cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A052961 Expansion of (1 - 3*x) / (1 - 5*x + 3*x^2).

Original entry on oeis.org

1, 2, 7, 29, 124, 533, 2293, 9866, 42451, 182657, 785932, 3381689, 14550649, 62608178, 269388943, 1159120181, 4987434076, 21459809837, 92336746957, 397304305274, 1709511285499, 7355643511673, 31649683701868, 136181487974321, 585958388766001, 2521247479907042
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) is the number of tilings of a 2 X n rectangle using integer dimension tiles at least one of whose dimensions is 1, so allowable dimensions are 1 X 1, 1 X 2, 1 X 3, 1 X 4, ..., and 2 X 1. - David Callan, Aug 27 2014
a(n+1) counts closed walks on K_2 containing one loop on the index vertex and four loops on the other vertex. Equivalently the (1,1)entry of A^(n+1) where the adjacency matrix of digraph is A=(1,1;1,4). - _David Neil McGrath, Nov 05 2014
A production matrix for the sequence is M =
1, 1, 0, 0, 0, 0, 0, ...
1, 0, 4, 0, 0, 0, 0, ...
1, 0, 0, 4, 0, 0, 0, ...
1, 0, 0, 0, 4, 0, 0, ...
1, 0, 0, 0, 0, 4, 0, ...
1, 0, 0, 0, 0, 0, 4, ...
...
Take powers of M and extract the upper left term, getting the sequence starting (1, 1, 2, 7, 29, 124, ...). - Gary W. Adamson, Jul 22 2016
From Gary W. Adamson, Jul 29 2016: (Start)
The sequence is N=1 in an infinite set obtained from matrix powers of [(1,N); (1,4)], extracting the upper left terms.
The infinite set begins:
N=1 (A052961): 1, 2, 7, 29 124, 533, 2293, ...
N=2 (A052984): 1, 3, 13, 59, 269, 1227, 5597, ...
N=3 (A004253): 1, 4, 19, 91, 436, 2089, 10009, ...
N=4 (A000351): 1, 5, 25, 125, 625, 3125, 15625, ...
N=5 (A015449): 1, 6, 31, 161, 836, 4341, 22541, ...
N=6 (A124610): 1, 7, 37, 199, 1069, 5743, 30853, ...
N=7 (A111363): 1, 8, 43, 239, 1324, 7337, 40653, ...
N=8 (A123270): 1, 9, 49, 281, 1601, 9129, 52049, ...
N=9 (A188168): 1, 10, 55, 325, 1900, 11125, 65125, ...
N=10 (A092164): 1, 11, 61, 371, 2221, 13331, 79981, ...
... (End)

Crossrefs

Programs

  • GAP
    a:=[1,2];; for n in [3..30] do a[n]:=5*a[n-1]-3*a[n-2]; od; a; # G. C. Greubel, Oct 23 2019
  • Magma
    I:=[1,2]; [n le 2 select I[n] else 5*Self(n-1)-3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 17 2014
    
  • Maple
    spec:= [S,{S = Sequence(Union(Prod(Sequence(Union(Z,Z,Z)),Z),Z))}, unlabeled ]: seq(combstruct[count ](spec,size = n), n = 0..20);
    seq(coeff(series((1-3*x)/(1-5*x+3*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 23 2019
  • Mathematica
    CoefficientList[Series[(1-3x)/(1-5x+3x^2),{x,0,30}],x] (* or *) LinearRecurrence[{5,-3},{1,2},30] (* Harvey P. Dale, Nov 23 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-3*x)/(1-5*x+3*x^2)) \\ G. C. Greubel, Oct 23 2019
    
  • Sage
    def A052961_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-3*x)/(1-5*x+3*x^2)).list()
    A052961_list(30) # G. C. Greubel, Oct 23 2019
    

Formula

G.f.: (1-3*x)/(1-5*x+3*x^2).
a(n) = 5*a(n-1) - 3*a(n-2), with a(0) = 1, a(1) = 2.
a(n) = Sum_{alpha=RootOf(1-5*z+3*z^2)} (-1 + 9*alpha)*alpha^(-1-n)/13.
E.g.f.: (1 + sqrt(13) + (sqrt(13)-1) * exp(sqrt(13)*x)) / (2*sqrt(13) * exp(((sqrt(13)-5)*x)/2)). - Vaclav Kotesovec, Feb 16 2015
a(n) = A116415(n) - 3*A116415(n-1). - R. J. Mathar, Feb 27 2019

A089817 a(n) = 5*a(n-1) - a(n-2) + 1 with a(0)=1, a(1)=6.

