cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 176 results. Next

A113405 Expansion of x^3/(1 - 2*x + x^3 - 2*x^4) = x^3/( (1-2*x)*(1+x)*(1-x+x^2) ).

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 7, 14, 28, 57, 114, 228, 455, 910, 1820, 3641, 7282, 14564, 29127, 58254, 116508, 233017, 466034, 932068, 1864135, 3728270, 7456540, 14913081, 29826162, 59652324, 119304647, 238609294, 477218588, 954437177, 1908874354, 3817748708
Offset: 0

Views

Author

Paul Barry, Oct 28 2005

Keywords

Comments

A transform of the Jacobsthal numbers. A059633 is the equivalent transform of the Fibonacci numbers.
Paul Curtz, Aug 05 2007, observes that the inverse binomial transform of 0,0,0,1,2,4,7,14,28,57,114,228,455,910,1820,... gives the same sequence up to signs. That is, the extended sequence is an eigensequence for the inverse binomial transform (an autosequence).
The round() function enables the closed (non-recurrence) formula to take a very simple form: see Formula section. This can be generalized without loss of simplicity to a(n) = round(b^n/c), where b and c are very small, incommensurate integers (c may also be an integer fraction). Particular choices of small integers for b and c produce a number of well-known sequences which are usually defined by a recurrence - see Cross Reference. - Ross Drewe, Sep 03 2009

Crossrefs

From Ross Drewe, Sep 03 2009: (Start)
Other sequences a(n) = round(b^n / c), where b and c are very small integers:
A001045 b = 2; c = 3
A007910 b = 2; c = 5
A016029 b = 2; c = 5/3
A077947 b = 2; c = 7
abs(A078043) b = 2; c = 7/3
A007051 b = 3; c = 2
A015518 b = 3; c = 4
A034478 b = 5; c = 2
A003463 b = 5; c = 4
A015531 b = 5; c = 6
(End)

Programs

  • Magma
    [Round(2^n/9): n in [0..40]]; // Vincenzo Librandi, Aug 11 2011
    
  • Maple
    A010892 := proc(n) op((n mod 6)+1,[1,1,0,-1,-1,0]) ; end proc:
    A113405 := proc(n) (2^n-(-1)^n)/9 -A010892(n-1)/3; end proc: # R. J. Mathar, Dec 17 2010
  • Mathematica
    CoefficientList[Series[x^3/(1-2x+x^3-2x^4),{x,0,40}],x] (* or *) LinearRecurrence[{2,0,-1,2},{0,0,0,1},40] (* Harvey P. Dale, Apr 30 2011 *)
  • PARI
    a(n)=2^n\/9 \\ Charles R Greathouse IV, Jun 05 2011
    
  • Python
    def A113405(n): return ((1<Chai Wah Wu, Apr 17 2025

Formula

a(n) = 2a(n-1) - a(n-3) + 2a(n-4).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)*A001045(k).
a(n) = Sum_{k=0..n} binomial((n+k)/2,k)*A001045((n-k)/2)*(1+(-1)^(n-k))/2.
a(3n) = A015565(n), a(3n+1) = 2*A015565(n), a(3n+2) = 4*A015565(n). - Paul Curtz, Nov 30 2007
From Paul Curtz, Dec 16 2007: (Start)
a(n+1) - 2a(n) = A131531(n).
a(n) + a(n+3) = 2^n. (End)
a(n) = round(2^n/9). - Ross Drewe, Sep 03 2009
9*a(n) = 2^n + (-1)^n - 3*A010892(n). - R. J. Mathar, Mar 24 2018

Extensions

Edited by N. J. A. Sloane, Dec 13 2007

A004213 Shifts one place left under 4th-order binomial transform.

