cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A027446 Triangle read by rows: square of the lower triangular mean matrix.

Original entry on oeis.org

1, 3, 1, 11, 5, 2, 25, 13, 7, 3, 137, 77, 47, 27, 12, 147, 87, 57, 37, 22, 10, 1089, 669, 459, 319, 214, 130, 60, 2283, 1443, 1023, 743, 533, 365, 225, 105, 7129, 4609, 3349, 2509, 1879, 1375, 955, 595, 280, 7381, 4861, 3601, 2761, 2131, 1627, 1207, 847, 532, 252
Offset: 1

Views

Author

Keywords

Comments

Numerators of nonzero elements of A^2, written as rows using the least common denominator, where A[i,j] = 1/i if j <= i, 0 if j > i. [Edited by M. F. Hasler, Nov 05 2019]

Examples

			Triangle starts
     1
     3,    1
    11,    5,    2
    25,   13,    7,    3
   137,   77,   47,   27,   12
   147,   87,   57,   37,   22,   10
  1089,  669,  459,  319,  214,  130,  60
  2283, 1443, 1023,  743,  533,  365, 225, 105
  7129, 4609, 3349, 2509, 1879, 1375, 955, 595, 280
  ... - _Joerg Arndt_, Mar 29 2013
		

Crossrefs

The row sums give A081528(n), n>=1.
The column sequences give A025529, A027457, A027458 for j=1..3.
The diagonal sequences give A002944, A027449, A027450.

Programs

  • Mathematica
    rows = 10;
    M = MatrixPower[Table[If[j <= i, 1/i, 0], {i, 1, rows}, {j, 1, rows}], 2];
    T = Table[M[[n]]*LCM @@ Denominator[M[[n]]], {n, 1, rows}];
    Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 05 2013, updated May 06 2022 *)
  • PARI
    A027446_upto(n)={my(M=matrix(n, n, i, j, (j<=i)/i)^2); vector(n,r,M[r,1..r]*denominator(M[r,1..r]))} \\ M. F. Hasler, Nov 05 2019

Formula

The rational matrix A^2, where the matrix A has elements a[i,j] = 1/A002024(i,j), is equal to A119947(i,j)/A119948(i,j).
a(i,j) = lcm(seq(A119948(i,m),m=1..i))*A119947(i,j)/A119948(i,j), 1 <= j =< i and zero otherwise.

Extensions

Edited by M. F. Hasler, Nov 05 2019

A056530 Sequence remaining after third round of Flavius Josephus sieve; remove every fourth term of A047241.

Original entry on oeis.org

1, 3, 7, 13, 15, 19, 25, 27, 31, 37, 39, 43, 49, 51, 55, 61, 63, 67, 73, 75, 79, 85, 87, 91, 97, 99, 103, 109, 111, 115, 121, 123, 127, 133, 135, 139, 145, 147, 151, 157, 159, 163, 169, 171, 175, 181, 183, 187, 193, 195, 199, 205, 207, 211, 217, 219, 223, 229, 231
Offset: 1

Views

Author

Henry Bottomley, Jun 19 2000

Keywords

Comments

Numbers {1, 3, 7} mod 12: A017533, A017557, A017605 interleaved.

Crossrefs

We have A000027 after 0 rounds of sieving, A005408 after 1 round of sieving, A047241 after 2 rounds, A056530 after 3 rounds, A056531 after 4 rounds, A000960 after all rounds. After n rounds the remaining sequence comprises A002944(n) numbers mod A003418(n+1), i.e. 1/(n+1) of them.

Programs

  • Mathematica
    LinearRecurrence[{1,0,1,-1},{1,3,7,13},60] (* Harvey P. Dale, Oct 19 2022 *)

Formula

From Chai Wah Wu, Jul 24 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 4.
G.f.: x*(5*x^3 + 4*x^2 + 2*x + 1)/(x^4 - x^3 - x + 1). (End)
a(n) = 4*n - (13 + 2*A131713(n))/3. - R. J. Mathar, Jun 22 2020

A056606 Squarefree kernel of lcm(binomial(n,0), ..., binomial(n,n)).

