cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A171861 Expansion of x*(1+x+x^2) / ( (x-1)*(x^3+x^2-1) ).

Original entry on oeis.org

1, 2, 4, 6, 9, 13, 18, 25, 34, 46, 62, 83, 111, 148, 197, 262, 348, 462, 613, 813, 1078, 1429, 1894, 2510, 3326, 4407, 5839, 7736, 10249, 13578, 17988, 23830, 31569, 41821, 55402, 73393, 97226, 128798, 170622, 226027, 299423, 396652, 525453, 696078, 922108
Offset: 1

Views

Author

Ed Pegg Jr, Oct 16 2010

Keywords

Comments

Number of wins in Penney's game if the two players start HHT and TTT and HHT beats TTT.
HHT beats TTT 70% of the time. - Geoffrey Critzer, Mar 01 2014

Examples

			a(n) enumerates length n+2 sequences on {H,T} that end in HHT but do not contain the contiguous subsequence TTT.
a(3)=4 because we have: TTHHT, THHHT, HTHHT, HHHHT.
a(4)=6 because we have: TTHHHT, THTHHT, THHHHT, HTTHHT, HTHHHT, HHHHHT. - _Geoffrey Critzer_, Mar 01 2014
		

Crossrefs

Related sequences are A000045 (HHH beats HHT, HTT beats TTH), A006498 (HHH beats HTH), A023434 (HHH beats HTT), A000930 (HHH beats THT, HTH beats HHT), A000931 (HHH beats TTH), A077868 (HHT beats HTH), A002620 (HHT beats HTT), A000012 (HHT beats THH), A004277 (HHT beats THT), A070550 (HTH beats HHH), A000027 (HTH beats HTT), A097333 (HTH beats THH), A040000 (HTH beats TTH), A068921 (HTH beats TTT), A054405 (HTT beats HHH), A008619 (HTT beats HHT), A038718 (HTT beats THT), A128588 (HTT beats TTT).
Cf. A164315 (essentially the same sequence).

Programs

  • Maple
    A171861 := proc(n) option remember; if n <=4 then op(n,[1,2,4,6]); else procname(n-1)+procname(n-2)-procname(n-4) ; end if; end proc:
  • Mathematica
    nn=44;CoefficientList[Series[x(1+x+x^2)/(1-x-x^2+x^4),{x,0,nn}],x] (* Geoffrey Critzer, Mar 01 2014 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,1,1]^(n-1)*[1;2;4;6])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

a(n) = a(n-1) +a(n-2) -a(n-4) = A000931(n+10)-3 = A134816(n+6)-3 = A078027(n+12)-3.
a(n) = A164315(n-1). - Alois P. Heinz, Oct 12 2017

A054888 Layer counting sequence for hyperbolic tessellation by regular pentagons of angle Pi/2.

Original entry on oeis.org

1, 5, 15, 40, 105, 275, 720, 1885, 4935, 12920, 33825, 88555, 231840, 606965, 1589055, 4160200, 10891545, 28514435, 74651760, 195440845, 511670775, 1339571480, 3507043665, 9181559515, 24037634880, 62931345125
Offset: 0

Views

Author

Paolo Dominici (pl.dm(AT)libero.it), May 23 2000

Keywords

Comments

The layer sequence is the sequence of the cardinalities of the layers accumulating around a (finite-sided) polygon of the tessellation under successive side-reflections.

Crossrefs

Programs

  • Haskell
    a054888 n = a054888_list !! (n-1)
    a054888_list = 1 : zipWith (+) (tail a002878_list) a002878_list
    -- Reinhard Zumkeller, Jan 11 2012
    
  • Magma
    [n eq 0 select 1 else 5*Fibonacci(2*n): n in [0..40]]; // G. C. Greubel, Feb 08 2023
    