Original entry on oeis.org

1, 1, 5, 29, 201, 1657, 15821, 170389, 2032785, 26546673, 376085653, 5736591885, 93614616409, 1625661357673, 29905322979421, 580513190237573, 11850869542405409, 253669139947767777, 5678266212792053029, 132607996474971041789, 3224106929536557918697
Offset: 0

Views

Author

Keywords

Comments

Length-n restricted growth strings (RGS) [s(0),s(1),...,s(n-1)] where s(k)<=F(k)+4 where F(0)=0 and F(k+1)=s(k+1) if s(k+1)-s(k)=4, otherwise F(k+1)=F(k); see example and Fxtbook link. - Joerg Arndt, Apr 30 2011

Examples

			Restricted growth strings: a(0)=1 corresponds to the empty string, a(1)=1 to [0],
a(2)=3 to [00], [01], [02], [03], and [04], a(3) = 29 to
       RGS          F
.1:  [ 0 0 0 ]    [ 0 0 0 ]
.2:  [ 0 0 1 ]    [ 0 0 0 ]
.3:  [ 0 0 2 ]    [ 0 0 0 ]
.4:  [ 0 0 3 ]    [ 0 0 0 ]
.5:  [ 0 0 4 ]    [ 0 0 4 ]
.6:  [ 0 1 0 ]    [ 0 0 0 ]
.7:  [ 0 1 1 ]    [ 0 0 0 ]
.8:  [ 0 1 2 ]    [ 0 0 0 ]
.9:  [ 0 1 3 ]    [ 0 0 0 ]
10:  [ 0 1 4 ]    [ 0 0 4 ]
11:  [ 0 2 0 ]    [ 0 0 0 ]
12:  [ 0 2 1 ]    [ 0 0 0 ]
13:  [ 0 2 2 ]    [ 0 0 0 ]
14:  [ 0 2 3 ]    [ 0 0 0 ]
15:  [ 0 2 4 ]    [ 0 0 4 ]
16:  [ 0 3 0 ]    [ 0 0 0 ]
17:  [ 0 3 1 ]    [ 0 0 0 ]
18:  [ 0 3 2 ]    [ 0 0 0 ]
19:  [ 0 3 3 ]    [ 0 0 0 ]
20:  [ 0 3 4 ]    [ 0 0 4 ]
21:  [ 0 4 0 ]    [ 0 4 4 ]
22:  [ 0 4 1 ]    [ 0 4 4 ]
23:  [ 0 4 2 ]    [ 0 4 4 ]
24:  [ 0 4 3 ]    [ 0 4 4 ]
25:  [ 0 4 4 ]    [ 0 4 4 ]
26:  [ 0 4 5 ]    [ 0 4 4 ]
27:  [ 0 4 6 ]    [ 0 4 4 ]
28:  [ 0 4 7 ]    [ 0 4 4 ]
29:  [ 0 4 8 ]    [ 0 4 8 ]
[_Joerg Arndt_, Apr 30 2011]
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A075499 (row sums).
A004211 (RGS where s(k)<=F(k)+2), A004212 (s(k)<=F(k)+3), A005011 (s(k)<=F(k)+5), A000110 (s(k)<=F(k)+1). - Joerg Arndt, Apr 30 2011

Programs

  • Maple
    A004213 := proc(n)
        add(4^(n-m)*combinat[stirling2](n,m),m=0..n) ;
    end proc:
    seq(A004213(n),n=0..30) ; # R. J. Mathar, Aug 20 2022
  • Mathematica
    Table[4^n BellB[n, 1/4], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
  • Maxima
    a(n):=if n=0 then 1 else sum(4^(n-k)*binomial(n-1, k-1)*a(k-1), k, 1, n); /* Vladimir Kruchinin, Nov 28 2011 */
  • PARI
    x='x+O('x^66);
    egf=exp(intformal(exp(4*x))); /* =  1 + x + 5/2*x^2 + 29/6*x^3 + 67/8*x^4 + ... */
    /* egf=exp(1/4*(exp(4*x)-1)) */ /* alternative computation */
    Vec(serlaplace(egf)) /* Joerg Arndt, Apr 30 2011 */
    

