, n, v[n+1] = 3*n*b(n) + 2*n*(2*n-1)*v[n] + n*(2*n-1)*(2*n-2)*(2*n-3)*v[n-1]); v} \\ Andrew Howroyd, Nov 09 2018

Formula

a(n) = A321425(n) + n*(2*n-1)*(2*n-2)*A321427(n-2) + 2*n*(2*n-1)*a(n-1). [Wormald eq (2.3)]
a(n) = 3*n*A002829(n) + 2*n*(2*n-1)*a(n-1) + n*(2*n-1)*(2*n-2)*(2*n-3)*a(n-2). - Andrew Howroyd, Nov 09 2018

Extensions

Terms a(11) and beyond from Andrew Howroyd, Nov 09 2018

A339987 The number of labeled graphs on 2n vertices that share the same degree sequence as any unrooted binary tree on 2n vertices.

Original entry on oeis.org

1, 4, 90, 8400, 1426950, 366153480, 134292027870, 67095690261600, 43893900947947050, 36441011093916429000, 37446160423265535041100, 46669357647008722700474400, 69367722399061403579194432500, 121238024532751529573125745790000, 246171692450596203263023527657431250
Offset: 1

Views

Author

Atabey Kaygun, Dec 25 2020

Keywords

Comments

An unrooted binary tree is a tree in which all non-leaf vertices have degree 3. With 2n vertices there will be n+1 leaves and n-1 internal vertices.

Crossrefs

Programs

  • PARI
    \\ See Links in A295193 for GraphsByDegreeSeq.
    a(n) = {if(n==1, 1, my(d=2*n-4, M=GraphsByDegreeSeq(n-1, 3, (p,r)-> subst(deriv(p),x,1) >= d-6*r), z=(2*n)!/(n-1)!); sum(i=1, matsize(M)[1], my(p=M[i,1], r=(subst(deriv(p), x, 1)-d)/2); M[i,2]*z / (2^polcoef(p,1) * 6^polcoef(p,0) * 2^r * r!)))} \\ Andrew Howroyd, Mar 01 2023

Formula

Conjectured recurrence: 32*(1 + n)*(2 + n)*(1 + 2*n)*(3 + 2*n)*(5 + 2*n)*(7 + 2*n)*(9 + 2*n)*(11589 + 10844*n + 3300*n^2 + 328*n^3)*a(n) - 8*(2 + n)*(3 + 2*n)*(5 + 2*n)*(7 + 2*n)*(9 + 2*n)*(148119 + 232328*n + 129460*n^2 + 30664*n^3 + 2624*n^4)*a(n+1) - 16*(3 + n)*(5 + 2*n)*(7 + 2*n)*(9 + 2*n)*(341634 + 712135*n + 569267*n^2 + 219308*n^3 + 40852*n^4 + 2952*n^5)*a(n+2) + 8*(4 + n)*(7 + 2*n)*(9 + 2*n)*(527520 + 1057879*n + 818282*n^2 + 306380*n^3 + 55672*n^4 + 3936*n^5)*a(n+3) - 2*(5 + n)*(9 + 2*n)*(601452 + 1117119*n + 786236*n^2 + 264028*n^3 + 42472*n^4 + 2624*n^5)*a(n+4) + 3*(4 + n)*(6 + n)*(3717 + 5228*n + 2316*n^2 + 328*n^3)*a(n+5) = 0. - Manuel Kauers and Christoph Koutschan, Mar 01 2023
Conjecture: a(n) ~ 2^(5*n - 1/2) * n^(2*n - 3/2) / (sqrt(Pi) * 3^(n-1) * exp(2*n + 21/16)), based on the recurrence by Manuel Kauers and Christoph Koutschan. - Vaclav Kotesovec, Mar 07 2023

A006607 Number of labeled connected rooted trivalent graphs with 2n nodes.