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 30, 105, 70, 42, 210, 2310, 2310, 4290, 6006, 15015, 30030, 170170, 510510, 1939938, 1385670, 881790, 9699690, 223092870, 44618574, 17160990, 74364290, 31870410, 223092870, 6469693230, 6469693230, 100280245065
Offset: 0

Views

Author

Labos Elemer, Aug 07 2000

Keywords

Comments

Also squarefree kernel of A001142; row products in table A256113. - Reinhard Zumkeller, Mar 21 2015
a(2372) has 1001 decimal digits. - Michael De Vlieger, Jul 14 2017
Also the squarefree kernel of the cumulative product of n^n/n!. - Peter Luschny, Dec 21 2019
Conjecture: the few odd values belong to A070826. - Bill McEachen, Jun 24 2023
And their indices appear to be A007053. - Michel Marcus, Jul 01 2023

Examples

			a(7) = 105 because lcm(1, 7, 21, 35) = 105 is already squarefree.
a(0) = 1 because n^n/n! = 1 for the integer n = 0. - _Peter Luschny_, Dec 21 2019
		

Crossrefs

Programs

  • Haskell
    a056606 = a007947 . a001142  -- Reinhard Zumkeller, Mar 21 2015
    
  • Maple
    h := n -> mul(k^k/factorial(k), k=0..n):
    rad := n -> mul(k, k = numtheory[factorset](n)):
    seq(rad(h(n)), n=0..31); # Peter Luschny, Dec 21 2019
  • Mathematica
    Table[Apply[Times, FactorInteger[Product[k^(2 k - 1 - n), {k, n}]][[All, 1]]], {n, 0, 31}] (* or *)
    Table[Apply[Times, FactorInteger[Apply[LCM, Range@ n]/n][[All, 1]]], {n, 1, 32}] (* Michael De Vlieger, Jul 14 2017 *)
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    a(n) = rad(lcm(vector(n+1, k, binomial(n,k-1)))); \\ Michel Marcus, Jun 24 2023

Formula

a(n) = A007947(A002944(n+1)). - Michel Marcus, Dec 21 2019
a(n) = radical(hyperfactorial(n)/superfactorial(n)) = A007947(A002109(n)/ A000178(n)) for n >= 0. - Peter Luschny, Dec 21 2019

Extensions

Extended with a(0) = 1 by Peter Luschny, Dec 21 2019

A339453 Number of subsets of {1..n} whose harmonic mean is an integer.

Original entry on oeis.org

1, 2, 3, 4, 5, 12, 13, 14, 15, 18, 19, 26, 27, 30, 53, 54, 55, 100, 101, 180, 203, 210, 211, 378, 379, 382, 383, 1092, 1093, 2020, 2021, 2022, 3933, 3956, 6473, 10226, 10227, 10266, 10561, 20948, 20949
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 05 2020

Keywords

Comments

For terms listed in the Data section: a(p^k) = a(p^k-1) + 1, where p prime (empirical observation). - Ilya Gutkovskiy, Dec 06 2020
From Chai Wah Wu, Dec 14 2020: (Start)
The above empirical observation is true.
Theorem: For prime p, a(p^k) = a(p^k-1)+1.
Proof: Since the singleton set {x} has harmonic mean x, a(n) >= a(n-1)+1.
Let S = {s_1,s_2,..,s_n} be a subset of {1,2,..,p^k} with n>1 elements such that s_n = p^k and let H be the harmonic mean of S. Let M = A003418(p^k) be the least common multiple of {1,2,..,p^k}. Then M = Wp^k where p does not divide W = A002944(p^k).
Let Q_i = M/s_i and Q = sum_i Q_i. This implies that Q_n = W and p divides Q_i for i < n.
H can be written as nM/Q. Since p does not divide W, this implies that p does not divide Q. Suppose H is an integer. Then this implies that Q divides nM/p^k = nW.
Note that s_i < s_n for i < n. This implies that Q_i > W for i < n, i.e. Q > nW, and this contradicts the fact that Q divides nW and thus H is not an integer.
Thus {p^k} is the only subset of {1,2,..,p^k} that includes p^k and have an integral Harmonic mean.
This concludes the proof.
(End)

Examples

			a(6) = 12 subsets: {1}, {2}, {3}, {4}, {5}, {6}, {2, 6}, {3, 6}, {1, 3, 6}, {2, 3, 6}, {3, 4, 6} and {1, 2, 3, 6}.
		

