A113405 Expansion of x^3/(1 - 2*x + x^3 - 2*x^4) = x^3/( (1-2*x)*(1+x)*(1-x+x^2) ).
0, 0, 0, 1, 2, 4, 7, 14, 28, 57, 114, 228, 455, 910, 1820, 3641, 7282, 14564, 29127, 58254, 116508, 233017, 466034, 932068, 1864135, 3728270, 7456540, 14913081, 29826162, 59652324, 119304647, 238609294, 477218588, 954437177, 1908874354, 3817748708
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, arXiv:math/0205301 [math.CO], 2002. [Link to arXiv version]
- M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
- N. J. A. Sloane, Transforms
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1,2).
Crossrefs
From Ross Drewe, Sep 03 2009: (Start)
Other sequences a(n) = round(b^n / c), where b and c are very small integers:
A001045 b = 2; c = 3
A007910 b = 2; c = 5
A016029 b = 2; c = 5/3
A077947 b = 2; c = 7
abs(A078043) b = 2; c = 7/3
A007051 b = 3; c = 2
A015518 b = 3; c = 4
A034478 b = 5; c = 2
A003463 b = 5; c = 4
A015531 b = 5; c = 6
(End)
Programs
-
Magma
[Round(2^n/9): n in [0..40]]; // Vincenzo Librandi, Aug 11 2011
-
Maple
A010892 := proc(n) op((n mod 6)+1,[1,1,0,-1,-1,0]) ; end proc: A113405 := proc(n) (2^n-(-1)^n)/9 -A010892(n-1)/3; end proc: # R. J. Mathar, Dec 17 2010
-
Mathematica
CoefficientList[Series[x^3/(1-2x+x^3-2x^4),{x,0,40}],x] (* or *) LinearRecurrence[{2,0,-1,2},{0,0,0,1},40] (* Harvey P. Dale, Apr 30 2011 *)
-
PARI
a(n)=2^n\/9 \\ Charles R Greathouse IV, Jun 05 2011
-
Python
def A113405(n): return ((1<
Chai Wah Wu, Apr 17 2025
Formula
a(n) = 2a(n-1) - a(n-3) + 2a(n-4).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*A001045(k).
a(n) = Sum_{k=0..n} binomial((n+k)/2,k)*A001045((n-k)/2)*(1+(-1)^(n-k))/2.
From Paul Curtz, Dec 16 2007: (Start)
a(n+1) - 2a(n) = A131531(n).
a(n) + a(n+3) = 2^n. (End)
a(n) = round(2^n/9). - Ross Drewe, Sep 03 2009
9*a(n) = 2^n + (-1)^n - 3*A010892(n). - R. J. Mathar, Mar 24 2018
Extensions
Edited by N. J. A. Sloane, Dec 13 2007
Comments