Original entry on oeis.org

0, 4, 120, 33600, 18446400, 18361728000, 30199104936000, 76326119565696000, 280889824362219072000, 1443428429045578335360000, 10016498030869925136622080000, 91330153089556497015273454080000
Offset: 1

Views

Author

Keywords

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. C. Wormald, Triangles in labeled cubic graphs, pp. 337-345 of Combinatorial Mathematics (Canberra, 1977), Lect. Notes Math. 686, 1978.

Crossrefs

Cf. A002829, A286757 (corrected version?)

A006714 Number of trivalent bipartite labeled graphs with 2n labeled nodes.

Original entry on oeis.org

10, 840, 257040, 137260200, 118273755600, 154712104747200, 292311804557572800, 766931112143320924800, 2706462791802644002128000, 12512595130808078973370704000, 74130965352250071944327288640000, 552334353713465817349513210512960000, 5092566798555894395129552704613028960000
Offset: 3

Views

Author

Keywords

Comments

R. C. Read incorrectly has a(7) = 118257539400 and a(8) = 154678050727200 which he calculated by hand. - Sean A. Irvine, Jun 27 2017

References

  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    (* b stands for A001501 *) b[n_] := n!^2 Sum[2^(2k-n) 3^(k-n) (3(n-k))!  HypergeometricPFQ[{k-n, k-n}, {3(k-n)/2, 1/2 + 3(k-n)/2}, -9/2]/(k! (n-k)!^2), {k, 0, n}]/6^n;
    (* c stands for A246599 *) c[n_] := c[n] = Binomial[2n-1, n] b[n] - Sum[ Binomial[2n-1, 2k] Binomial[2k, k] b[k] c[n-k], {k, 1, n-1}];
    a[n_] := a[n] = c[n] + Sum[Binomial[2n-1, 2k-1] c[k] a[n-k], {k, 1, n-1}];
    Table[a[n], {n, 3, 20}] (* Jean-François Alcover, Jul 07 2018, after Andrew Howroyd *)
  • PARI
    \\ here b(n) is A001501
    b(n) = {n!^2 * sum(j=0, n, sum(i=0, n-j, my(k=n-i-j); (j + 3*k)! / (3^i * 36^k * i! * k!^2)) / (j! * (-2)^j))}
    seq(n)={my(v=vector(n,n,b(n)*binomial(2*n-1,n)), u=vector(n), s=vector(n)); for(n=1, #u, u[n]=v[n] - sum(k=3, n-3, 2*binomial(2*n-1,2*k)*v[k]*u[n-k]); s[n]=u[n] + sum(k=3, n-3, binomial(2*n-1,2*k-1)*u[k]*s[n-k])); s[3..n]} \\ Andrew Howroyd, May 22 2018

Formula

a(n) = A246599(n) + Sum_{k=1..n-1} binomial(2*n-1,2*k-1)*A246599(k)*a(n-k). - Andrew Howroyd, May 22 2018
a(n) ~ 3^(n + 1/2) * n^(3*n) / (sqrt(2) * exp(3*n+2)). - Vaclav Kotesovec, Feb 17 2024

Extensions

a(7)-a(8) corrected and a(9)-a(12) computed with nauty by Sean A. Irvine, Jun 27 2017
Terms a(13) and beyond from Andrew Howroyd, May 22 2018

A007099 Number of labeled trivalent (or cubic) 2-connected graphs with 2n nodes.

Original entry on oeis.org

0, 1, 70, 19320, 11052720, 11408720400, 19285018552800, 49792044478176000, 186348919238786304000, 970566620767088881536000, 6808941648018137282054400000, 62642603299257346706851910400000
Offset: 1

Views

Author

Keywords

References

  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • R. W. Robinson, Computer print-out, no date. Gives first 29 terms.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    s := proc(n)
        option remember;
        if n = 1 then
            0;
        elif n = 2 then
            1;
        else
            3*n*procname(n-1)+2*procname(n-2)+(3*n-1)*add(procname(i)*procname(n-1-i),i=2..n-3) ;
        end if;
    end proc:
    A007099 := proc(n)
        if n = 1 then
            0;
        elif n = 2 then
            1;
        else
            (2*n)!/3/n/2^n*(s(n)-2*s(n-1)) ;
        end if;
    end proc: # R. J. Mathar, Nov 08 2018
  • Mathematica
    s[n_] := s[n] = If[n <= 2, n - 1, 3 n s[n - 1] + 2 s[n - 2] + (3 n - 1) Sum[s[i] s[n - 1 - i], {i, 2, n - 3}]]; Array[Floor[(2 #)!*(s[#] - 2 s[# - 1])/(3 # 2^#)] &, 12] (* Michael De Vlieger, Oct 11 2017 *)