Original entry on oeis.org

1, 6, 30, 145, 696, 3336, 15985, 76590, 366966, 1758241, 8424240, 40362960, 193390561, 926589846, 4439558670, 21271203505, 101916458856, 488311090776, 2339638995025, 11209883884350, 53709780426726, 257339018249281
Offset: 0

Views

Author

Paul Barry, Nov 14 2003

Keywords

Comments

Partial sums of Chebyshev sequence S(n,5) = U(n,5/2) = A004254(n) (Chebyshev's polynomials of the second kind, see A049310). - Wolfdieter Lang, Aug 31 2004
In this sequence 4*a(n)*a(n+2)+1 is a square. - Bruno Berselli, Jun 19 2012

Crossrefs

See. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).

Programs

  • Magma
    [Round((2/3 - Sqrt(21)/7)*(5/2 - Sqrt(21)/2)^n + (2/3 + Sqrt(21)/7)*(5/2 + Sqrt(21)/2)^n - 1/3): n in [0..30]]; // G. C. Greubel, Nov 20 2017
  • Mathematica
    Join[{a=1,b=6},Table[c=5*b-a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011*)
    CoefficientList[Series[1/(1 - 6*x + 6*x^2 - x^3), {x, 0, 50}], x] (* G. C. Greubel, Nov 20 2017 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 1,-6,6]^n*[1;6;30])[1,1] \\ Charles R Greathouse IV, Nov 29 2016
    
  • PARI
    x='x+O('x^50); Vec(1/(1-6*x+6*x^2-x^3)) \\ G. C. Greubel, Nov 20 2017
    

Formula

For n > 0, a(n-1) = Sum_{i=1..n} Sum_{j=1..i} b(n) with b(n) as in A004253.
a(n) = (2/3 - sqrt(21)/7)*(5/2 - sqrt(21)/2)^n + (2/3 + sqrt(21)/7)*(5/2 + sqrt(21)/2)^n - 1/3.
G.f.: 1/((1-x)*(1 - 5*x + x^2)) = 1/(1 - 6*x + 6*x^2 - x^3).
a(n) = 6*a(n-1) - 6*a(n-2) + a(n-3) for n >= 2, a(-1):=0, a(0)=1, a(1)=6.
a(n) = (S(n+1, 5) - S(n, 5) - 1)/3 for n >= 0.
a(n)*a(n-2) = a(n-1)*(a(n-1)-1) for n > 1. - Bruno Berselli, Nov 29 2016

A160682 The list of the A values in the common solutions to 13*k+1 = A^2 and 17*k+1 = B^2.

Original entry on oeis.org

1, 14, 209, 3121, 46606, 695969, 10392929, 155197966, 2317576561, 34608450449, 516809180174, 7717529252161, 115246129602241, 1720974414781454, 25699370092119569, 383769576967012081, 5730844284413061646, 85578894689228912609, 1277952576054020627489
Offset: 1

Views

Author

Paul Weisenhorn, May 23 2009

Keywords

Comments

This summarizes the case C=13 of common solutions to C*k+1=A^2, (C+4)*k+1=B^2.
The 2 equations are equivalent to the Pell equation x^2-C*(C+4)*y^2=1,
with x=(C*(C+4)*k+C+2)/2; y=A*B/2 and with smallest values x(1) = (C+2)/2, y(1)=1/2.
Generic recurrences are:
A(j+2)=(C+2)*A(j+1)-A(j) with A(1)=1; A(2)=C+1.
B(j+2)=(C+2)*B(j+1)-B(j) with B(1)=1; B(2)=C+3.
k(j+3)=(C+1)*(C+3)*( k(j+2)-k(j+1) )+k(j) with k(1)=0; k(2)=C+2; k(3)=(C+1)*(C+2)*(C+3).
x(j+2)=(C^2+4*C+2)*x(j+1)-x(j) with x(1)=(C+2)/2; x(2)=(C^2+4*C+1)*(C+2)/2;
Binet-type of solutions of these 2nd order recurrences are:
R=C^2+4*C; S=C*sqrt(R); T=(C+2); U=sqrt(R); V=(C+4)*sqrt(R);
A(j)=((R+S)*(T+U)^(j-1)+(R-S)*(T-U)^(j-1))/(R*2^j);
B(j)=((R+V)*(T+U)^(j-1)+(R-V)*(T-U)^(j-1))/(R*2^j);
x(j)+sqrt(R)*y(j)=((T+U)*(C^2*4*C+2+(C+2)*sqrt(R))^(j-1))/2^j;
k(j)=(((T+U)*(R+2+T*U)^(j-1)+(T-U)*(R+2-T*U)^(j-1))/2^j-T)/R. [Paul Weisenhorn, May 24 2009]
.C -A----- -B----- -k-----
For n>=2, a(n) equals the permanent of the (2n-2)X(2n-2) tridiagonal matrix with sqrt(13)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. [John M. Campbell, Jul 08 2011]
Positive values of x (or y) satisfying x^2 - 15xy + y^2 + 13 = 0. - Colin Barker, Feb 11 2014

Crossrefs

Cf. similar sequences listed in A238379.