Formula

a(n) = Sum_{m=0..n} 4^(n-m)*Stirling2(n, m).
E.g.f.: exp((exp(4*x)-1)/4).
O.g.f. A(x) satisfies A'(x)/A(x) = e^(4x).
E.g.f.: exp(Integral_{t = 0..x} exp(4*t)). - Joerg Arndt, Apr 30 2011
O.g.f.: Sum_{k>=0} x^k/Product_{j=1..k} (1-4*j*x). - Joerg Arndt, Apr 30 2011
Define f_1(x), f_2(x), ... such that f_1(x) = e^x, f_{n+1}(x) = (d/dx)(x*f_n(x)), for n = 2, 3, .... Then a(n) = e^(-1/4)*4^{n-1}*f_n(1/4). - Milan Janjic, May 30 2008
a(n) = upper left term in M^n, M = an infinite square production matrix in which a diagonal of (4,4,4,...) is appended to the right of Pascal's triangle:
1, 4, 0, 0, 0, ...
1, 1, 4, 0, 0, ...
1, 2, 1, 4, 0, ...
1, 3, 3, 1, 4, ...
... - Gary W. Adamson, Jul 29 2011
G.f. satisfies A(x) = 1 + x/(1 - 4*x)*A(x/(1 - 4*x)). a(n) = Sum_{k = 1..n} 4^(n-k)*binomial(n-1,k-1)*a(k-1), n > 0, a(0) = 1. - Vladimir Kruchinin, Nov 28 2011 [corrected by Ilya Gutkovskiy, May 02 2019]
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-4*k*x)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 24 2013
G.f.: (G(0) - 1)/(1+x) where G(k) = 1 + 1/(1-4*k*x)/(1-x/(x+1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 31 2013
G.f.: T(0)/(1-x), where T(k) = 1 - 4*x^2*(k+1)/( 4*x^2*(k+1) - (1-x-4*x*k)*(1-5*x-4*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 19 2013
a(n) = exp(-1/4) * Sum_{k>=0} 4^(n-k) * k^n / k!. - Vaclav Kotesovec, Jul 15 2021
a(n) ~ 4^n * n^n * exp(n/LambertW(4*n) - 1/4 - n) / (sqrt(1 + LambertW(4*n)) * LambertW(4*n)^n). - Vaclav Kotesovec, Jul 15 2021
From Peter Bala, Jun 29 2024: (Start)
a(n) = exp(-1/4)*Sum_{n >= 0} (4*n)^k/(n!*4^n).
Touchard's congruence holds: for odd prime p, a(p+k) == (a(k) + a(k+1)) (mod p) for k = 0,1,2,.... In particular, a(p) == 2 (mod p) for odd prime p. See A004211. (End)

A000994 Shifts 2 places left under binomial transform.

Original entry on oeis.org

1, 0, 1, 1, 2, 5, 13, 36, 109, 359, 1266, 4731, 18657, 77464, 337681, 1540381, 7330418, 36301105, 186688845, 995293580, 5491595645, 31310124067, 184199228226, 1116717966103, 6968515690273, 44710457783760, 294655920067105, 1992750830574681, 13817968813639426
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of permutations of [n-1] that avoid both of the dashed patterns 1-23 and 3-12 and start with a descent (or are a singleton). For example, a(5)=5 counts 2143, 3142, 3214, 3241, 4321. - David Callan, Nov 21 2011

Examples

			A(x) = 1 + x^2/(1-x) + x^4/((1-x)^2*(1-2x)) + x^6/((1-x)^2*(1-2x)^2*(1-3x)) +...
		

References

  • Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nuernberg, Jul 27 1994
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A143983. Cf. A007476, A088022, A086880.

Programs

  • Haskell
    a000994 n = a000994_list !! n
    a000994_list = 1 : 0 : us where
      us = 1 : 1 : f 2 where
        f x = (1 + sum (zipWith (*) (map (a007318' x) [2..x]) us)) : f (x + 1)
    -- Reinhard Zumkeller, Jun 02 2013
  • Maple
    A000994 := proc(n) local k; option remember; if n <= 1 then 1 else 1 + add(binomial(n, k)*A000994(k - 2), k = 2 .. n); fi; end;
  • Mathematica
    a[n_] := a[n] = 1 + Sum[Binomial[n, k]*a[k-2], {k, 2, n}]; Join[{1, 0}, Table[a[n], {n, 0, 24}]] (* Jean-François Alcover, Oct 11 2011, after Maple *)
  • PARI
    a(n)=polcoeff(sum(k=0, n, x^(2*k)*(1-k*x)/prod(j=0, k, 1-j*x+x*O(x^n))^2), n) \\ Paul D. Hanna, Nov 02 2006
    