Formula

a(n) = (2*n)! * (s(n) - 2*s(n-1)) / (3*n*2^n) where s(1)=0, s(2)=1, and s(n) = 3*n*s(n-1) + 2*s(n-2) + (3*n-1) * Sum_{i=2..n-3} s(i) * s(n-1-i). - Sean A. Irvine, Oct 11 2017

A007100 Number of labeled trivalent (or cubic) 3-connected graphs with 2n nodes.

Original entry on oeis.org

1, 70, 16800, 9238320, 9520156800, 16305064776000, 42856575521760000, 163329351308323200000, 864876880105205071104000, 6155146233167046820024320000, 57316399761348433188962519040000
Offset: 2

Views

Author

Keywords

References

  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Formula

a(n) = (2*n)!*r(n)/(3*n*2^n) where r(2) = 1 and r(n) = (3*n-2) * (r(n-1) + Sum_{i=2..n-2} r(i) * r(n-i)). - Sean A. Irvine, Oct 11 2017

A246599 Number of connected trivalent bipartite labeled graphs with 2n labeled nodes.

Original entry on oeis.org

10, 840, 257040, 137214000, 118248530400, 154686980448000, 292276881344448000, 766864651478365440000, 2706292794907249067520000, 12512021073989410699165440000, 74128448237031250090060032000000, 552320243355746711191770103680000000, 5092467146398443040845772685937408000000
Offset: 3

Views

Author

N. J. A. Sloane, Sep 08 2014

Keywords

Comments

R. C. Read incorrectly has a(7) = 118237555800 and a(8) = 154652926428000 which he calculated by hand.

References

  • R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.

Crossrefs

Programs

  • Mathematica
    b[n_] := n!^2*Sum[2^(2k-n) 3^(k-n)(3(n-k))!*HypergeometricPFQ[{k-n, k-n}, {3(k-n)/2, 1/2 + 3(k-n)/2}, -9/2]/(k! (n-k )!^2), {k, 0, n}]/6^n;
    a[n_] := a[n] = Binomial[2n-1, n] b[n] - Sum[Binomial[2n-1, 2k] Binomial[2 k, k] b[k] a[n-k], {k, 1, n-1}];
    Table[a[n], {n, 3, 20}] (* Jean-François Alcover, Jul 07 2018, after Andrew Howroyd *)
  • PARI
    \\ here b(n) is A001501
    b(n) = {n!^2 * sum(j=0, n, sum(i=0, n-j, my(k=n-i-j); (j + 3*k)! / (3^i * 36^k * i! * k!^2)) / (j! * (-2)^j))}
    seq(n)={my(v=vector(n, n, b(n)*binomial(2*n, n)), u=vector(n)); for(n=1, #u, u[n]=v[n] - sum(k=3, n-3, binomial(2*n-1,2*k)*v[k]*u[n-k])); u[3..n]/2} \\ Andrew Howroyd, May 22 2018

Formula

a(n) = binomial(2*n-1, n)*A001501(n) - Sum_{k=1..n-1} binomial(2*n-1, 2*k) * binomial(2*k, k) * A001501(k) * a(n-k). - Andrew Howroyd, May 22 2018
a(n) ~ 3^(n + 1/2) * n^(3*n) / (sqrt(2) * exp(3*n + 2)). - Vaclav Kotesovec, Feb 17 2024

Extensions

a(7)-a(8) corrected and a(9)-a(12) computed with nauty by Sean A. Irvine, Jun 27 2017
Terms a(13) and beyond from Andrew Howroyd, May 22 2018
Previous Showing 11-20 of 25 results. Next