cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 111 results. Next

A139063 Numbers k for which (6+k!)/6 is prime.

Original entry on oeis.org

3, 4, 10, 11, 13, 14, 17, 21, 82, 115, 165, 167, 173, 174, 208, 225, 380, 655, 1187, 2000, 2568, 3010, 4542, 8750, 12257, 12601, 24083
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

For primes of the form (6+k!)/6, see A139062.
a(28) > 25000. - Robert Price, Nov 20 2016

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 6)/6], AppendTo[a, n]], {n, 1, 500}]; a
  • PARI
    for(k=3,1e3,if(ispseudoprime(k!/6+1),print1(k", "))) \\ Charles R Greathouse IV, Jul 15 2011

Extensions

a(18) and a(19) from Robert Israel, May 19 2014
More terms from Serge Batalov, Feb 18 2015
a(24)-a(27) from Robert Price, Nov 20 2016

A139065 Numbers k for which (7+k!)/7 is prime.

Original entry on oeis.org

11, 15, 16, 25, 35, 59, 64, 68, 82, 121, 149, 238, 584, 912, 3349, 4111, 4324, 15314, 19944, 20658, 22740, 23364
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

For primes of the form (7+k!)/7, see A139064.
a(23) > 25000. - Robert Price, Nov 20 2016

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 7)/7], AppendTo[a, n]], {n, 1, 500}]; a
    Select[Range[500],PrimeQ[(7+#!)/7]&] (* Harvey P. Dale, Sep 01 2014 *)
  • PARI
    for(k=7,1e3,if(ispseudoprime(k!/7+1),print1(k", "))) \\ Charles R Greathouse IV, Jul 15 2011

Extensions

More terms from Serge Batalov, Feb 18 2015
a(18)-a(22) from Robert Price, Nov 20 2016

A033932 Least positive m such that n! + m is prime.

Original entry on oeis.org

1, 1, 1, 1, 5, 7, 7, 11, 23, 17, 11, 1, 29, 67, 19, 43, 23, 31, 37, 89, 29, 31, 31, 97, 131, 41, 59, 1, 67, 223, 107, 127, 79, 37, 97, 61, 131, 1, 43, 97, 53, 1, 97, 71, 47, 239, 101, 233, 53, 83, 61, 271, 53, 71, 223, 71, 149, 107, 283, 293, 271, 769, 131, 271
Offset: 0

Views

Author

Keywords

Comments

Conjecture: No term is a composite number. a(n) is a prime > 3*prime(k), where k is such that prime(k) < n <= prime(k+1). - Amarnath Murthy, Apr 07 2004
Terms after n = 2000 in the b-file correspond to Fermat and Lucas PRP. - Phillip Poplin, Oct 12 2019

Crossrefs

Programs

  • Maple
    a:= n-> (f-> nextprime(f)-f)(n!):
    seq(a(n), n=0..70);  # Alois P. Heinz, Feb 22 2023
  • Mathematica
    a[n_] := (an = 1; While[ !PrimeQ[n! + an], an++]; an); Table[a[n], {n, 0, 63}] (* Jean-François Alcover, Dec 05 2012 *)
    NextPrime[#]-#&/@(Range[0,70]!) (* Harvey P. Dale, May 18 2014 *)
  • PARI
    for(n=0,70, k=1; while(!isprime(n!+k), k++); print1(k,","))
    
  • PARI
    a(n) = nextprime(n!+1) - n!; \\ Michel Marcus, Dec 25 2020
    
  • Python
    from sympy import factorial, nextprime
    def a(n): fn = factorial(n); return nextprime(fn) - fn
    print([a(n) for n in range(64)]) # Michael S. Branicky, May 22 2022

Formula

a(n) = A151800(n!) - n!. - Max Alekseyev, Jul 23 2014

Extensions

More terms from Jud McCranie
a(21) onwards from Wouter Meeussen
Better description from Rick L. Shepherd, Nov 06 2002

A005234 Primes p such that 1 + product of primes up to p is prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 31, 379, 1019, 1021, 2657, 3229, 4547, 4787, 11549, 13649, 18523, 23801, 24029, 42209, 145823, 366439, 392113, 4328927, 5256037, 6369619, 7351117, 9562633
Offset: 1

Views

Author

Keywords

Comments

Conjecture: if p# + 1 is a prime number, then the next prime is less than p# + exp(1)*p. - Arkadiusz Wesolowski, Feb 20 2013
Conjecture: if p# + 1 is a prime, then the next prime is less than p# + p^2. - Thomas Ordowski, Apr 07 2013

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 134.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 211, p. 61, Ellipses, Paris 2008.
  • H. Dubner, A new primorial prime, J. Rec. Math., 21 (No. 4, 1989), 276.
  • R. K. Guy, Unsolved Problems in Number Theory, Section A2.
  • F. Le Lionnais, Les Nombres Remarquables, Paris, Hermann, 1983, p. 109, 1983.
  • Paulo Ribenboim, The New Book of Prime Number Records, p. 13.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 4-5.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 112.