  • Mathematica
    LinearRecurrence[{3,-1},{1,5,15},30] (* Harvey P. Dale, Jan 15 2023 *)
    Join[{1}, 5*Fibonacci[2*Range[40]]] (* G. C. Greubel, Feb 08 2023 *)
  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n,5*fibonacci(k)^2*x^k/k)+x*O(x^n)), n)} /* Paul D. Hanna, Feb 21 2012 */
    
  • SageMath
    [5*fibonacci(2*n) + int(n==0) for n in range (41)] # G. C. Greubel, Feb 08 2023

Formula

a(n) = 5*A001906(n) + [n=0].
G.f.: (1+x)^2/(1-3*x+x^2).
G.f.: exp( Sum_{n>=1} 5*Fibonacci(n)^2 * x^n/n ). - Paul D. Hanna, Feb 21 2012
a(n) = A001906(n-1) + 2*A001906(n) + A001906(n+1). - R. J. Mathar, Nov 28 2011
a(n) = A203976(A004277(n-1)). - Reinhard Zumkeller, Jan 11 2012
a(n) = 5*A000045(2*n) for n >= 1. - Robert Israel, Jun 01 2015
a(n) = A002878(n-1)+A002878(n). - R. J. Mathar, Jul 09 2024

Extensions

Offset changed to 0 by N. J. A. Sloane, Jan 03 2022 at the suggestion of Michel Marcus

A103517 Expansion of (1+2*x-x^2)/(1-x)^2.

Original entry on oeis.org

1, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126
Offset: 0

Views

Author

Paul Barry, Feb 09 2005

Keywords

Comments

Row sums of A103516.
Also the number of maximal and maximum cliques in the (n+1) X (n+1) rook graph. - Eric W. Weisstein, Sep 14 2017
Also the number of maximal and maximum independent vertex sets in the (n+1) X (n+1) rook complement graph. - Eric W. Weisstein, Sep 14 2017

Crossrefs

Cf. A103516.
Essentially the same as A004277, A005843, A051755, and A076032. - R. J. Mathar, Jul 31 2010
Cf. A272651 (for which this sequence is a conjectured continuation for large n).

Programs

Formula

a(n) = 2*n + 2 - 0^n.
a(n) = Sum_{k=0..n} 0^(k(n-k))*(n+1).
Equals binomial transform of [1, 3, -1, 1, -1, 1, ...]. - Gary W. Adamson, Apr 23 2008
a(n) = 2*a(n-1) - a(n-2) for n > 2. - Eric W. Weisstein, Sep 14 2017
G.f.: (1 + 2*x - x^2)/(-1 + x)^2. - Eric W. Weisstein, Sep 14 2017

A167875 One third of product plus sum of three consecutive nonnegative integers; a(n)=(n+1)(n^2+2n+3)/3.

Original entry on oeis.org

1, 4, 11, 24, 45, 76, 119, 176, 249, 340, 451, 584, 741, 924, 1135, 1376, 1649, 1956, 2299, 2680, 3101, 3564, 4071, 4624, 5225, 5876, 6579, 7336, 8149, 9020, 9951, 10944, 12001, 13124, 14315, 15576, 16909, 18316, 19799, 21360, 23001, 24724, 26531
Offset: 0

Views

Author

Klaus Brockhaus, Nov 14 2009

Keywords

Comments

a(n) = ((n*(n+1)*(n+2))+(n+(n+1)+(n+2)))/3, n >= 0.
Equals A006527 without initial term 0: a(n) = A006527(n+1).
Binomial transform of A167876.
Inverse binomial transform of A080930.
a(n) = A007290(n+2)+n+1.
a(n) = A014820(n)/(n+1) for n > 0.
a(n) = A116731(n+2)-1.
a(n) = A033547(n+1)-n.
a(n) = A054602(n)/3.
a(n) = A086514(n+3)-2.
a(n) = A002061(n+1)+a(n-1) for n > 0.
a(n) = A005894(n)-a(n-1) for n > 0.
First bisection is A057813.
Second differences are in A004277.
a(n) = A177342(n)*(-1)+a(n-1)*5 with n>0. For n=8, a(8)=-A177342(8)+a(7)*5=-631+176*5=249. - Bruno Berselli, May 18 2010