Formula

Since this satisfies a recurrence similar to that of the Bell numbers (A000110), the asymptotic behavior is presumably just as complicated - see A000110 for details.
However, a(n)/A000995(n) (e.g., 77464/63117) -> 1.228..., the constant in A051148 and A051149.
O.g.f.: A(x) = Sum_{n>=0} x^(2*n)*(1-n*x)/Product_{k=0..n} (1-k*x)^2. - Paul D. Hanna, Nov 02 2006
Let S(n) = Sum_{k >= 1} k^n/k!^2. Then S(n) = a(n)*S(0) + A000995(n)*S(1) is stated in A086880, where S(0) = 2.279585302... (see A070910) and S(1) = 1.590636854... (see A096789). Cf. A088022. - Peter Bala, Jan 27 2015
G.f. A(x) satisfies: A(x) = 1 + x^2 * A(x/(1 - x)) / (1 - x). - Ilya Gutkovskiy, Aug 09 2020

A005011 Shifts one place left under 5th-order binomial transform.

Original entry on oeis.org

1, 1, 6, 41, 331, 3176, 35451, 447981, 6282416, 96546231, 1611270851, 28985293526, 558413253581, 11458179765541, 249255304141006, 5725640423174901, 138407987170952351, 3510263847256823056
Offset: 0

Views

Author

Keywords

Comments

Length-n restricted growth strings (RGS) [s(0),s(1),...,s(n-1)] where s(k)<=F(k)+5 where F(0)=0 and F(k+1)=s(k+1) if s(k+1)-s(k)=5, otherwise F(k+1)=F(k); see examples in A004211, A004212, and A004213, and Fxtbook link. [Joerg Arndt, Apr 30 2011]

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A075500 (row sums).
A004211 (RGS where s(k)<=F(k)+2), A004212 (s(k)<=F(k)+3), A004213 (s(k)<=F(k)+4), A000110 (s(k)<=F(k)+1). - Joerg Arndt, Apr 30 2011

Programs

  • Mathematica
    Table[5^n BellB[n, 1/5], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)
  • PARI
    x='x+O('x^66);
    egf=exp(intformal(exp(5*x))); /* =  1 + x + 3*x^2 + 41/6*x^3 + 331/24*x^4 + ... */
    /* egf=exp(1/5*(exp(5*x)-1)) */ /* alternative computation */
    Vec(serlaplace(egf)) /* Joerg Arndt, Apr 30 2011 */

Formula

a(n) = Sum_{m=0..n} 5^(n-m)*Stirling2(n, m), n >= 0.
E.g.f.: exp((exp(5*x)-1)/5).
O.g.f. A(x) satisfies A'(x)/A(x) = exp(5*x).
E.g.f.: exp(Integral_{t = 0..x} exp(5*t)). - Joerg Arndt, Apr 30 2011
O.g.f.: Sum_{k>=0} x^k/Product_{j=1..k} (1-5*j*x). - Joerg Arndt, Apr 30 2011
Define f_1(x), f_2(x), ... such that f_1(x)=e^x, f_{n+1}(x) = (d/dx)(x*f_n(x)), for n=2,3,.... Then a(n) = e^(-1/5)*5^{n-1}*f_n(1/5). - Milan Janjic, May 30 2008
a(n) = upper left term in M^n, M = an infinite square production matrix in which a diagonal of (5,5,5,...) is appended to the right of Pascal's triangle:
1, 5, 0, 0, 0, ...
1, 1, 5, 0, 0, ...
1, 2, 1, 5, 0, ...
1, 3, 3, 1, 5, ...
... - Gary W. Adamson, Jul 29 2011
G.f.: T(0)/(1-x), where T(k) = 1 - 5*x^2*(k+1)/( 5*x^2*(k+1) - (1-x-5*x*k)*(1-6*x-5*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 25 2013
G.f. A(x) satisfies: A(x) = 1 + x*A(x/(1 - 5*x))/(1 - 5*x). - Ilya Gutkovskiy, May 03 2019
a(n) ~ 5^n * n^n * exp(n/LambertW(5*n) - 1/5 - n) / (sqrt(1 + LambertW(5*n)) * LambertW(5*n)^n). - Vaclav Kotesovec, Jul 15 2021
From Peter Bala, Jun 29 2024: (Start)
a(n) = exp(-1/5)*Sum_{n >= 0} (5*n)^k/(n!*5^n).
Touchard's congruence holds: for all primes p != 5, a(p+k) == (a(k) + a(k+1)) (mod p) for k = 0,1,2,.... In particular, a(p) == 2 (mod p) for all primes p != 5. See A004211. (End)

