cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 92 results. Next

A054003 tau(n+1) - tau(n) where n and n+1 have the same sum of divisors.

Original entry on oeis.org

0, 2, -4, 0, 4, 0, 0, 8, 6, -4, -6, 6, -8, -8, 0, 4, 0, 4, 0, 8, 8, -8, 0, -4, 0, 8, -8, 0, -12, 12, -8, 8, 0, -8, -8, -4, -12, 24, -8, 0, 8, 0, -8, -4, -8, -8, 0, 16, -4, -4, 4, 0, 0, -28, 0, 0, -20, -4, 24, 0, -16, 8, 8, -8, -8, 12, -16, 0, -40, 40, -8, 8, 0, 0, 0, 40, -8, 0, 40
Offset: 1

Views

Author

Asher Auel, Jan 12 2000

Keywords

Crossrefs

Programs

  • Magma
    [#Divisors(n+1)-#Divisors(n):n in [1..5000000]| SumOfDivisors(n) eq SumOfDivisors(n+1)]; // Marius A. Burtea, Sep 07 2019

Formula

a(n) = A054002(n) - A053249(n).

Extensions

More terms from Naohiro Nomoto, Jun 23 2001

A077086 Remainder when sigma(n+1) is divided by sigma(n).

Original entry on oeis.org

0, 1, 3, 6, 0, 8, 7, 13, 5, 12, 4, 14, 10, 0, 7, 18, 3, 20, 2, 32, 4, 24, 12, 31, 11, 40, 16, 30, 12, 32, 31, 48, 6, 48, 43, 38, 22, 56, 34, 42, 12, 44, 40, 78, 72, 48, 28, 57, 36, 72, 26, 54, 12, 72, 48, 80, 10, 60, 48, 62, 34, 8, 23, 84, 60, 68, 58, 96, 48, 72, 51, 74, 40, 10
Offset: 1

Views

Author

Labos Elemer, Oct 31 2002

Keywords

Examples

			a(7) = 7 since sigma(7) = 8, sigma(8) = 15, and 15 = 1*8 + 7.
		

Crossrefs

Cf. A000203, A000668 (fixed points), A002961, A067081.

Programs

  • Mathematica
    a[n_]:=Mod[DivisorSigma[1,n+1],DivisorSigma[1,n]]; Array[a,74] (* Stefano Spezia, Jan 24 2025 *)
  • PARI
    a(n) = sigma(n+1) % sigma(n); \\ Michel Marcus, Dec 26 2013

Formula

a(n) = Mod(A000203(n+1), A000203(n)).

A132585 Numbers k such that sigma(k)-k-1 divides sigma(k+1)-k-2, where sigma(k) is sum of positive divisors of k and the ratio is greater than zero.

Original entry on oeis.org

25, 49, 799, 899, 32399, 292681, 1492995736325809
Offset: 1

Views

Author

Keywords

Comments

The banal case of ratio equal to zero is excluded. In fact if k+1 is a prime than sigma(k+1)-k-2=0. Therefore the ratio with sigma(k)-k-1 is equal to zero. Is this sequence finite?
a(7) <= 1492995736325809. [From Donovan Johnson, Aug 31 2008]
a(7) > 10^13. - Giovanni Resta, Jul 11 2013
No other terms < 2.7*10^15. - Jud McCranie, Jul 26 2025

Examples

			k=25 -> sigma(25)= 1+5+25 -> sigma(k)-k-1=5
k+1=26 -> sigma(26)= 1+2+13+26 -> sigma(k+1)-k-2=2+13=15
15/5 = 3 (integer > 0)
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(n) local a,i; for i from 1 by 1 to n do if sigma(i)-i-1>0 then a:=(sigma(i+1)-i-2)/(sigma(i)-i-1); if a>0 and trunc(a)=a then print(i); fi; fi; od; end: P(100000);

Extensions

a(6) from Donovan Johnson, Aug 31 2008
a(7) by Jud McCranie, Jul 26 2025

A132586 Numbers k such that sigma(k+1)-k-2 divides sigma(k)-k-1, where sigma(k) is sum of positive divisors of k and the ratio is greater than zero.