Examples

			a(0) = (0*1*2+0+1+2)/3 = (0+3)/3 = 1.
a(1) = (1*2*3+1+2+3)/3 = (6+6)/3 = 4.
a(6)-4*a(5)+6*a(4)-4*a(3)+a(2) = 119-4*76+6*45-4*24+11 = 0. - _Bruno Berselli_, May 26 2010
		

Crossrefs

Cf. A001477 (nonnegative integers),
A006527 ((n^3+2*n)/3),
A167876 (1, 3, 4, 2, 0, 0, 0, 0, ...),
A007290 (2*C(n, 3)),
A014820 ((1/3)*(n^2+2*n+3)*(n+1)^2),
A033547 (n*(n^2+5)/3),
A054602 (Sum_{d|3} phi(d)*n^(3/d)),
A086514 ((n^3-6*n^2+14*n-6)/3),
A002061 (n^2-n+1),
A005894 (centered tetrahedral numbers),
A057813 ((2*n+1)*(4*n^2+4*n+3)/3),
A004277 (1 and the positive even numbers),
A028387 (n+(n+1)^2),

Programs

  • Magma
    [ (&*s + &+s)/3 where s is [n..n+2]: n in [0..42] ];
    
  • Mathematica
    Select[Table[(n*(n+1)*(n+2)+n+(n+1)+(n+2))/3,{n,0,5!}],IntegerQ[#]&] (* Vladimir Joseph Stephan Orlovsky, Dec 04 2010 *)
    (Times@@#+Total[#])/3&/@Partition[Range[0,65],3,1]  (* Harvey P. Dale, Mar 14 2011 *)
  • PARI
    a(n)=(n+1)*(n^2+2*n+3)/3 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = (n^3+3*n^2+5*n+3)/3.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3)+2 for n > 3; a(0)=1, a(1)=4, a(2)=11, a(3)=24.
G.f.: (1+x^2)/(1-x)^4.
a(n) = SUM(A109613(k)*A005408(n-k): 0<=k<=n). - Reinhard Zumkeller, Dec 05 2009
a(n)-4*a(n-1)+6*a(n-2)-4*a(n-3)+a(n-4)=0 for n>3. - Bruno Berselli, May 26 2010

A203976 a(n) = 3*a(n-2) - a(n-4), a(0)=0, a(1)=1, a(2)=5, a(3)=4.

Original entry on oeis.org

0, 1, 5, 4, 15, 11, 40, 29, 105, 76, 275, 199, 720, 521, 1885, 1364, 4935, 3571, 12920, 9349, 33825, 24476, 88555, 64079, 231840, 167761, 606965, 439204, 1589055, 1149851, 4160200, 3010349, 10891545, 7881196, 28514435, 20633239, 74651760, 54018521, 195440845
Offset: 0

Views

Author

Michael Somos, Jan 08 2012

Keywords

Comments

a(n+1) = p(n+2) where p(x) is the unique degree-n polynomial such that p(k) = Lucas(k) for k = 1, ..., n+1.
This is a divisibility sequence; that is, if n divides m, then a(n) divides a(m).
a(n) = row sums of triangle A226377(n), based on differences among Lucas Numbers. - Richard R. Forberg, Aug 01 2013
A strong divisibility sequence, i.e., gcd(a(n),a(m)) = a(gcd(n,m)) for all natural numbers n and m. The sequence of convergents of the 2-periodic continued fraction [0; 1, -5, 1, -5, ...] = 1/(1 - 1/(5 - 1/(1 - 1/(5 - ...)))) = 1/2*(5 - sqrt(5)) begins [0/1, 1/1, 5/4, 4/3, 15/11, 11/8, 40/29,...]. The present sequence is the sequence of numerators; the sequence of denominators [1, 1, 4, 3, 11, 8, 29,...] is A005013. - Peter Bala, May 19 2014
It appears that the first homology group of the branched n-th cyclic covering of the group of figure-eight knot is the direct sum of cyclic groups of orders a(n) and A005013(n), so the order of that group is the product of these numbers, i. e. A004146(n); see the table on p. 156 of the paper by Fox. - Andrey Zabolotskiy, Mar 16 2023

Examples

			a(3) = 4 since p(x) = (-x^2 + 7*x - 4) / 2 interpolates p(1) = 1, p(2) = 3, p(3) = 4, and p(4) = 4.
		