Programs

  • Magma
    I:=[1,14]; [n le 2 select I[n] else 15*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 12 2014
    
  • Mathematica
    LinearRecurrence[{15,-1},{1,14},20] (* Harvey P. Dale, Oct 08 2012 *)
    CoefficientList[Series[(1 - x)/(1 - 15 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
  • PARI
    a(n) = round((2^(-1-n)*((15-sqrt(221))^n*(13+sqrt(221))+(-13+sqrt(221))*(15+sqrt(221))^n))/sqrt(221)) \\ Colin Barker, Jul 25 2016

Formula

a(n) = 15*a(n-1)-a(n-2).
G.f.: (1-x)*x/(1-15*x+x^2).
a(n) = (2^(-1-n)*((15-sqrt(221))^n*(13+sqrt(221))+(-13+sqrt(221))*(15+sqrt(221))^n))/sqrt(221). - Colin Barker, Jul 25 2016

Extensions

Edited, extended by R. J. Mathar, Sep 02 2009
First formula corrected by Harvey P. Dale, Oct 08 2012

A133607 Triangle read by rows: T(n, k) = qStirling2(n, k, q) for q = -1, with 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, -1, 0, 1, -1, -1, 0, 1, -1, -2, 1, 0, 1, -1, -3, 2, 1, 0, 1, -1, -4, 3, 3, -1, 0, 1, -1, -5, 4, 6, -3, -1, 0, 1, -1, -6, 5, 10, -6, -4, 1, 0, 1, -1, -7, 6, 15, -10, -10, 4, 1, 0, 1, -1, -8, 7, 21, -15, -20, 10, 5, -1, 0, 1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1
Offset: 0

Views

Author

Philippe Deléham, Dec 27 2007

Keywords

Comments

Previous name: Triangle T(n,k), 0<=k<=n, read by rows given by [0, 1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, -2, 1, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1, -1;
  0, 1, -1, -1;
  0, 1, -1, -2, 1;
  0, 1, -1, -3, 2, 1;
  0, 1, -1, -4, 3, 3, -1;
  0, 1, -1, -5, 4, 6, -3, -1;
  0, 1, -1, -6, 5, 10, -6, -4, 1;
  0, 1, -1, -7, 6, 15, -10, -10, 4, 1;
  0, 1, -1, -8, 7, 21, -15, -20, 10, 5, -1;
  0, 1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1;
  0, 1, -1, -10, 9, 36, -28, -56, 35, 35, -15, -6, 1;
  ...
Triangle A103631 begins:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 1, 1;
  0, 1, 1, 2, 1;
  0, 1, 1, 3, 2, 1;
  0, 1, 1, 4, 3, 3, 1;
  0, 1, 1, 5, 4, 6, 3, 1;
  0, 1, 1, 6, 5, 10, 6, 4, 1;
  0, 1, 1, 7, 6, 15, 10, 10, 4, 1;
  0, 1, 1, 8, 7, 21, 15, 20, 10, 5, 1;
  0, 1, 1, 9, 8, 28, 21, 35, 20, 15, 5, 1;
  0, 1, 1, 10, 9, 36, 28, 56, 35, 35, 15, 6, 1;
  ...
Triangle A108299 begins:
  1;
  1, -1;
  1, -1, -1;
  1, -1, -2, 1;
  1, -1, -3, 2, 1;
  1, -1, -4, 3, 3, -1;
  1, -1, -5, 4, 6, -3, -1;
  1, -1, -6, 5, 10, -6, -4, 1;
  1, -1, -7, 6, 15, -10, -10, 4, 1;
  1, -1, -8, 7, 21, -15, -20, 10, 5, -1;
  1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1;
  1, -1, -10, 9, 36, -28, -56, 35, 35, -15, -6, 1;
  ...
		

Crossrefs

Another version is A108299.
Unsigned version is A103631 (T(n,k) = A103631(n,k)*A057077(k)).