A005012 Shifts one place left under 6th-order binomial transform.

Original entry on oeis.org

1, 1, 7, 55, 505, 5497, 69823, 1007407, 16157905, 284214097, 5432922775, 112034017735, 2476196276617, 58332035387017, 1457666574447247, 38485034941511935, 1069787864231083297, 31213730550761076769, 953352927192964243879, 30406448846308128741847
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A004211.

Programs

  • GAP
    List([0..20],n->Sum([0..n],m->6^(n-m)*Stirling2(n,m))); # Muniru A Asiru, Mar 20 2018
  • Maple
    seq(6^n*BellB(n,1/6), n = 0 .. 50); # Robert Israel, Oct 20 2015
  • Mathematica
    Table[6^n BellB[n, 1/6], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 20 2015 *)

Formula

a(n) = sum((6^(n-m))*stirling2(n,m), m=0..n). stirling2(n,m)=A008277(n,m).
E.g.f.: exp((exp(6*x)-1)/6) satisfies A'(x)/A(x) = exp(6*x).
G.f.: T(0)/(x*(1-x)) -1/x, where T(k) = 1 - 6*x^2*(k+1)/( 6*x^2*(k+1) - (1-x-6*x*k)*(1-7*x-6*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 25 2013
a(n) = 6^n * B(n,1/6) where B(n,x) is the Bell polynomial of degree n. - Vladimir Reshetnikov, Oct 20 2015
O.g.f.: Sum_{k>=0} x^k/Product_{j=1..k} (1 - 6*j*x). - Ilya Gutkovskiy, Mar 20 2018
a(n) ~ 6^n * n^n * exp(n/LambertW(6*n) - 1/6 - n) / (sqrt(1 + LambertW(6*n)) * LambertW(6*n)^n). - Vaclav Kotesovec, Jul 15 2021

Extensions

a(0)=1 inserted by Alois P. Heinz, Oct 20 2015

A003659 Shifts left under Stirling2 transform.

Original entry on oeis.org

1, 1, 2, 6, 26, 152, 1144, 10742, 122772, 1673856, 26780972, 496090330, 10519217930, 252851833482, 6832018188414, 205985750827854, 6885220780488694, 253685194149119818, 10250343686634687424, 452108221967363310278, 21676762640915055856716
Offset: 1

Views

Author

Keywords

Comments

Apart from leading term, number of M-sequences from multicomplexes on at most 4 variables with no monomial of degree more than n+1.
Stirling2 transform of a(n) = [1, 1, 2, 6, 26, ...] is a(n+1) = [1, 2, 6, 26, ...].
Eigensequence of Stirling2 triangle A008277. - Philippe Deléham, Mar 23 2007

References

  • S. Linusson, The number of M-sequences and f-vectors, Combinatorica, 19 (1999), 255-266.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A048801.
Cf. A153277, A153278. - Jonathan Vos Post, Dec 22 2008