Crossrefs

Cf. A000032, A000045, A201157 (bisection), A002878 (bisection). A005013.

Programs

  • Haskell
    a203976 n = a203976_list !! n
    a203976_list = 0 : 1 : 5 : 4 : zipWith (-)
       (map (* 3) $ drop 2 a203976_list) a203976_list
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Magma
    I:=[0,1,5,4]; [n le 4 select I[n] else 3*Self(n-2)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Mar 29 2016
  • Mathematica
    LinearRecurrence[{0,3,0,-1},{0,1,5,4},40] (* Harvey P. Dale, Apr 06 2013 *)
  • PARI
    {a(n) = if( n%2, fibonacci(n+1) + fibonacci(n-1), 5 * fibonacci(n))}
    
  • PARI
    {a(n) = if( n<0, -a(-n), polcoeff( x * (1 + 5*x + x^2) / (1 - 3*x^2 + x^4) + x * O(x^n), n))}
    
  • PARI
    {a(n) = if( n<0, -a(-n), subst( polinterpolate( vector( n, k, fibonacci(k-1) + fibonacci(k+1) )), x, n + 1))}
    

Formula

a(1) = 1, a(2) = 5, a(3) = 4, a(n) * a(n-3) = a(n-1) * a(n-2) - 5. a(-n) = -a(n).
G.f.: x * (1 + 5*x + x^2) / ( (x^2+x-1)*(x^2-x-1) ).
a(2*n) = 5 * A000045(2*n) (Fibonacci). a(2*n+1) = A000032(2*n+1) (Lucas).
a(A004277(n)) = A054888(n+1). - Reinhard Zumkeller, Jan 11 2012
a(n) = A000032(n+1) - A061084(n). - R. J. Mathar, Jun 23 2013
a(2n) = a(2n-1) + a(2n+1), for n>0. - Richard R. Forberg, Aug 01 2013
a(n) = (2^(-1-n)*((-5-sqrt(5)+(-1)^n*(-5+sqrt(5)))*((-1+sqrt(5))^n-(1+sqrt(5))^n)))/sqrt(5). - Colin Barker, Mar 28 2016
E.g.f.: exp(-phi*x)*(exp(x) - 1)*(phi*exp(sqrt(5)*x) - 1/phi), where phi = (1 + sqrt(5))/2. - G. C. Greubel, Mar 28 2016

A154325 Triangle with interior all 2's and borders 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1
Offset: 0

Views

Author

Paul Barry, Jan 07 2009

Keywords

Comments

This triangle follows a general construction method as follows: Let a(n) be an integer sequence with a(0)=1, a(1)=1. Then T(n,k,r):=[k<=n](1+r*a(k)*a(n-k)) defines a symmetrical triangle.
Row sums are n + 1 + r*Sum_{k=0..n} a(k)*a(n-k) and central coefficients are 1+r*a(n)^2.
Here a(n)=1-0^n and r=1. Row sums are A004277.
Eigensequence of the triangle = A000129, the Pell sequence. - Gary W. Adamson, Feb 12 2009
Inverse has general element T(n,k)*(-1)^(n-k). - Paul Barry, Oct 06 2010