Crossrefs

Cf. A006862 (Euclid numbers).
Cf. A014545 (Primorial plus 1 prime indices: n such that 1 + (Product of first n primes) is prime).
Cf. A018239 (Primorial plus 1 primes).

Programs

  • Magma
    [p:p in PrimesUpTo(3000)|IsPrime(&*PrimesUpTo(p)+1)]; // Marius A. Burtea, Mar 25 2019
  • Maple
    N:= 5000: # to get all terms <= N
    Primes:= select(isprime, [$2..N]):
    P:= 1: count:= 0:
    for n from 1 to nops(Primes) do
       P:= P*Primes[n];
       if isprime(P+1) then
         count:= count+1; A[count]:= Primes[n]
       fi
    od:
    seq(A[i],i=1..count); # Robert Israel, Nov 03 2015
  • Mathematica
    (* This program is not convenient for large values of p *) p = pp = 1; Reap[While[p < 5000, p = NextPrime[p]; pp = pp*p; If[PrimeQ[1 + pp], Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Dec 31 2012 *)
    With[{p = Prime[Range[200]]}, p[[Flatten[Position[Rest[FoldList[Times, 1, p]] + 1, ?PrimeQ]]]]] (* _Eric W. Weisstein, Nov 03 2015 *)
  • PARI
    is(n)=isprime(n) && ispseudoprime(prod(i=1,primepi(n),prime(i))+1) \\ Charles R Greathouse IV, Feb 20 2013
    
  • PARI
    is(n)=isprime(n) && ispseudoprime(factorback(primes([2,n]))+1) \\ M. F. Hasler, May 31 2018
    

Formula

a(n) = A000040(A014545(n+1)). - M. F. Hasler, May 31 2018

Extensions

42209 sent in by Chris Nash (chrisnash(AT)cwix.com).
145823 discovered and sent in by Arlin Anderson (starship1(AT)gmail.com) and Don Robinson (donald.robinson(AT)itt.com), Jun 01 2000
366439, 392113 from Eric W. Weisstein, Mar 13 2004 (based on information in A014545)
a(23) from Jeppe Stig Nielsen, Aug 08 2024
a(24) from Jeppe Stig Nielsen, Sep 01 2024
a(25) from Jeppe Stig Nielsen, Sep 24 2024
a(26) from Jeppe Stig Nielsen, Nov 10 2024
a(27) from Jeppe Stig Nielsen, Aug 21 2025

A139071 Numbers k for which (10+k!)/10 is prime.

Original entry on oeis.org

5, 6, 11, 12, 15, 23, 26, 37, 45, 108, 112, 129, 137, 148, 172, 248, 760, 807, 975, 1398, 5231, 8765, 24182
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

Primes of the form (10+k!)/10 see A139070.
a(24) > 25000. - Robert Price, Nov 08 2016

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 10)/10], AppendTo[a, n]], {n, 1, 500}]; a
  • PARI
    for(k=5,1e3,if(ispseudoprime(k!/10+1),print1(k", "))) \\ Charles R Greathouse IV, Jul 15 2011

Extensions

More terms from Serge Batalov, Feb 18 2015
a(22)-a(23) from Robert Price, Nov 08 2016

A082671 Numbers n such that (n!-2)/2 is a prime.

Original entry on oeis.org

3, 4, 5, 6, 9, 31, 41, 373, 589, 812, 989, 1115, 1488, 1864, 1918, 4412, 4686, 5821, 13830
Offset: 1

Views

Author

Cino Hilliard, May 18 2003

Keywords

Examples

			(4!-2)/2 = 11 is a prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..600]| IsPrime((Factorial(n)-2) div 2)]; // Vincenzo Librandi, Feb 18 2015
  • Mathematica
    Select[Range[0, 14000], PrimeQ[(#! - 2) / 2] &] (* Vincenzo Librandi, Feb 18 2015 *)
  • PARI
    xfactpk(n,k=2) = { for(x=2,n, y = (x!-k)/k; if(isprime(y),print1(x", ")) ) }
    

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 03 2008
Edited by T. D. Noe, Oct 30 2008

A088332 Primes of the form k! + 1.

