A110039
Number of 3-regular labeled graphs on 2n vertices with no multiple edges, but loops are allowed. (3-regular = trivalent and a loop incident on a vertex counts as two edges.)
Original entry on oeis.org
1, 1, 8, 730, 188790, 102737670, 102172297920, 167870491048260, 423971126389110300, 1559445481095305703900, 8010574937878696134151200, 55572909620219147733302926200, 506607333530572584517841616582600, 5931728848766374810152582924943605000
Offset: 0
a(1)=1: {(1,1), (1,2), (2,2)}
- Goulden, I. P.; Jackson, D. M. Labelled graphs with small vertex degrees and $P$-recursiveness. SIAM J. Algebraic Discrete Methods 7(1986), no. 1, 60--66. MR0819706 (87k:05093)
-
max = 30; f[x_] := Sum[a[n]*(x^n/n!), {n, 0, max}]; a[0] = 1; a[1] = 1; coef = CoefficientList[ 9*x^3*(x^4 - 2)*f''[x] + 3*(x^10 - 2*x^8 - 5*x^6 - 18*x^2 + 8)*f'[x] - x*(x^4 - 4*x^2 + 2)*(x^6 - 2*x^2 + 12)*f[x], x]; Table[a[n], {n, 0, max, 2}]/. Solve[Thread[coef[[2 ;; max]] == 0]][[1]] (* Vaclav Kotesovec, Sep 15 2014 *)
A110041
a(n) = number of labeled graphs on n vertices (with no isolated vertices, multi-edges or loops) such that the degree of every vertex is at most 3.
Original entry on oeis.org
1, 0, 1, 4, 41, 512, 8285, 166582, 4054953, 116797432, 3912076929, 150190759240, 6532014077809, 318632936830136, 17286883399233149, 1035508343364348938, 68053563847088272945, 4879593083836366195728, 379847137967853770523937, 31960371880691511556886988
Offset: 0
Graphs listed by edgeset: a(3) = 4: {(1,2), (2,3)}, {(1,3), (2,3)}, {(1,3), (1,2)}, {(2,3), (1,2), (1,3)}.
- Goulden, I. P.; Jackson, D. M. Labelled graphs with small vertex degrees and $P$-recursiveness. SIAM J. Algebraic Discrete Methods 7(1986), no. 1, 60--66. MR0819706 (87k:05093) [Gives e.g.f.]
A321425
Number of connected labeled almost cubic graphs on 2n nodes.
Original entry on oeis.org
0, 0, 6, 630, 232260, 167712300, 207994906350, 409639268108070, 1206311009131027800, 5069191623021896970600, 29288218834810895163954750, 225729928889064072869657010750, 2263331356064784471285438421502700, 28907890013735339531664032407056442500
Offset: 0
There is 1 unlabeled almost cubic graph on 4 nodes (the kite, obtained by removing an edge of the tetrahedron K_4). This has 6 = binomial(4,2) labeled versions obtained by selecting two out of 4 labels for the points of degree 2.
-
terms = 14; egf = HypergeometricPFQ[{1/6, 5/6}, {}, 12x/(x^2 + 8x + 4)^(3/2)] Exp[-Log[1/4 x^2 + 2x + 1]/4 - x/3 + (x^2 + 8x + 4)^(3/2)/(24 x) - 1/(3x) - x^2/24 - 1] + O[x]^terms;
CoefficientList[egf, x](2 Range[0, terms-1])! 3 Range[0, terms-1] (* Jean-François Alcover, Nov 23 2018, from A002829 *)
-
b(n) = sum(i=0, 2*n, sum(k=0, min(floor((3*n-i)/3), floor((2*n-i)/2)), sum(j=0, min(floor((3*n-i-3*k)/2), floor((2*n-i-2*k)/2)), ((-1)^(i+j)*(2*n)!*(2*(3*n-i-2*j-3*k))!)/(2^(5*n-i-2*j-4*k)*3^(2*n-i-2*j-k)*(3*n-i-2*j-3*k)!*i!*j!*k!*(2*n-i-2*j-2*k)!)))); \\ A002829
vector(20, n, n--; 3*n*b(n)) \\ Michel Marcus, Nov 10 2018
A321426
Number of connected labeled fairly cubic graphs on 2n nodes.