Examples

			Triangle begins
  1;
  1, 1;
  1, 2, 1;
  1, 2, 2, 1;
  1, 2, 2, 2, 1;
  1, 2, 2, 2, 2, 1;
  1, 2, 2, 2, 2, 2, 1;
From _Paul Barry_, Oct 06 2010: (Start)
Production matrix is
  1,  1;
  0,  1, 1;
  0, -1, 0, 1;
  0,  1, 0, 0, 1;
  0, -1, 0, 0, 0, 1;
  0,  1, 0, 0, 0, 0, 1;
  0, -1, 0, 0, 0, 0, 0, 1;
  0,  1, 0, 0, 0, 0, 0, 0, 1; (End)
		

Crossrefs

Programs

  • Mathematica
    a[n_] :=
     If[Length@
        NestWhileList[# -
           Floor[(Sqrt[8 # + 1] - 1)/2] (Floor[(Sqrt[8 # + 1] - 1)/2] + 1)/
    2 &, n, # > 1 &] <= 2, 1, 2] (* David Naccache, Jul 13 2025 *)
  • PARI
    row(n) = vector(n+1, k, k--; (2-0^(k*(n-k)))); \\ Michel Marcus, Jul 13 2025

Formula

Number triangle T(n,k) = [k<=n](2-0^(n-k)-0^k+0^(n+k)) = [k<=n](2-0^(k*(n-k))).
a(n) = 2 - A103451(n). - Omar E. Pol, Jan 18 2009

Extensions

More terms from Michel Marcus, Jul 13 2025

A300576 Number of nights required in the worst case to find the princess in a castle with n rooms arranged in a line (Castle and princess puzzle).

Original entry on oeis.org

1, 2, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122
Offset: 1

Views

Author

Dmitry Kamenetsky, Mar 09 2018

Keywords

Comments

This is a logic puzzle. There is a castle with n rooms arranged in a line. The princess living in the castle sleeps in a different room each night, but always one adjacent to the one in which she slept on the previous night. She is free to choose any room in which to sleep on the first night. A prince would like to find the princess, but she will not tell him where she is going to sleep each night. Each night the prince can look in a single room. What strategy should he follow in order to guarantee that he finds the princess in a minimum number of nights?
The strategy to find the princess guaranteed within a(n) nights takes on average k(n) nights until the princess is found with lim_{n->oo} k(n) = n-1.5. For n>4, strategies with lower average numbers of trials exist; A386462 provides this strategy for n=8. See there for more information. - Ruediger Jehn, Aug 05 2025
Christian Perfect (see link) considered the case when the rooms are arranged as a general graph. He showed that the set of solvable graphs is exactly the set of trees not containing the "threesy" subgraph, which is A130131. He also showed that for d-level binary trees with 1 <= d <= 4 the number of required nights is 1, 2, 6, 18. Binary trees with d >= 5 are unsolvable as they contain "threesy".

Examples

			For n = 1, there is only one room to search, so a(1) = 1.
For n = 2, the prince searches room 1 on the first night. If the princess is not there that means she was in room 2. If the prince searches room 1 again then he is guaranteed to see the princess as she has to move from room 2 to room 1 (she cannot stay in the same room). So a(2) = 2.
For n = 3, the prince searches room 2 on the first night. If the princess is not there that means she was either in room 1 or 3. On the second night she must go to room 2 and this is where the prince will find her. So a(3) = 2.
For n = 4, a solution that guarantees to find the princess in a(4)=4 nights is to search rooms (2,3,3,2).
For n = 5, a solution that guarantees to find the princess in a(5)=6 nights is to search rooms (2,3,4,4,3,2).
In the general case for n >= 3, a solution guaranteeing success in the minimum number of nights is to search rooms (2,3,...,n-1,n-1,...,3,2), so a(n) = 2*n - 4.
		

Crossrefs

Essentially the same as A005843, A004277 and A004275.

Programs

  • Mathematica
    CoefficientList[ Series[(2x^3 - x^2 + 1)/(x - 1)^2, {x, 0, 62}], x] (* Robert G. Wilson v, Mar 12 2018 *)
    Join[{1,2},Range[2,200,2]] (* Harvey P. Dale, Jan 25 2019 *)

Formula

For n >= 3, a(n) = 2*n - 4.
From Chai Wah Wu, Apr 14 2024: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 4.
G.f.: x*(2*x^3 - x^2 + 1)/(x - 1)^2. (End)
E.g.f.: 4 + 2*exp(x)*(x - 2) + 3*x + x^2. - Stefano Spezia, Aug 15 2025

A316723 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j=1..k} (1+x^j)/(1-x^j).