Crossrefs

Programs

  • Python
    from itertools import chain, combinations
    from fractions import Fraction
    def powerset(s): # skip empty set
        return chain.from_iterable(combinations(s, r) for r in range(1,len(s)+1))
    def hm(s):
        ss = sum(Fraction(1, i) for i in s)
        return Fraction(len(s)*ss.denominator, ss.numerator)
    def a(n):
        return sum(hm(s).denominator==1 for s in powerset(range(1,n+1)))
    print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Dec 06 2020
    
  • Python
    from math import lcm
    from itertools import combinations
    def A339453(n):
        m = lcm(*range(2,n+1))
        return sum(1 for i in range(1,n+1) for d in combinations((m//i for i in range(1,n+1)),i) if m*i % sum(d) == 0) # Chai Wah Wu, Dec 02 2021

Formula

a(n) >= a(n-1)+1. For prime p, a(p^k) = a(p^k-1)+1. - Chai Wah Wu, Dec 14 2020
a(n) = A357411(n) + A357412(n). - Max Alekseyev, Feb 26 2025

Extensions

a(23)-a(29) from Michael S. Branicky, Dec 06 2020
a(30)-a(35) from Chai Wah Wu, Dec 08 2020
a(36)-a(39) from Chai Wah Wu, Dec 11 2020
a(40)-a(41) from Chai Wah Wu, Dec 19 2020

A004788 Number of distinct prime divisors of the numbers in row n of Pascal's triangle.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 8, 9, 8, 8, 8, 8, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 13, 13, 14, 13, 14, 15, 14, 14, 14, 14, 15, 15, 15, 16, 15, 15, 16, 17, 17, 17, 18, 17, 17, 17, 18, 18, 18, 19, 19, 20, 20
Offset: 0

Views

Author

Keywords

Comments

Also the number of prime divisors of A002944(n) = lcm_{j=0..floor(n/2)} binomial(n,j).
The terms are increasing by intervals, then decrease once. The local maxima are obtained for 23, 44, 47, 55, 62, 79, 83, 89, 104, 119, 131, 134, 139, 143, .... - Michel Marcus, Mar 21 2013
a(A004789(n)) = n and a(m) != n for m < A004789(n). - Reinhard Zumkeller, Mar 16 2015

Crossrefs

Programs

  • Haskell
    a004788 = a001221 . a001142  -- Reinhard Zumkeller, Mar 16 2015
  • Mathematica
    Table[prd = Product[Binomial[n, k], {k, 0, n}]; If[prd == 1, 0, Length[FactorInteger[prd]]], {n, 0, 100}] (* T. D. Noe, Mar 21 2013 *)
  • PARI
    a(n) = {sfp = Set(); for (k=1, n-1, sfp = setunion(sfp, Set(factor(binomial(n, k))[,1]))); return (length(sfp));} \\ Michel Marcus, Mar 21 2013
    

Formula

a(n) = A001221(A001142(n)). - Reinhard Zumkeller, Mar 16 2015

A190940 Number of divisors of LCM(1,2,...,n)/n.

Original entry on oeis.org

1, 1, 2, 2, 6, 4, 12, 8, 16, 18, 48, 32, 96, 72, 64, 48, 240, 128, 480, 288, 320, 384, 960, 512, 960, 1152, 960, 1152, 3840, 3072, 7680, 3072, 6912, 7680, 6144, 6144, 18432, 15360, 13824, 12288, 36864, 23040, 73728, 49152, 49152, 61440, 147456, 73728, 147456, 122880
Offset: 1

Views

Author

Naohiro Nomoto, May 24 2011

Keywords

Comments

Also, number of sequences of d1 = 1 < d2 < ... < dk = n for some k >= 1 that are the first k divisors of some integer (cf. A378314). - Max Alekseyev, Nov 22 2024
Also, the number of distinct values taken by lcm(a,a+b,a+b+c,...,n), where positive integers a,b,c,... run over the compositions a+b+c+...=n. - Conjectured by Ridouane Oudra, Aug 24 2019; proved by Max Alekseyev, Nov 22 2024
Proof. It is clear that n | lcm(a,a+b,...,n) | lcm(1,2,...,n). Hence, lcm(a,a+b,...,n) = d*n for some d | lcm(1,2,...,n)/n. We'll show that each such d is achievable. Suppose d*n has prime factorization p1^e1 * ... * pk^ek with p1^e1 < ... < pk^ek. It is clear that pk^ek <= n, and we can take a composition (a,b,c,...) = (p1^e1, p2^e2 - p1^e1, p3^e3 - p2^e2, ..., pk^ek - p(k-1)^e(k-1), n - pk^ek), which delivers lcm(a,a+b,a+b+c,...,n) = p1^e1 * ... * pk^ek = d*n. QED - Max Alekseyev, Nov 22 2024

Examples

			Examples: for n=3 the a(3) = 2 distinct values are 3, 6. The compositions are 3, 1+2, 2+1, and 1+1+1. The values of the lcm are lcm(3)=3, lcm(1,1+2)=3, lcm(2,2+1)=6, and lcm(1,1+1,1+1+1)=6.
		