Original entry on oeis.org
0, 0, 6, 810, 282660, 195192900, 235439369550, 454833890480970, 1320613138677432600, 5490000743915652564600, 31451199565381549069866750, 240742295353571264522056037250, 2400231508458936741386610203090700, 30511229662020079098420585892148047500
Offset: 0
-
b[n_] := Sum[Sum[Sum[((-1)^(i+j)(2n)! (2(3n - i - 2j - 3k))!)/ (2^(5n -i - 2j - 4k) 3^(2n - i - 2j - k)(3n - i - 2j - 3k)! i! j! k! (2n - i - 2j - 2k)!), {j, 0, Min[Floor[(3n - i - 3k)/2], Floor[(2n - i - 2k)/2]]}], {k, 0, Min[Floor[(3n - i)/3], Floor[(2n - i)/2]]}], {i, 0, 2n}];
seq[n_] := Module[{v = Table[0, {n+1}]}, For[k = 2, k <= n, k++, v[[k+1]] = 3k b[k] + 2k(2k - 1)v[[k]] + k(2k - 1)(2k - 2)(2k - 3)v[[k-1]]]; v];
seq[13] (* Jean-François Alcover, Nov 22 2018, after Andrew Howroyd *)
-
\\ here b(n) is A002829
b(n) = sum(i=0, 2*n, sum(k=0, min(floor((3*n-i)/3), floor((2*n-i)/2)), sum(j=0, min(floor((3*n-i-3*k)/2), floor((2*n-i-2*k)/2)), ((-1)^(i+j)*(2*n)!*(2*(3*n-i-2*j-3*k))!)/(2^(5*n-i-2*j-4*k)*3^(2*n-i-2*j-k)*(3*n-i-2*j-3*k)!*i!*j!*k!*(2*n-i-2*j-2*k)!))));
seq(n)={my(v=vector(n+1)); for(n=2, n, v[n+1] = 3*n*b(n) + 2*n*(2*n-1)*v[n] + n*(2*n-1)*(2*n-2)*(2*n-3)*v[n-1]); v} \\ Andrew Howroyd, Nov 09 2018
A339987
The number of labeled graphs on 2n vertices that share the same degree sequence as any unrooted binary tree on 2n vertices.
Original entry on oeis.org
1, 4, 90, 8400, 1426950, 366153480, 134292027870, 67095690261600, 43893900947947050, 36441011093916429000, 37446160423265535041100, 46669357647008722700474400, 69367722399061403579194432500, 121238024532751529573125745790000, 246171692450596203263023527657431250
Offset: 1
-
\\ See Links in A295193 for GraphsByDegreeSeq.
a(n) = {if(n==1, 1, my(d=2*n-4, M=GraphsByDegreeSeq(n-1, 3, (p,r)-> subst(deriv(p),x,1) >= d-6*r), z=(2*n)!/(n-1)!); sum(i=1, matsize(M)[1], my(p=M[i,1], r=(subst(deriv(p), x, 1)-d)/2); M[i,2]*z / (2^polcoef(p,1) * 6^polcoef(p,0) * 2^r * r!)))} \\ Andrew Howroyd, Mar 01 2023
A006607
Number of labeled connected rooted trivalent graphs with 2n nodes.
Original entry on oeis.org
0, 4, 120, 33600, 18446400, 18361728000, 30199104936000, 76326119565696000, 280889824362219072000, 1443428429045578335360000, 10016498030869925136622080000, 91330153089556497015273454080000
Offset: 1
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. C. Wormald, Triangles in labeled cubic graphs, pp. 337-345 of Combinatorial Mathematics (Canberra, 1977), Lect. Notes Math. 686, 1978.
A006714
Number of trivalent bipartite labeled graphs with 2n labeled nodes.
Original entry on oeis.org
10, 840, 257040, 137260200, 118273755600, 154712104747200, 292311804557572800, 766931112143320924800, 2706462791802644002128000, 12512595130808078973370704000, 74130965352250071944327288640000, 552334353713465817349513210512960000, 5092566798555894395129552704613028960000
Offset: 3
- R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
(* b stands for A001501 *) b[n_] := n!^2 Sum[2^(2k-n) 3^(k-n) (3(n-k))! HypergeometricPFQ[{k-n, k-n}, {3(k-n)/2, 1/2 + 3(k-n)/2}, -9/2]/(k! (n-k)!^2), {k, 0, n}]/6^n;
(* c stands for A246599 *) c[n_] := c[n] = Binomial[2n-1, n] b[n] - Sum[ Binomial[2n-1, 2k] Binomial[2k, k] b[k] c[n-k], {k, 1, n-1}];
a[n_] := a[n] = c[n] + Sum[Binomial[2n-1, 2k-1] c[k] a[n-k], {k, 1, n-1}];
Table[a[n], {n, 3, 20}] (* Jean-François Alcover, Jul 07 2018, after Andrew Howroyd *)
-
\\ here b(n) is A001501
b(n) = {n!^2 * sum(j=0, n, sum(i=0, n-j, my(k=n-i-j); (j + 3*k)! / (3^i * 36^k * i! * k!^2)) / (j! * (-2)^j))}
seq(n)={my(v=vector(n,n,b(n)*binomial(2*n-1,n)), u=vector(n), s=vector(n)); for(n=1, #u, u[n]=v[n] - sum(k=3, n-3, 2*binomial(2*n-1,2*k)*v[k]*u[n-k]); s[n]=u[n] + sum(k=3, n-3, binomial(2*n-1,2*k-1)*u[k]*s[n-k])); s[3..n]} \\ Andrew Howroyd, May 22 2018
a(7)-a(8) corrected and a(9)-a(12) computed with nauty by
Sean A. Irvine, Jun 27 2017
A007099
Number of labeled trivalent (or cubic) 2-connected graphs with 2n nodes.