Programs

  • Mathematica
    m = 13
    (* DELTA is defined in A084938 *)
    DELTA[Join[{0, 1}, Table[0, {m}]], Join[{1, -2, 1}, Table[0, {m}]], m] // Flatten (* Jean-François Alcover, Feb 19 2020 *)
    qStirling2[n_, k_, q_] /; 1 <= k <= n := q^(k-1) qStirling2[n-1, k-1, q] + Sum[q^j, {j, 0, k-1}] qStirling2[n-1, k, q];
    qStirling2[n_, 0, _] := KroneckerDelta[n, 0];
    qStirling2[0, k_, _] := KroneckerDelta[0, k];
    qStirling2[, , _] = 0;
    Table[qStirling2[n, k, -1], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 10 2020 *)
  • Sage
    from sage.combinat.q_analogues import q_stirling_number2
    for n in (0..9):
        print([q_stirling_number2(n,k).substitute(q=-1) for k in [0..n]])
    # Peter Luschny, Mar 09 2020

Formula

Sum_{k, 0<=k<=n}T(n,k)*x^(n-k)= A057077(n), A010892(n), A000012(n), A001519(n), A001835(n), A004253(n), A001653(n), A049685(n-1), A070997(n-1), A070998(n-1), A072256(n), A078922(n), A077417(n-1), A085260(n), A001570(n-1) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 respectively .
Sum_{k, 0<=k<=n}T(n,k)*x^k = A000007(n), A010892(n), A133631(n), A133665(n), A133666(n), A133667(n), A133668(n), A133669(n), A133671(n), A133672(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively .
G.f.: (1-x+y*x)/(1-x+y^2*x^2). - Philippe Deléham, Mar 14 2012
T(n,k) = T(n-1,k) - T(n-2,k-2), T(0,0) = T(1,1) = T(2,1) = 1, T(1,0) = T(2,0) = 0, T(2,2) = -1 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 14 2012

Extensions

New name from Peter Luschny, Mar 09 2020

A237351 Positive integers k such that x^2 - 5xy + y^2 + k = 0 has integer solutions.

Original entry on oeis.org

3, 5, 12, 17, 20, 21, 27, 35, 41, 45, 47, 48, 59, 68, 75, 80, 83, 84, 89, 101, 108, 111, 119, 125, 129, 131, 140, 147, 153, 164, 167, 173, 180, 185, 188, 189, 192, 201, 215, 227, 236, 237, 243, 245, 251, 255, 257, 269, 272, 287, 293, 300, 311, 315, 320, 327
Offset: 1

Views

Author

Colin Barker, Feb 06 2014

Keywords

Comments

See comments on method used in A084917.
The equivalent sequence for x^2 - 3xy + y^2 + k = 0 is A031363.
The equivalent sequence for x^2 - 4xy + y^2 + k = 0 is A084917.
Positive numbers of the form 3x^2 - 7y^2. - Jon E. Schoenfield, Jun 03 2022

Examples

			12 is in the sequence because x^2 - 5xy + y^2 + 12 = 0 has integer solutions, for example, (x, y) = (2, 8).
		

Crossrefs

Cf. A004253 (k = 3), A237254 (k = 5), A237255 (k = 17).
For primes see A141160.

Programs

  • Mathematica
    Select[Range[350],Length[FindInstance[x^2-5x y+y^2+#==0,{x,y},Integers]]>0&] (* Harvey P. Dale, Apr 23 2023 *)

A244419 Coefficient triangle of polynomials related to the Dirichlet kernel. Rising powers. Riordan triangle ((1+z)/(1+z^2), 2*z/(1+z^2)).

Original entry on oeis.org

1, 1, 2, -1, 2, 4, -1, -4, 4, 8, 1, -4, -12, 8, 16, 1, 6, -12, -32, 16, 32, -1, 6, 24, -32, -80, 32, 64, -1, -8, 24, 80, -80, -192, 64, 128, 1, -8, -40, 80, 240, -192, -448, 128, 256, 1, 10, -40, -160, 240, 672, -448, -1024, 256, 512, -1, 10, 60, -160, -560, 672, 1792, -1024, -2304, 512, 1024
Offset: 0