Original entry on oeis.org

8, 24, 8925, 32445, 118540859325
Offset: 1

Views

Author

Keywords

Comments

The banal case of ratio equal to zero is excluded. In fact if k is a prime than sigma(k)-k-1=0. Therefore the ratio with sigma(k+1)-k-2 is equal to zero. Is this sequence finite?
a(6), if it exists, is larger than 10^13. - Giovanni Resta, Jul 13 2015
No more terms < 2.7*10^15. - Jud McCranie, Jul 27 2025

Examples

			n=8 -> sigma(8)=1+2+4+8 -> sigma(n)-n-1=2+4=6.
n+1=9 -> sigma(9)=1+3+9 -> sigma(n+1)-n-2=3.
6/3 = 2 (integer >0)
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(n) local a,i; for i from 1 by 1 to n do if sigma(i+1)-i-2>0 then a:=(sigma(i)-i-1)/(sigma(i+1)-i-2); if a>0 and trunc(a)=a then print(i); fi; fi; od; end: P(100000);

Extensions

a(5) from Donovan Johnson, Aug 31 2008

A169635 Integers m such that sigma_2(m) = sigma_2(m + 2) where sigma_2(m) is the sum of squares of divisors of m (A001157).

Original entry on oeis.org

24, 215, 280, 1079, 947519, 1362239, 2230271, 14939999, 19720007, 32509439, 45581759, 45841247, 49436927, 78436511, 82842911, 101014631, 166828031, 225622151, 225757799, 250999559, 377129087, 554998751, 619606439, 846765431, 1204092287, 1302170687, 1710035711
Offset: 1

Views

Author

Michel Lagneau, Apr 04 2010

Keywords

Comments

The equation sigma_2(m) = sigma_2(m + k) has infinitely many solutions where k >= 2 and k is even (J.-M. De Koninck).
From Amiram Eldar, Apr 19 2024: (Start)
De Koninck's proof is based on the assumption of Schinzel's hypothesis H. If q, r = q + 2, s = q^2 + q + 1, and p = q^2 + 3*q + 3 are all primes, then p*q is a term (the values of q+1 are the terms of A268043).
The equation sigma_2(m) = sigma_2(m + 1) has only one solution: m = 6. (End)

Examples

			For m=24, sigma_2(24) = sigma_2(26) = 850.
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 118, entry 1079.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B13, pp. 103-104.

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 500000000 do:liste:= divisors(n) : s2 :=sum(liste[i]^2, i=1..nops(liste)):liste:=divisors(n+2):s3:=sum(liste[i]^2, i=1..nops(liste)):if s2 = s3 then print(n):else fi:od:
  • Mathematica
    Select[Range[10^9], DivisorSigma[2,#] == DivisorSigma[2,#+2]&]
  • PARI
    is(n) = sigma(n, 2) == sigma(n + 2, 2); \\ Amiram Eldar, Apr 19 2024
    
  • PARI
    lista(mmax) = {my(s1 = sigma(1, 2), s2 = sigma(2, 2), s3, s4); forstep(m = 3, mmax, 2, s3 = sigma(m, 2); s4 = sigma(m+1, 2); if(s1 == s3, print1(m - 2, ", ")); if(s2 == s4, print1(m - 1, ", ")); s1 = s3; s2 = s4);} \\ Amiram Eldar, Apr 19 2024

Extensions

a(25)-a(27) from Donovan Johnson, Apr 14 2013

A175875 Numbers k such that sigma(k+3) = 3*sigma(k).

Original entry on oeis.org

3, 30237, 292317, 3116957, 4044037, 6902277, 73442597, 115767957, 137410557, 416776357, 526908197, 541579497, 695350653, 758403357, 1105731897, 1178082357, 1233277917, 1309742557, 1866261597, 1998267037, 2161411557, 2563416237, 2750761437, 2873771997, 2892203997, 3331848517, 3621735037, 3758847117
Offset: 1

Views

Author

Zak Seidov, Oct 06 2010

Keywords

Comments

a(1) = A175874(3).

Crossrefs

Cf. A000203, A002961, A175874, A272027 (3*sigma(n)).

Programs

  • Magma
    [n: n in [1..10^8] | SumOfDivisors(n+3) eq 3*SumOfDivisors(n)]; // Vincenzo Librandi, Jul 28 2017
  • PARI
    isok(n) = sigma(n+3) == 3*sigma(n); \\ Michel Marcus, Oct 19 2013
    

Extensions

a(8)-a(21) from Donovan Johnson, Oct 11 2010
a(22)-a(24) from Donovan Johnson, Sep 10 2012
a(25) from Zak Seidov, Jul 07 2013
a(26)-a(28) from Chai Wah Wu, Jul 27 2017

A192282 Numbers n such that n and n+1 have same sum of anti-divisors.

Original entry on oeis.org

1, 8, 17, 120, 717, 729, 957, 8097, 10785, 12057, 35817, 44817, 52863, 58677, 59757, 76759, 95397, 102957, 114117, 119337, 182157, 206097, 215997, 230037, 253977, 263877, 269277, 271797, 295377, 321417, 402657, 435477, 483117, 485637, 510837, 586797, 589317
Offset: 1

Views

Author

Paolo P. Lava, Jul 27 2011

Keywords

Comments

Like A002961 but using anti-divisors.
Curiously 957 and 958 have same sum of divisors and same sum of anti-divisors.