Original entry on oeis.org
0, 1, 70, 19320, 11052720, 11408720400, 19285018552800, 49792044478176000, 186348919238786304000, 970566620767088881536000, 6808941648018137282054400000, 62642603299257346706851910400000
Offset: 1
- R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
- R. W. Robinson, personal communication.
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
- R. W. Robinson, Computer print-out, no date. Gives first 29 terms.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. W. Robinson, Table of n, a(n) for n = 1..29 (corrected by Michel Marcus, Jan 19 2019)
- G.-B. Chae, E. M. Palmer, R. W. Robinson, Counting labeled general cubic graphs, Discr. Math. 307 (2007) 2979-2992, eqs. (23) and (24).
- R. W. Robinson, Cubic labeled graphs, computer print-out, n.d.
-
s := proc(n)
option remember;
if n = 1 then
0;
elif n = 2 then
1;
else
3*n*procname(n-1)+2*procname(n-2)+(3*n-1)*add(procname(i)*procname(n-1-i),i=2..n-3) ;
end if;
end proc:
A007099 := proc(n)
if n = 1 then
0;
elif n = 2 then
1;
else
(2*n)!/3/n/2^n*(s(n)-2*s(n-1)) ;
end if;
end proc: # R. J. Mathar, Nov 08 2018
-
s[n_] := s[n] = If[n <= 2, n - 1, 3 n s[n - 1] + 2 s[n - 2] + (3 n - 1) Sum[s[i] s[n - 1 - i], {i, 2, n - 3}]]; Array[Floor[(2 #)!*(s[#] - 2 s[# - 1])/(3 # 2^#)] &, 12] (* Michael De Vlieger, Oct 11 2017 *)
A007100
Number of labeled trivalent (or cubic) 3-connected graphs with 2n nodes.
Original entry on oeis.org
1, 70, 16800, 9238320, 9520156800, 16305064776000, 42856575521760000, 163329351308323200000, 864876880105205071104000, 6155146233167046820024320000, 57316399761348433188962519040000
Offset: 2
- R. W. Robinson, personal communication.
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A246599
Number of connected trivalent bipartite labeled graphs with 2n labeled nodes.
Original entry on oeis.org
10, 840, 257040, 137214000, 118248530400, 154686980448000, 292276881344448000, 766864651478365440000, 2706292794907249067520000, 12512021073989410699165440000, 74128448237031250090060032000000, 552320243355746711191770103680000000, 5092467146398443040845772685937408000000
Offset: 3
- R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
-
b[n_] := n!^2*Sum[2^(2k-n) 3^(k-n)(3(n-k))!*HypergeometricPFQ[{k-n, k-n}, {3(k-n)/2, 1/2 + 3(k-n)/2}, -9/2]/(k! (n-k )!^2), {k, 0, n}]/6^n;
a[n_] := a[n] = Binomial[2n-1, n] b[n] - Sum[Binomial[2n-1, 2k] Binomial[2 k, k] b[k] a[n-k], {k, 1, n-1}];
Table[a[n], {n, 3, 20}] (* Jean-François Alcover, Jul 07 2018, after Andrew Howroyd *)
-
\\ here b(n) is A001501
b(n) = {n!^2 * sum(j=0, n, sum(i=0, n-j, my(k=n-i-j); (j + 3*k)! / (3^i * 36^k * i! * k!^2)) / (j! * (-2)^j))}
seq(n)={my(v=vector(n, n, b(n)*binomial(2*n, n)), u=vector(n)); for(n=1, #u, u[n]=v[n] - sum(k=3, n-3, binomial(2*n-1,2*k)*v[k]*u[n-k])); u[3..n]/2} \\ Andrew Howroyd, May 22 2018
a(7)-a(8) corrected and a(9)-a(12) computed with nauty by
Sean A. Irvine, Jun 27 2017
Comments