Views

Author

Wolfdieter Lang, Jul 29 2014

Keywords

Comments

This is the row reversed version of A180870. See also A157751 and A228565.
The Dirichlet kernel is D(n,x) = Sum_{k=-n..n} exp(i*k*x) = 1 + 2*Sum_{k=1..n} T(n,x) = S(n, 2*y) + S(n-1, 2*y) = S(2*n, sqrt(2*(1+y))) with y = cos(x), n >= 0, with the Chebyshev polynomials T (A053120) and S (A049310). This triangle T(n, k) gives in row n the coefficients of the polynomial Dir(n,y) = D(n,x=arccos(y)) = Sum_{m=0..n} T(n,m)*y^m. See A180870, especially the Peter Bala comments and formulas.
This is the Riordan triangle ((1+z)/(1+z^2), 2*z/(1+z^2)) due to the o.g.f. for Dir(n,y) given by (1+z)/(1 - 2*y*z + z^2) = G(z)/(1 - y*F(z)) with G(z) = (1+z)/(1+z^2) and F(z) = 2*z/(1+z^2) (see the Peter Bala formula under A180870). For Riordan triangles and references see the W. Lang link 'Sheffer a- and z- sequences' under A006232.
The A- and Z- sequences of this Riordan triangle are (see the mentioned W. Lang link in the preceding comment also for the references): The A-sequence has o.g.f. 1+sqrt(1-x^2) and is given by A(2*k+1) = 0 and A(2*k) [2, -1/2, -1/8, -1/16, -5/128, -7/256, -21/1024, -33/2048, -429/32768, -715/65536, ...], k >= 0. (See A098597 and A046161.)
The Z-sequence has o.g.f. sqrt((1-x)/(1+x)) and is given by
[1, -1, 1/2, -1/2, 3/8, -3/8, 5/16, -5/16, 35/128, -35/128, ...]. (See A001790 and A046161.)
The column sequences are A057077, 2*(A004526 with even numbers signed), 4*A008805 (signed), 8*A058187 (signed), 16*A189976 (signed), 32*A189980 (signed) for m = 0, 1, ..., 5.
The row sums give A005408 (from the o.g.f. due to the Riordan property), and the alternating row sums give A033999.
The row polynomials Dir(n, x), n >= 0, give solutions to the diophantine equation (a + 1)*X^2 - (a - 1)*Y^2 = 2 by virtue of the identity (a + 1)*Dir(n, -a)^2 - (a - 1)*Dir(n, a)^2 = 2, which is easily proved inductively using the recurrence Dir(n, a) = (1 + a)*(-1)^(n-1)*Dir(n-1, -a) + a*Dir(n-1, a) given below by Wolfdieter Lang. - Peter Bala, May 08 2025

Examples

			The triangle T(n,m) begins:
  n\m  0   1   2    3    4    5    6     7     8    9    10 ...
  0:   1
  1:   1   2
  2:  -1   2   4
  3:  -1  -4   4    8
  4:   1  -4 -12    8   16
  5:   1   6 -12  -32   16   32
  6:  -1   6  24  -32  -80   32   64
  7:  -1  -8  24   80  -80 -192   64   128
  8:   1  -8 -40   80  240 -192 -448   128   256
  9:   1  10 -40 -160  240  672 -448 -1024   256  512
  10: -1  10  60 -160 -560  672 1792 -1024 -2304  512  1024
  ...
Example for A-sequence recurrence: T(3,1) = Sum_{j=0..2} A(j)*T(2,j) = 2*(-1) + 0*2 + (-1/2)*4 = -4. Example for Z-sequence recurrence: T(4,0) = Sum_{j=0..3} Z(j)*T(3,j) = 1*(-1) + (-1)*(-4) + (1/2)*4 + (-1/2)*8 = +1. (For the A- and Z-sequences see a comment above.)
Example for the alternate recurrence: T(4,2) = 2*T(3,1) - T(3,2) = 2*(-4) - 4 = -12. T(4,3) = 0*T(3,2) + T(3,3) = T(3,3) = 8. - _Wolfdieter Lang_, Jul 30 2014
		

Crossrefs

Dir(n, x) : A005408 (x = 1), A002878 (x = 3/2), A001834 (x = 2), A030221 (x = 5/2), A002315 (x = 3), A033890 (x = 7/2), A057080 (x = 4), A057081 (x = 9/2), A054320 (x = 5), A077416 (x = 6), A028230 (x = 7), A159678 (x = 8), A049629 (x = 9), A083043 (x = 10),
(-1)^n * Dir(n, x): A122367 (x = -3/2); A079935 (x = -2), A004253 (x = -5/2), A001653 (x = -3), A049685 (x = -7/2), A070997 (x = -4), A070998 (x = -9/2), A072256(n+1) (x = -5).