Original entry on oeis.org

2, 3, 7, 39916801, 10888869450418352160768000001, 13763753091226345046315979581580902400000001, 33452526613163807108170062053440751665152000000001
Offset: 1

Views

Author

Cino Hilliard, Nov 06 2003

Keywords

Comments

The next term is too large to include.
Of course 2 = 0! + 1 = 1! + 1 has two such representations.
Prime numbers that are the sum of two factorial numbers. - Juri-Stepan Gerasimov, Nov 08 2010

Examples

			3! + 1 = 7 is prime.
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 118.

Crossrefs

Cf. A002981 (values of k), A038507, A062701.

Programs

  • Mathematica
    lst={};Do[p=n!+1;If[PrimeQ[p],AppendTo[lst,p]],{n,0,3*5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 27 2009 *)
    Select[Range[50]!+1,PrimeQ] (* Harvey P. Dale, May 17 2025 *)
  • PARI
    factp1prime(n)=for(x=1,n,xf=x!+1; if(isprime(xf),print1(xf",")))

Formula

a(n) = A038507(A002981(n+1)). - Elmo R. Oliveira, Apr 16 2025

A139199 Numbers k such that (k!-4)/4 is prime.

Original entry on oeis.org

4, 5, 6, 7, 8, 10, 15, 18, 23, 157, 165, 183, 184, 362, 611, 908, 2940, 6875, 9446, 16041
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

Numbers k such that (k!-m)/m is prime:
for m=1 see A002982
for m=2 prime or pseudoprime see A082671
for m=3 see A139056
for m=4 see A139199
for m=5 see A139200
for m=6 see A139201
for m=7 see A139202
for m=8 see A139203
for m=9 see A139204
for m=10 see A139205
a(17) > 2000 - Ray G. Opao, Sep 30 2008
a(21) > 25000 - Robert Price, Sep 25 2016

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! - 4)/4], Print[a]; AppendTo[a, n]], {n, 1, 184}]; a (*Artur Jasinski*)
  • PARI
    is(n)=n>3 && isprime(n!/4-1) \\ Charles R Greathouse IV, Apr 29 2015

Extensions

a(15)-a(16) from Ray G. Opao, Sep 30 2008
a(17) from Serge Batalov, Feb 18 2015
a(18)-a(20) from Robert Price, Sep 25 2016

A139205 Numbers k such that (k!-10)/10 is prime.

Original entry on oeis.org

5, 6, 7, 11, 13, 17, 28, 81, 87, 433, 640, 647, 798, 1026, 1216, 1277, 3825, 6684
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008

Keywords

Comments

a(19) > 25000. - Robert Price, Dec 23 2016

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! - 10)/10], Print[a]; AppendTo[a, n]], {n, 1, 300}]; a (*Artur Jasinski*)
    Select[Range[700],PrimeQ[(#!-10)/10]&] (* Harvey P. Dale, Feb 15 2015 *)

Extensions

One additional term (a(12)) from Harvey P. Dale, Feb 15 2015
More terms from Serge Batalov, Feb 18 2015
a(18) from Robert Price, Dec 23 2016

A151913 Numbers n for which (8+n!)/8 is prime.

Original entry on oeis.org

7, 9, 10, 12, 14, 20, 23, 24, 29, 44, 108, 2049, 3072, 4862, 8807, 15089
Offset: 1

Views

Author

Artur Jasinski, Apr 07 2008

Keywords

Comments

a(17) > 25000. - Robert Price, Dec 20 2016

Crossrefs

For primes of the form (8+k!!)/8 see A139066.
Cf. n!/m-1 is a prime: A002982, A082671, A139056, A139199-A139205; n!/m+1 is a prime: A002981, A082672, A089085, A139061, A139058, A139063, A139065, A151913, A137390, A139071 (1<=m<=10).

Programs

  • Mathematica
    a = {}; Do[If[PrimeQ[(n! + 8)/8], AppendTo[a, n]], {n, 1, 500}]; a
  • PARI
    is(n)=n>6 && isprime((8+n!)/8) \\ Charles R Greathouse IV, Apr 29 2016

Extensions

Definition corrected Feb 24 2010
More terms from Serge Batalov, Feb 18 2015
a(15)-a(16) from Robert Price, Dec 20 2016
Previous Showing 11-20 of 111 results. Next