Programs

  • Maple
    stirtr:= proc(p)
               proc(n) add(p(k)*Stirling2(n,k), k=0..n) end
             end:
    a:= proc(n) option remember; `if`(n<3, 1, aa(n-1)) end:
    aa:= stirtr(a):
    seq(a(n), n=1..25);  # Alois P. Heinz, Jun 22 2012
  • Mathematica
    terms = 21; A[] = 0; Do[A[x] = Normal[Integrate[1 + A[Exp[x] - 1 + O[x]^(terms + 1)], x] + O[x]^(terms + 1)], terms];
    CoefficientList[A[x], x]*Range[0, terms]! // Rest (* Jean-François Alcover, May 23 2012, updated Jan 12 2018 *)
  • PARI
    {a(n)=local(A, E); if(n<0, 0, A=O(x); E=exp(x+x*O(x^n))-1; for(m=1, n, A=intformal( subst( 1+A, x, E+x*O(x^m)))); n!*polcoeff(A, n))} /* Michael Somos, Mar 08 2004 */
    
  • PARI
    a_vector(n) = my(v=vector(n)); v[1]=1; for(i=1, n-1, v[i+1]=sum(j=1, i, stirling(i, j, 2)*v[j])); v; \\ Seiichi Manyama, Jun 24 2022

Formula

E.g.f. A(x) satisfies A(x)' = 1+A(exp(x)-1).
G.f. satisfies: Sum_{n>=1} a(n)*x^n = x * (1 + Sum_{n>=1} a(n) * x^n / Product_{j=1..n} (1 - j*x)). - Ilya Gutkovskiy, May 09 2019
a(1) = 1; a(n+1) = Sum_{k=1..n} Stirling2(n,k) * a(k). - Seiichi Manyama, Jun 24 2022

A007560 Number of planted identity trees where non-root, non-leaf nodes an even distance from root are of degree 2.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 6, 10, 17, 29, 51, 89, 159, 284, 512, 930, 1692, 3101, 5698, 10515, 19464, 36143, 67296, 125622, 235050, 440756, 828142, 1558955, 2939761, 5552744, 10504222, 19899760, 37750091, 71704061, 136361602, 259618770, 494821629, 944074665
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A007562.
Column k=2 of A316074.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> `if`(n<2, n, b(n-2, n-2)):
    seq(a(n), n=1..50);  # Alois P. Heinz, May 19 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[a[i], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := If[n<2, n, b[n-2, n-2]]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jan 27 2014, after Alois P. Heinz *)

Formula

Shifts 2 places left under weigh transform.
a(n) ~ c * d^n / n^(3/2), d = 1.983229991815043367273184141..., c = 0.5857451140002020594085469... . - Vaclav Kotesovec, Aug 25 2014
G.f.: x + x^2 * Product_{n>=1} (1 + x^n)^a(n). - Ilya Gutkovskiy, May 09 2019

Extensions

Better description from Christian G. Bower, May 15 1998

A004149 Generalized Catalan numbers: a(n+1) = a(n) + Sum_{k=2..n-1} a(k)*a(n-1-k).

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 8, 16, 33, 69, 146, 312, 673, 1463, 3202, 7050, 15605, 34705, 77511, 173779, 390966, 882376, 1997211, 4532593, 10311720, 23512376, 53724350, 122995968, 282096693, 648097855, 1491322824, 3436755328, 7931085771
Offset: 0

Views

Author

Keywords

Comments

Number of Motzkin paths of length n-1 (n>=1) with no peaks and no valleys, i.e., no UD's and no DU's, where U=(1,1) and D=(1,-1). Example: a(7)=16 because there are 17 peakless Motzkin paths of length 6 (see A004148) of which only UHDUHD has a valley (here H=(1,0)). - Emeric Deutsch, Jan 08 2004
a(n+2) = number of Motzkin n-paths that avoid both UU and DD = number of Motzkin n-paths that avoid both UU and UFU. Example: a(7)=16 since of the 21 Motzkin 5-paths, only FUUDD, UFUDD, UUDDF, UUDFD, UUFDD contain a UU or DD (or both). Likewise, only FUUDD, UFUDD, UUDDF, UUDFD, UUFDD contain a UU or UFU. - David Callan, Jul 15 2004
Number of peakless Motzkin paths of length n without UHD's; here U=(1,1), H=(1,0), and D=(1,-1). Example: a(4)=2 because we have HHHH and UHHD.
a(n) = A190172(n,0).