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = Which[k == 0, (-1)^Quotient[n, 2], (0 <= n && n < k) || (n == -1 && k == 1), 0, True, 2 T[n-1, k-1] - T[n-2, k]];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2019, from Sage *)
  • Sage
    def T(n, k):
        if k == 0: return (-1)^(n//2)
        if (0 <= n and n < k) or (n == -1 and k == 1): return 0
        return 2*T(n-1, k-1) - T(n-2, k)
    for n in range(11): [T(n,k) for k in (0..n)] # Peter Luschny, Jul 29 2014

Formula

T(n, m) = [y^m] Dir(n,y) for n >= m >= 0 and 0 otherwise, with the polynomials Dir(y) defined in a comment above.
T(n, m) = 2^m*(S(n,m) + S(n-1,m)) with the entries S(n,m) of A049310 given there explicitly.
O.g.f. for polynomials Dir(y) see a comment above (Riordan triangle ((1+z)/(1+z^2), 2*z/(1+z^2))).
O.g.f. for column m: ((1 + x)/(1 + x^2))*(2*x/(1 + x^2))^m, m >= 0, (Riordan property).
Recurrence for the polynomials: Dir(n, y) = 2*y*Dir(n-1, y) - Dir(n-2, y), n >= 1, with input D(-1, y) = -1 and D(0, y) = 1.
Triangle three-term recurrence: T(n,m) = 2*T(n-1,m-1) - T(n-2,m) for n >= m >= 1 with T(n,m) = 0 if 0 <= n < m, T(0,0) = 1, T(-1,1) = 0 and T(n,0) = A057077(n) = (-1)^(floor(n/2)).
From Wolfdieter Lang, Jul 30 2014: (Start)
In analogy to A157751 one can derive a recurrence for the row polynomials Dir(n, y) = Sum_{m=0..n} T(n,m)*y^m also using a negative argument but only one recursive step: Dir(n,y) = (1+y)*(-1)^(n-1)*Dir(n-1,-y) + y*Dir(n-1,y), n >= 1, Dir(0,y) = 1 (Dir(-1,y) = -1). See also A180870 from where this formula can be derived by row reversion.
This entails another triangle recurrence T(n,m) = (1 + (-1)^(n-m))*T(n-1,m-1) - (-1)^(n-m)*T(n-1,m), for n >= m >= 1 with T(n,m) = 0 if n < m and T(n,0) = (-1)^floor(n/2). (End)
From Peter Bala, Aug 14 2022: (Start)
The row polynomials Dir(n,x), n >= 0, are related to the Chebyshev polynomials of the first kind T(n,x) by the binomial transform as follows:
(2^n)*(x - 1)^(n+1)*Dir(n,x) = (-1) * Sum_{k = 0..2*n+1} binomial(2*n+1,k)*T(k,-x).
Note that Sum_{k = 0..2*n} binomial(2*n,k)*T(k,x) = (2^n)*(1 + x)^n*T(n,x). (End)
From Peter Bala, May 04 2025: (Start)
For n >= 1, the n-th row polynomial Dir(n, x) = (-1)^n * (U(n, -x) - U(n-1, -x)) = U(2*n, sqrt((1+x)/2)), where U(n, x) denotes the n-th Chebyshev polynomial of the second kind.
For n >= 1 and x < 1, Dir(n, x) = (-1)^n * sqrt(2/(1 - x )) * T(2*n+1, sqrt((1 - x)/2)), where T(n, x) denotes the n-th Chebyshev polynomial of the first kind.
Dir(n, x)^2 - 2*x*Dir(n, x)*Dir(n+1, x) + Dir(n+1, x)^2 = 2*(1 + x).
Dir(n, x) = (-1)^n * R(n, -2*(x+1)), where R(n, x) is the n-th row polynomial of the triangle A085478.
Dir(n, x) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n+k, 2*k) * (2*x + 2)^k. (End)

A005386 Area of n-th triple of squares around a triangle.

Original entry on oeis.org

1, 3, 16, 75, 361, 1728, 8281, 39675, 190096, 910803, 4363921, 20908800, 100180081, 479991603, 2299777936, 11018898075, 52794712441, 252954664128, 1211978608201, 5806938376875, 27822713276176, 133306628004003, 638710426743841, 3060245505715200
Offset: 1

Views

Author

Jean Meeus

Keywords

Comments

a(n)*(-1)^(n+1) is the r=-3 member of the r-family of sequences S_r(n), n>=1, defined in A092184 where more information can be found.
The sequence is the case P1 = 3, P2 = -10, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Apr 03 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially the same as A003769.
First differences of A099025.
Cf. A100047.