Examples

			Anti-divisors of 717 are 2, 5, 6, 7, 35, 41, 205, 287, 478 and their sum is 1066.
Anti-divisors of 718 are  3, 4, 5, 7, 35, 41, 205, 287, 479 and their sum is 1066.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    P:=proc(n)
    local a,b,i,k;
    b:=2;
    for i from 4 to n do
      a:=0;
      for k from 2 to i-1 do
        if abs((i mod k)- k/2) < 1 then a:=a+k; fi;
      od;
      if a=b then print(i-1); fi;
      b:=a;
    od;
    end:
    P(200000);

Extensions

Initial term a(1)=1 inserted, a(2)=9 through a(20)=119337 verified, and a(21)-a(28) added by John W. Layman, Aug 04 2011

A217791 Numbers k such that sigma(k) = 3*sigma(k+1).

Original entry on oeis.org

180, 12000, 30996, 47940, 66780, 102816, 128040, 234300, 494088, 712272, 1133088, 1408212, 1623072, 1692768, 1896336, 1925196, 2024760, 2388720, 2529090, 2836008, 3423120, 3724320, 3822360, 4628760, 4750920, 7219608, 7359912, 7603488, 7749060
Offset: 1

Views

Author

Paolo P. Lava, Mar 25 2013

Keywords

Examples

			47940 is in the sequence because sigma(47940)=145152, sigma(47941)=48384, and 145152=3*48384.
7749060 is in the sequence because sigma(7749060)=24192000, sigma(7749061)=8064000, and 24192000=3*8064000.
		

Crossrefs

Programs

Extensions

More terms from Bruno Berselli, Mar 25 2013

A223136 Numbers n such that sigma(n+1) - sigma(n) = k*n for some integer k, where sigma(n) = A000203 (sum of divisors of n).

Original entry on oeis.org

1, 3, 7, 14, 31, 127, 206, 532, 954, 957, 1334, 1364, 1634, 2685, 2974, 4364, 8191, 14841, 18873, 19358, 20145, 24957, 33998, 36566, 42818, 56564, 64665, 74918, 79826, 79833, 84134, 92685, 104944, 109214, 111506, 116937, 122073, 131071, 138237, 147454, 161001
Offset: 1

Views

Author

Jaroslav Krizek, May 01 2013

Keywords

Comments

Supersequence of A000668 for k=1 (Mersenne primes), A067803 for k=-1 (numbers n such that sigma(n) - sigma(n+1) = n) and A002961 for k=0 (numbers n such that n and n+1 have same sum of divisors). For number 1 is k=2.
Corresponding values of integers k: 2, 1, 1, 0, 1, 1, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,....

Examples

			Number 532 is in sequence because sigma(533) - sigma(532) = 588 - 1120 = -532 = (-1) * 532; k = -1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10000], IntegerQ[(DivisorSigma[1, # + 1] - DivisorSigma[1, #])/#] &] (* T. D. Noe, May 02 2013 *)

Extensions

Extended by T. D. Noe, May 02 2013

A225757 Table of consecutive numbers with the same sum of divisors.

Original entry on oeis.org

14, 15, 206, 207, 957, 958, 1334, 1335, 1364, 1365, 1634, 1635, 2685, 2686, 2974, 2975, 4364, 4365, 14841, 14842, 18873, 18874, 19358, 19359, 20145, 20146, 24957, 24958, 33998, 33999, 36566, 36567, 42818, 42819, 56564, 56565, 64665, 64666, 74918, 74919, 79826
Offset: 1

Views

Author

Jean-François Alcover, May 15 2013

Keywords

Comments

Are 3 consecutive terms possible? There are none less than 10^12. See A002961. - T. D. Noe, May 15 2013

Examples

			Sequence begins:
14, 15;
206, 207;
957, 958;
1334, 1335;
etc.
		

Crossrefs

Cf. A225756 (same number of divisors), A225758 (same number and sum of divisors), A002961 (first number of each pair).

Programs

  • Mathematica
    sel = Select[Range[100000], DivisorSigma[1, #] == DivisorSigma[1, # + 1] &]; Union[sel, sel + 1]
    Flatten[SequencePosition[DivisorSigma[1,Range[80000]],{x_,x_}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 13 2017 *)
  • PARI
    v=List();t=[1,3];for(n=3,1e6,t=[t[2],sigma(n)];if(t[1]==t[2],listput(v,n-1);listput(v,n)));vecsort(Vec(v),,8) \\ Charles R Greathouse IV, May 15 2013
Previous Showing 41-50 of 92 results. Next