Crossrefs

First difference of A378314.

Programs

  • Maple
    Lpsum := proc(L) local ps,k ; ps := [op(1,L)] ; for i from 2 to nops(L) do ps := [op(ps), op(-1,ps)+op(i,L)] ; end do: ps ; end proc:
    A190940 := proc(n) local lc,k,c ; lc := {} ; for k from 1 to n do for c in combinat[composition](n,k) do lc := lc union { ilcm( op(Lpsum(c))) }; end do: end do: nops(lc) ; end proc: # R. J. Mathar, Jun 02 2011
  • Mathematica
    a[n_] := LCM @@@ (Accumulate /@ (Permutations /@ Rest[IntegerPartitions[n]] // Flatten[#, 1]&)) // Union // Length; Table[Print[an = a[n]]; an, {n, 1, 24}] (* Jean-François Alcover, Feb 27 2014 *)

Formula

a(n) = A000005(A002944(n)).

Extensions

a(12)-a(20) from R. J. Mathar, Jun 02 2011
a(21)-a(24) from Alois P. Heinz, Nov 03 2011
Edited and terms a(25) onward added by Max Alekseyev, Nov 22 2024

A025558 a(n) = (n/(n+1)) * lcm(1,2,...,n+1).

Original entry on oeis.org

1, 4, 9, 48, 50, 360, 735, 2240, 2268, 25200, 25410, 332640, 334620, 336336, 675675, 11531520, 11571560, 220540320, 221152932, 221707200, 222211080, 5121436320, 5131136010, 25700298624, 25741485000, 77338861600, 77445096300, 2248776129600, 2251453244040
Offset: 1

Views

Author

Keywords

Comments

a(n) = (1/1 + 1/3 + 1/6 + ... + 1/C(n+1,2))*lcm(1,3,6,...,binomial(n+1,2)) = 2n/(n+1) * lcm(1,3,6,...,binomial(n+1,2)).
a(n+1) = a(n) * ((n+1)^2)/(n * ((n+2)/p) ), where p = n+2 if n+2 is prime, p = q if n+2 = q^k (q is prime, k>1), or p = 1 if n+2 is not a prime or a prime power. - Scott C. Macfarlan (scottmacfarlan(AT)covance.com), Jan 08 2004

Crossrefs

Programs

  • Maple
    a:= n-> (n/(n+1)) * ilcm($1..n+1):
    seq(a(n), n=1..29);  # Alois P. Heinz, Mar 07 2022
  • Mathematica
    Table[n/(n+1) LCM@@Range[n+1],{n,30}]  (* Harvey P. Dale, Apr 02 2011 *)
  • PARI
    a(n) = n*lcm([1..n+1])/(n+1); \\ Michel Marcus, Mar 07 2022

Formula

a(n) = n * A002944(n+1) = (n/(n+1)) * A003418(n+1).

Extensions

Entry revised by N. J. A. Sloane, Nov 12 2004

A081528 a(n) = n*lcm{1,2,...,n}.

Original entry on oeis.org

1, 4, 18, 48, 300, 360, 2940, 6720, 22680, 25200, 304920, 332640, 4684680, 5045040, 5405400, 11531520, 208288080, 220540320, 4423058640, 4655851200, 4888643760, 5121436320, 123147264240, 128501493120, 669278610000, 696049754400
Offset: 1

Views

Author

Amarnath Murthy, Mar 27 2003

Keywords

Comments

Denominators in binomial transform of 1/(n + 1)^2. - Paul Barry, Aug 06 2004
Construct a sequence S_n from n sequences b_1, b_2, ..., b_n of periods 1, 2, ..., n, respectively, say, b_1 = [1, 1, ...], b_2 = [1, 2, 1, 2, ...], ..., b_n = [1, 2, 3, ..., n, 1, 2, 3, ..., n, ...], by taking S_n = [b_1(1), b_2(1), ..., b_n(1), b_1(2), b_2(2), ..., b_n(2), ..., b_1(n), b_2(n), ..., b_n(n), ...] (by listing the b_i sequences in rows and taking each column in turn as the next n terms of S_n). Then a(n) is the period of sequence S_n. - Rick L. Shepherd, Aug 21 2006
This is a sequence that goes in strictly ascending order. The related sequence A003418 also goes in ascending order but has consecutive repeated terms. Since n increases, then so too does a(n) even when A003418(n) doesn't. - Alonso del Arte, Nov 25 2012

Examples

			a(2) = 4 because the least common multiple of 1 and 2 is 2, and 2 * 2 = 4.
a(3) = 18 because lcm(1,2,3) = 6, and 3 * 6 = 18.
a(4) = 48 because lcm(1, 2, 3, 4) = 12, and 4 * 12 = 48.
		