Programs

  • Magma
    I:=[1, 3, 16]; [n le 3 select I[n] else 4*Self(n-1) +4*Self(n-2) -Self(n-3): n in [1..41]]; // G. C. Greubel, Nov 16 2022
    
  • Maple
    A005386:=-(-1+z)/(z+1)/(z**2-5*z+1); [Conjectured by Simon Plouffe in his 1992 dissertation.]
    a:= n-> (Matrix([[0,1,3]]). Matrix(3, (i,j)-> if (i=j-1) then 1 elif j=1 then [4,4,-1][i] else 0 fi)^(n))[1,1]: seq(a(n), n=1..25); # Alois P. Heinz, Aug 05 2008
  • Mathematica
    a[n_]:= Module[{n1=1, n2=0}, Do[{n1, n2}={Sqrt[3]*n1+n2, n1}, {n-1}];n1^2];
    Table[a[n], {n,30}]
    a[n_]:= Round[((5+Sqrt[21])/2)^n/7]; Table[a[n], {n, 30}]
    Rest@(CoefficientList[Series[x/(1-x*(Sqrt[3]+x)), {x, 0, 30}], x])^2
    Abs[ChebyshevU[Range[1,40]-1, I*Sqrt[3]/2]]^2 (* G. C. Greubel, Nov 16 2022 *)
  • SageMath
    def A005386(n): return abs(chebyshev_U(n-1, i*sqrt(3)/2))^2
    [A005386(n) for n in range(1,40)] # G. C. Greubel, Nov 16 2022

Formula

G.f.: x*(1-x)/((1+x)*(1-5*x+x^2)).
a(n) = 4*a(n-1) + 4*a(n-2) - a(n-3), a(1)=1, a(2)=3, a(3)=16.
a(n) = (2/7)*(T(n, 5/2) - (-1)^n) with twice Chebyshev's polynomials of the first kind evaluated at x=5/2: 2*T(n, 5/2) = A003501(n) = ((5+sqrt(21))^n + (5-sqrt(21))^n)/2^n. - Wolfdieter Lang, Oct 18 2004
a(2*n) = A003690(n). a(2*n+1) = A004253(n)^2. - Alexander Evnin, Mar 11 2012
From Peter Bala, Apr 03 2014: (Start)
a(n) = |U(n-1, sqrt(3)*i/2)|^2, where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 5/2; 1, 3/2] and T(n,x) denotes the Chebyshev polynomial of the first kind.
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)

Extensions

Edited by Peter J. C. Moses, Apr 23 2004
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 09 2004

A107905 Decimal expansion of (5+sqrt(21))/2.

Original entry on oeis.org

4, 7, 9, 1, 2, 8, 7, 8, 4, 7, 4, 7, 7, 9, 2, 0, 0, 0, 3, 2, 9, 4, 0, 2, 3, 5, 9, 6, 8, 6, 4, 0, 0, 4, 2, 4, 4, 4, 9, 2, 2, 2, 8, 2, 8, 8, 3, 8, 3, 9, 8, 5, 9, 5, 1, 3, 0, 3, 6, 2, 1, 0, 6, 1, 9, 5, 3, 4, 3, 4, 2, 1, 2, 7, 7, 3, 8, 8, 5, 4, 4, 3, 3, 0, 2, 1, 8, 0, 7, 7, 9, 7, 4, 6, 7, 2, 2, 5, 1, 6
Offset: 1

Views

Author

Jonathan Vos Post, Jun 22 2007

Keywords

Examples

			4.7912878474779200032940235968640042444922282883839859513036...
The zeros at 15, 16 and 17 digits after the decimal point allow for a good rational approximation. The continued fraction is [4,1,3,1,3,1,3,...] = 4 + 1/(1+ 1/(3+ 1/(1+ 1/(3+ 1/(1+ 1/(3+ 1(/1+ ...
		

References

  • D. Mumford et al., Indra's Pearls, Cambridge 2002; see p. 317. [From N. J. A. Sloane, Nov 22 2009]

Crossrefs

Equals 1+A090458. - R. J. Mathar, Aug 24 2008

Programs

Formula

(4.791287...)^n = A090458 * A004254(n) + A004253(n). - Gary W. Adamson, Sep 11 2023
Equals lim_{n->oo} S(n, 5)/S(n-1, 5), with the S-Chebyshev polynomial (see A049310) S(n, 5) = A004254(n+1). - Wolfdieter Lang, Nov 15 2023
c^k = A004254(k)*c - A004254(k-1) for k >= 1, where c is the present constant. - Andrea Pinos, Jul 19 2024
Minimal polynomial: x^2 - 5*x + 1. - Stefano Spezia, Jul 02 2025

A136211 Denominators in continued fraction [0; 1, 3, 1, 3, 1, 3, ...].