Examples

			G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 4*x^5 + 8*x^6 + 16*x^7 + 33*x^8 + 69*x^9 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Third row of A064645.

Programs

  • Haskell
    a004149 n = a004149_list !! n
    a004149_list = 1 : 1 : 1 : f [1,1,1] where
       f xs = y : f (y : xs) where
         y = head xs + sum (zipWith (*) (init $ init $ tail xs) (reverse xs))
    -- Reinhard Zumkeller, Nov 13 2012
  • Maple
    For Maple code producing the g.f. see A004148.
    # Alternative:
    p:= gfun:-rectoproc({(n-1)*a(n)+(2*n+1)*a(n+1)+(-n-2)*a(n+2)+(-5-n)*a(n+4)+(-13-2*n)*a(n+5)+(n+8)*a(n+6), a(0) = 1, a(1) = 1, a(2) = 1, a(3) = 1, a(4) = 2, a(5) = 4},a(n),remember):
    map(p, [$0..100]); # Robert Israel, May 07 2015
  • Mathematica
    a[ 0 ]=1; a[ n_Integer ] := a[ n ]=a[ n-1 ]+Sum[ a[ k ]*a[ n-2-k ], {k, 2, n-2} ];
    CoefficientList[Series[2/(1-x+x^2+x^3+Sqrt[(1-x^4)(1-2x-x^2)]),{x,0,40}],x] (* Harvey P. Dale, Aug 09 2017 *)
  • PARI
    {a(n) = polcoeff( (1 - x + x^2 + x^3 - sqrt( (1 - x^4) * (1 - 2*x - x^2) + x^3 * O(x^n))) / (2*x^2), n)}; /* Michael Somos, Oct 28 2005 */
    

Formula

G.f.: 2/(1 - z + z^2 + z^3 + sqrt((1-z^4)(1-2z-z^2))). - Emeric Deutsch, Jan 08 2004
G.f.: 1/(1-x-x^4/(1-x-x^2-x^3-x^4/(1-x-x^2-x^3-x^4/(1-... (continued fraction). - Paul Barry, May 22 2009
D-finite with recurrence: (n+2)*a(n) = (2*n+1)*a(n-1) + (n-1)*a(n-2) + (n-4)*a(n-4) - (2*n-11)*a(n-5) - (n-7)*a(n-6). - Vaclav Kotesovec, Aug 10 2013
a(n) ~ (1+sqrt(2))^(n+1/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 10 2013
G.f. g(x) satisfies x^2*g^2 - (1-x+x^2+x^3)*g + 1 = 0 and
(x^4-1)*(x^2+2*x-1)*x*g'(x) - (x^3-x+2)*(x^3+x^2+x-1)*g(x) + 4*x^3+2*x^2-2 = 0. - Robert Israel, May 07 2015
0 = a(n)*(+a(n+1) + 5*a(n+2) - 4*a(n+3) - 7*a(n+5) - 17*a(n+6) + 10*a(n+7)) + a(n+1)*(-a(n+1) + 6*a(n+2) - 5*a(n+3) + 5*a(n+4) + 2*a(n+5) - 36*a(n+6) + 17*a(n+7)) + a(n+2)*(+a(n+2) + a(n+3) + 7*a(n+4) + 24*a(n+5) - 2*a(n+6) - 7*a(n+7)) + a(n+3)*(-2*a(n+4) - 7*a(n+5) + 5*a(n+6)) + a(n+4)*(+a(n+5) + 5*a(n+6) - 4*a(n+7)) + a(n+5)*(-a(n+5) + 6*a(n+6) - 5*a(n+7)) + a(n+6)*(+a(n+6) + a(n+7)) for all n>=0. - Michael Somos, Jan 09 2017
G.f.: 1/G(x), with G(x)=1-(x-x^3)/(1-x^2/G(x)) (continued fraction). - Nikolaos Pantelidis, Jan 11 2023

A007563 Number of rooted connected graphs where every block is a complete graph.