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 2, 2, 0, 1, 2, 4, 2, 0, 1, 2, 4, 6, 2, 0, 1, 2, 4, 8, 8, 2, 0, 1, 2, 4, 8, 12, 10, 2, 0, 1, 2, 4, 8, 14, 18, 12, 2, 0, 1, 2, 4, 8, 14, 22, 26, 14, 2, 0, 1, 2, 4, 8, 14, 24, 34, 34, 16, 2, 0, 1, 2, 4, 8, 14, 24, 38, 50, 44, 18, 2, 0, 1, 2, 4, 8, 14, 24, 40, 58, 70, 56, 20, 2, 0
Offset: 0

Views

Author

Seiichi Manyama, Jul 11 2018

Keywords

Examples

			Square array begins:
   1, 1,  1,  1,  1,  1,  1, ...
   0, 2,  2,  2,  2,  2,  2, ...
   0, 2,  4,  4,  4,  4,  4, ...
   0, 2,  6,  8,  8,  8,  8, ...
   0, 2,  8, 12, 14, 14, 14, ...
   0, 2, 10, 18, 22, 24, 24, ...
   0, 2, 12, 26, 34, 38, 40, ...
		

Crossrefs

Diagonal gives A015128.

A322419 Number of n-step self-avoiding walks on L-lattice.

Original entry on oeis.org

1, 2, 4, 8, 12, 20, 32, 52, 84, 136, 220, 356, 564, 904, 1448, 2320, 3684, 5872, 9376, 14960, 23688, 37652, 59912, 95316, 150744, 239080, 379528, 602424, 951788, 1507136, 2388252, 3784344, 5973988, 9447880, 14950796, 23658540, 37321752, 58965260, 93206864, 147333080, 232286272
Offset: 0

Views

Author

Robert FERREOL, Dec 07 2018

Keywords

Comments

The L-lattice is an oriented square lattice in which each step must be followed by a step perpendicular to the preceding one.

Examples

			a(1) = 2 because there are only two possible directions at each intersection; for the same reason a(2) = 2*2 and a(3) = 2*4 ; but a(4) = 12 (not 16) because four paths return to the starting point and are not self-avoiding. See the 12 paths under "links".
		

Crossrefs

Cf. A001411 (square lattice), A117633 (Manhattan lattice), A189722, A004277 (coordination sequence), A151798.

Programs

  • Maple
    walks:=proc(n)
        option remember;
        local i,father,End,X,walkN,dir,u,x,y;
        if n=1 then [[[0,0]]] else
             father:=walks(n-1):
             walkN:=NULL:
             for i to nops(father) do
                u:=father[i]:End:=u[n-1]:if n mod 2 = 0 then
                dir:=[[1,0], [-1, 0]] else dir := [[0,1], [0, -1]] fi:
                for X in dir do
                 if not(member(End+X,u)) then walkN:=walkN,[op(u),End+X] fi;
                 od od:
             [walkN] fi end:
    n:=5:L:=walks(n):N:=nops(L);
    # This program explicitly gives the a(n) walks.
  • Mathematica
    mo = {{1, 0}, {-1, 0}}; moo = {{0, 1}, {0, -1}}; a[0] = 1;
    a[tg_, p_: {{0, 0}}] := Module[{e, mv},
    If[Mod[tg, 2] == 0, mv = Complement[Last[p] + # & /@ mo, p],
    mv = Complement[Last[p] + # & /@ moo, p]];
    If[tg == 1, Length@mv, Sum[a[tg - 1, Append[p, e]], {e, mv}]]];
    a /@ Range[0, 20] (* after the program from Giovanni Resta at A001411 *)
  • Python
    def add(L, x):
        M = [y for y in L]
        M.append(x)
        return M
    plus = lambda L, M: [x + y for x, y in zip(L, M)]
    mo = [[1, 0], [-1, 0]]
    moo = [[0, 1], [0, -1]]
    def a(n, P=[[0, 0]]):
        if n == 0:
            return 1
        if n % 2 == 0:
            mv1 = [plus(P[-1], x) for x in mo]
        else:
            mv1 = [plus(P[-1], x) for x in moo]
        mv2 = [x for x in mv1 if x not in P]
        if n == 1:
            return len(mv2)
        else:
            return sum(a(n - 1, add(P, x)) for x in mv2)
    [a(n) for n in range(21)]