Original entry on oeis.org

1, 4, 5, 19, 24, 91, 115, 436, 551, 2089, 2640, 10009, 12649, 47956, 60605, 229771, 290376, 1100899, 1391275, 5274724, 6665999, 25272721, 31938720, 121088881, 153027601, 580171684, 733199285, 2779769539, 3512968824
Offset: 1

Views

Author

Gary W. Adamson, Dec 21 2007

Keywords

Comments

A136210(n)/A136211(n) tends to 0.791287847... = [0; 1, 3, 1, 3, 1, 3, ...] = (sqrt(21) - 3)/2 = the inradius of a right triangle with hypotenuse 3, legs 2 and sqrt(21).
The number 0.791287847... = (sqrt(21) - 3)/2 arises in finding a number which is 5 less than its square; the result is: 2.791287847... because (2.791287847...)^2 = 7.791287847... In general the quadratic equation for finding such numbers is x^2 - x = N, so x = (1 + sqrt(1 + 4N))/2. - Alexander R. Povolotsky, Dec 23 2007
Prepending a 1 to the sequence gives [1, 1, 4, 5, 19, 24, ...]. This is the sequence of Lehmer numbers U_n(sqrt(R),Q) with the parameters R = 3 and Q = -1. It is a strong divisibility sequence, that is, GCD(a(n),a(m)) = a(GCD(n,m)) for all natural numbers n and m. - Peter Bala, May 14 2014

Examples

			a(4) = 19 = 3*a(3) + a(2) = 3*5 + 4.
a(5) = 24 = a(4) + a(3) = 19 + 5.
T^3 = [19, 72; 24, 91], where the bottom row [24, 91] = [a(5), a(6)].
		

Crossrefs

Cf. A136210.

Programs

  • Mathematica
    Denominator[NestList[(3/(3+#))&,0,60]] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2010 *)
    a[n_] := FromContinuedFraction[ Join[{0}, 3 - 2*Array[Mod[#, 2]&, n]]] // Denominator; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, May 15 2014 *)
  • PARI
    x='x + O('x^25); Vec(x*(1+4*x-x^3)/(1-5*x^2+x^4)) \\ G. C. Greubel, Feb 18 2017

Formula

a(1) = 1, a(2) = 4, then for n>2, a(2n) = 3*a(2n-1) + a(2n-2); a(2n-1) = a(2n-2) + a(2n-3). Let T = the 2 X 2 matrix [1, 3; 1, 4]. Then T^n = [A136210(2n-1), A136210(2n); a(2n-1), a(2n)].
From R. J. Mathar, May 18 2008: (Start)
O.g.f.: x*(1+4*x-x^3)/(1-5*x^2+x^4).
a(2*n) = A004253(n+1).
a(2*n+1) = A004254(n). (End)
a(n)*a(n+1) = A099025(n). - R. K. Guy, May 18 2008
{-a(n) + 5 a(n + 2) - a(n + 4), a(0) = 1, a(1) = 4, a(2) = 5, a(3) = 19}. - Robert Israel, May 14 2008

A334178 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = 2^n * sqrt(Resultant(U_{2*n}(x/2), T_{k}(i*x/2))), where T_n(x) is a Chebyshev polynomial of the first kind, U_n(x) is a Chebyshev polynomial of the second kind and i = sqrt(-1).

Original entry on oeis.org

1, 1, 2, 1, 1, 4, 1, 3, 1, 8, 1, 4, 11, 1, 16, 1, 7, 19, 41, 1, 32, 1, 11, 71, 91, 153, 1, 64, 1, 18, 176, 769, 436, 571, 1, 128, 1, 29, 539, 2911, 8449, 2089, 2131, 1, 256, 1, 47, 1471, 17753, 48301, 93127, 10009, 7953, 1, 512, 1, 76, 4271, 79808, 603126, 801701, 1027207, 47956, 29681, 1, 1024
Offset: 0

Views

Author

Seiichi Manyama, Apr 17 2020

Keywords

Examples

			Square array begins:
   1, 1,    1,     1,       1,        1,         1, ...
   2, 1,    3,     4,       7,       11,        18, ...
   4, 1,   11,    19,      71,      176,       539, ...
   8, 1,   41,    91,     769,     2911,     17753, ...
  16, 1,  153,   436,    8449,    48301,    603126, ...
  32, 1,  571,  2089,   93127,   801701,  20721019, ...
  64, 1, 2131, 10009, 1027207, 13307111, 714790675, ...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := 2^n * Sqrt[Resultant[ChebyshevU[2*n, x/2], ChebyshevT[k, I*x/2], x]]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 04 2021 *)
  • PARI
    {T(n, k) = sqrtint(4^n*polresultant(polchebyshev(2*n, 2, x/2), polchebyshev(k, 1, I*x/2)))}

Formula

T(n,2*k) = A103997(n,k) for k > 0.
Previous Showing 11-20 of 39 results. Next