Original entry on oeis.org

0, 1, 1, 3, 8, 25, 77, 258, 871, 3049, 10834, 39207, 143609, 532193, 1990163, 7503471, 28486071, 108809503, 417862340, 1612440612, 6248778642, 24309992576, 94905791606, 371691137827, 1459935388202, 5749666477454
Offset: 0

Views

Author

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 71, (3.4.13).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A144042.
Cf. A245566.

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:= proc(n) option remember; if n=0 then 1 else (add(d*p(d), d=divisors(n)) +add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n-1))/n fi end end: b:= etr(a): c:= etr(b): a:= n-> if n=0 then 0 else c(n-1) fi: seq(a(n), n=0..25); # Alois P. Heinz, Sep 06 2008
  • Mathematica
    etr[p_] := etr[p] = Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[ Sum[ d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; a[0] = 0; a[n_] := etr[etr[a]][n-1]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 28 2013, after Alois P. Heinz *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(v)))); concat([0], v)} \\ Andrew Howroyd, May 20 2018

Formula

Shifts left when Euler transform is applied twice.
a(n) ~ c * d^n / n^(3/2), where d = 4.189610958393826965527036454524044275... (see A245566), c = 0.1977574301782950818433893126632477845870281049591883888... . - Vaclav Kotesovec, Jul 26 2014

Extensions

New description from Christian G. Bower, Oct 15 1998

A101606 a(n) = number of divisors of n that have exactly three (not necessarily distinct) prime factors.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 1, 0, 1, 1, 0, 0, 2, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 3, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0, 0, 1, 1, 0, 1, 0, 2, 1, 0, 0, 3, 0, 0, 0, 2, 0, 3, 0, 1, 0, 0, 0, 2, 0, 1, 1, 2, 0, 1, 0, 2, 1
Offset: 1

Views

Author

Jonathan Vos Post, Dec 09 2004

Keywords

Comments

This is the inverse Moebius transform of A101605. If n = (p1^e1)*(p2^e2)* ... * (pj^ej) then a(n) = |{k: ek>=3}| + ((j-1)/2)*|{k: ek>=2}| + C(j,3). The first term is the number of distinct cubes of primes in the factors of n (the first way of finding a 3-almost prime). The second term is the number of distinct squares of primes, each of which can be multiplied by any of the other distinct primes, halved to avoid double-counts (the second way of finding a 3-almost prime). The third term is the number of distinct products of 3 distinct primes, which is the number of combinations of j primes taken 3 at a time, A000292(j), (the third way of finding a 3-almost prime).

Examples

			a(60) = 3 because of all the divisors of 60 only these three are terms of A014612: 12 = 2 * 2 * 3; 20 = 2 * 2 * 5; 30 = 2 * 3 * 5.
		

References

  • Hardy, G. H. and Wright, E. M. Section 17.10 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.

Crossrefs

Programs

  • Maple
    isA014612 := proc(n) option remember ; RETURN( numtheory[bigomega](n) = 3) ; end: A101606 := proc(n) a :=0 ; for d in numtheory[divisors](n) do if isA014612(d) then a := a+1 ; fi; od: a ; end: for n from 1 to 120 do printf("%d,",A101606(n)) ; od: # R. J. Mathar, Jan 27 2009
  • Mathematica
    a[n_] := DivisorSum[n, Boole[PrimeOmega[#] == 3]&];
    Array[a, 105] (* Jean-François Alcover, Nov 14 2017 *)
  • PARI
    A101606(n) = sumdiv(n,d,(3==bigomega(d))); \\ Antti Karttunen, Jul 23 2017

Formula

If n = (p1^e1 * p2^e2 * ... * pj^ej) for primes p1, p2, ..., pj and integer exponents e1, e2, ..., ej, then a(n) = a(n) = |{k: ek>=3}| + ((j-1)/2)*|{k: ek>=2}| + C(j, 3). where C(j, 3) is the binomial coefficient A000292(j).
a(n) = Sum_{d|n} A101605(d). - Antti Karttunen, Jul 23 2017

Extensions

a(48) replaced with 2 and a(76) replaced with 1 by R. J. Mathar, Jan 27 2009
Name changed by Antti Karttunen, Jul 23 2017
Previous Showing 11-20 of 176 results. Next