Formula

a(n) = 4*A189722(n) for n >= 2.
It is proved that a(n)^(1/n) has a limit mu called the "connective constant" of the L-lattice; approximate value of mu: 1.5657. It is only conjectured that a(n + 1) ~ mu * a(n).

A365402 The number of divisors of the largest unitary divisor of n that is an exponentially odd number.

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 4, 1, 4, 2, 2, 2, 4, 4, 1, 2, 2, 2, 2, 4, 4, 2, 8, 1, 4, 4, 2, 2, 8, 2, 6, 4, 4, 4, 1, 2, 4, 4, 8, 2, 8, 2, 2, 2, 4, 2, 2, 1, 2, 4, 2, 2, 8, 4, 8, 4, 4, 2, 4, 2, 4, 2, 1, 4, 8, 2, 2, 4, 8, 2, 4, 2, 4, 2, 2, 4, 8, 2, 2, 1, 4, 2, 4, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2023

Keywords

Comments

The sum of these divisors is A351569(n).
All the terms are either 1 or even (A004277).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], e + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2, x+1, 1), factor(n)[, 2]));
    
  • Python
    from math import prod
    from sympy import factorint
    def A365402(n): return prod(e+1 for e in factorint(n).values() if e&1) # Chai Wah Wu, Nov 17 2023
  • SageMath
    def a(n): return prod((valuation(n,p)+1) for p in prime_divisors(n) if valuation(n,p)%2==1) # Orges Leka, Nov 16 2023
    

Formula

a(n) = A000005(A350389(n)).
a(n) = A000005(n) / A365401(n).
a(n) <= A000005(n) with equality if and only if n is an exponentially odd number (A268335).
a(n) >= 1 with equality if and only if n is a square (A000290).
Multiplicative with a(p^e) = 1 if e is even, and e+1 if e is odd.
Dirichlet g.f.: zeta(2*s)^2 * Product_{p prime} (1 + 2/p^s - 1/p^(2*s)).
From Vaclav Kotesovec, Sep 05 2023: (Start)
Dirichlet g.f.: zeta(s)^2 * zeta(2*s)^2 * Product_{p prime} (1 - 4/p^(2*s) + 4/p^(3*s) - 1/p^(4*s)).
Let f(s) = Product_{p prime} (1 - 4/p^(2*s) + 4/p^(3*s) - 1/p^(4*s)).
Sum_{k=1..n} a(k) ~ f(1) * Pi^4 * n / 36 * (log(n) + 2*gamma - 1 + 24*Zeta'(2)/Pi^2 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 4/p^2 + 4/p^3 - 1/p^4) = 0.2177787166195363783230075141194468131307977550013559376482764035236264911...
f'(1) = f(1) * Sum_{p prime} 4*(2*p - 1) * log(p) / (1 - 3*p + p^2 + p^3) = f(1) * 3.3720882314412399056794495057358594564001229865925330149186567502684770675...
and gamma is the Euler-Mascheroni constant A001620. (End)
a(n) = Sum_{d|n} (-1)^(Sum_{p|gcd(d,n/d)} v_p(d)*v_p(n/d)), where v_p(x) denotes the valuation of x at the prime p. - Orges Leka, Nov 16 2023
Previous Showing 11-20 of 39 results. Next