Crossrefs

Programs

  • Derive
    a(n) := (n + 1)*LCM(VECTOR(k + 1, k, 0, n)) " Paul Barry, Aug 06 2004 "
    
  • Mathematica
    Table[n*LCM@@Range[n], {n, 30}] (* Harvey P. Dale, Oct 09 2012 *)
  • PARI
    l=vector(35); l[1]=1; print1("1, "); for(n=2,35, l[n]=lcm(l[n-1],n); print1(n*l[n],", ")) \\ Rick L. Shepherd, Aug 21 2006

Formula

a(n) = A003418(n) * n. - Martin Fuller, Jan 03 2006

Extensions

More terms from Paul Barry, Aug 06 2004
Entry revised by N. J. A. Sloane, Jan 15 2006

A027451 First diagonal of A027447.

Original entry on oeis.org

1, 1, 4, 9, 144, 100, 3600, 11025, 78400, 63504, 6350400, 5336100, 768398400, 662547600, 577152576, 2029052025, 519437318400, 463325262400, 150117385017600, 135480939978384, 122885206329600, 111967718990400, 54192375991353600, 49770428644836900
Offset: 1

Views

Author

Keywords

Comments

Equals the denominators of MN(z;n)/(n!)^2 for n =>1, see A162990. - Johannes W. Meijer, Jul 21 2009
It appears that a(n) = denominator of n^2*sum(1/k^2,k=1..n). - Gary Detlefs, May 29 2010

Crossrefs

From Johannes W. Meijer, Jul 21 2009: (Start)
Equals A002944(n)^2.
Equals A001044(n-1)/A025527(n)^2.
(End)

Programs

Formula

Numerators of sequence a[ n, n ] in (a[ i, j ])^3 where a[ i, j ] = 1/i if j<=i, 0 if j>i.
a(n) = (lcm($1..n)/n)^2. - Johannes W. Meijer, Jul 21 2009

Extensions

More terms from Sean A. Irvine, Nov 04 2019

A048619 a(n) = LCM(binomial(n,0), ..., binomial(n,n)) / binomial(n,floor(n/2)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 3, 4, 2, 10, 5, 30, 15, 7, 7, 56, 28, 252, 126, 60, 30, 330, 165, 396, 198, 286, 143, 2002, 1001, 15015, 15015, 7280, 3640, 1768, 884, 15912, 7956, 3876, 1938, 38760, 19380, 406980, 203490, 99484, 49742, 1144066, 572033, 1961256, 980628
Offset: 0

Views

Author

Keywords

Examples

			If n=10 then A002944(10)=2520, A001405(10)=252, the quotient a(10)=10.
		

Crossrefs

Programs

  • Magma
    [Lcm([1..n+1]) div (Floor((n+3)/2)*Binomial(n+1,Floor((n+3)/2))): n in [0..50]]; // Vincenzo Librandi, Jul 10 2019
  • Mathematica
    Table[Apply[LCM, Binomial[n, Range[0, n]]]/Binomial[n, Floor[n/2]], {n, 0, 48}] (* Michael De Vlieger, Jun 29 2017 *)
  • PARI
    {A048619(n) = lcm(vector(n+1, i, i)) / binomial(n+1, (n+1)\2) / ((n+2)\2);}
    

Formula

a(n) = A002944(n)/A001405(n).
a(n) = lcm(1..n+1)/(floor((n+3)/2)*binomial(n+1,floor((n+3)/2))). - Paul Barry, Jul 03 2006
a(n) = lcm(1,2,...,n+1) / (ceiling((n+1)/2)*binomial(n+1,floor((n+1)/2))) = A003418(n+1) / A100071(n+1). - Max Alekseyev, Oct 23 2015
a(n) = A263673(n+1) / A110654(n+1) = A180000(n+1) / A152271(n). - Max Alekseyev, Oct 23 2015
a(2*n-1) = A068553(n) = A068550(n)/n.

Extensions

Definition corrected and a(0)=1 prepended by Max Alekseyev, Oct 23 2015
Previous Showing 11-20 of 35 results. Next