cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 433 results. Next

A059455 Safe primes which are also Sophie Germain primes.

Original entry on oeis.org

5, 11, 23, 83, 179, 359, 719, 1019, 1439, 2039, 2063, 2459, 2819, 2903, 2963, 3023, 3623, 3779, 3803, 3863, 4919, 5399, 5639, 6899, 6983, 7079, 7643, 7823, 10163, 10799, 10883, 11699, 12203, 12263, 12899, 14159, 14303, 14699, 15803, 17939
Offset: 1

Views

Author

Labos Elemer, Feb 02 2001

Keywords

Comments

Primes p such that both (p-1)/2 and 2*p+1 are prime.
Except for 5, all are congruent to 11 modulo 12.
Primes "inside" Cunningham chains of first kind.
Infinite under Dickson's conjecture. - Charles R Greathouse IV, Jul 18 2012
See A162019 for the subset of a(n) that are "reproduced" by the application of the transformations (a(n)-1)/2 and 2*a(n)+1 to the set a(n). - Richard R. Forberg, Mar 05 2015

Examples

			83 is a term because it is prime and 2*83+1 = 167 and (83-1)/2 = 41 are both primes.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(20000) |IsPrime((p-1) div 2) and IsPrime(2*p+1)]; // Vincenzo Librandi, Oct 31 2014
    
  • Mathematica
    lst={}; Do[p=Prime[n]; If[PrimeQ[(p-1)/2]&&PrimeQ[2*p+1], AppendTo[lst, p]], {n, 7!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 02 2008 *)
    Select[Prime[Range[1000]], AllTrue[{(# - 1)/2, 2 # + 1}, PrimeQ] &] (* requires Mathematica 10+; Feras Awad, Dec 19 2018 *)
  • PARI
    forprime(p=2,1e5,if(isprime(p\2)&&isprime(2*p+1),print1(p", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • Python
    from itertools import count, islice
    from sympy import isprime, prime
    def A059455_gen(): # generator of terms
        return filter(lambda p:isprime(p>>1) and isprime(p<<1|1),(prime(i) for i in count(1)))
    A059455_list = list(islice(A059455_gen(),10)) # Chai Wah Wu, Jul 12 2022

Formula

A156660(a(n))*A156659(a(n)) = 1; A156877 gives numbers of these numbers <= n. - Reinhard Zumkeller, Feb 18 2009

A023272 Primes that remain prime through 3 iterations of the function f(x) = 2*x + 1.

Original entry on oeis.org

2, 5, 89, 179, 359, 509, 1229, 1409, 2699, 3539, 6449, 10589, 11549, 11909, 12119, 17159, 19709, 19889, 22349, 26189, 27479, 30389, 43649, 53639, 53849, 55229, 57839, 60149, 61409, 63419, 66749, 71399, 74699, 75329, 82499, 87539, 98369, 101399, 104369
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2*p+1, 4*p+3 and 8*p+7 are also primes. - Vincenzo Librandi, Aug 04 2010
For n > 2, a(n) == 29 (mod 30). - Zak Seidov, Jan 31 2013

Crossrefs

Intersection of A007700 and A023231.

Programs

  • Magma
    [n: n in [1..100000] | IsPrime(n) and IsPrime(2*n+1) and IsPrime(4*n+3) and IsPrime(8*n+7)] // Vincenzo Librandi, Aug 04 2010
    
  • Maple
    p:=2: for n from 1 to 5000 do if(isprime(2*p+1) and isprime(4*p+3) and isprime(8*p+7))then printf("%d, ",p): fi: p:=nextprime(p): od: # Nathaniel Johnston, Jun 30 2011
  • Mathematica
    Select[Prime[Range[10^3*4]], PrimeQ[a1=2*#+1] && PrimeQ[a2=2*a1+1] && PrimeQ[a3=2*a2+1] &] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *)
    Join[{2, 5}, Select[Range[89, 104369, 30], PrimeQ[#] && PrimeQ[2*# + 1] && PrimeQ[4*# + 3] && PrimeQ[8*# + 7] &]] (* Zak Seidov, Jan 31 2013 *)
    p3iQ[n_]:=AllTrue[NestList[2#+1&,n,3],PrimeQ]; Join[{2,5},Select[ Range[ 89,200000,30],p3iQ]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 30 2019 *)
  • PARI
    is(n)=isprime(n)&&isprime(2*n+1)&&isprime(4*n+3)&&isprime(8*n+7) \\ Charles R Greathouse IV, Mar 21 2013

A023330 Primes that remain prime through 5 iterations of function f(x) = 2x + 1.

Original entry on oeis.org

89, 63419, 127139, 405269, 810809, 1069199, 1122659, 1178609, 1333889, 1598699, 1806089, 1958249, 2164229, 2245319, 2329469, 2606069, 2848949, 3241289, 3339989, 3784199, 3962039, 4088879, 4328459, 4444829, 4658939, 4664249, 4894889, 4897709, 5132999
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2*p+1, 4*p+3, 8*p+7, 16*p+15 and 32*p+31 are also primes. - Vincenzo Librandi, Aug 04 2010

Crossrefs

Programs

  • Magma
    [n: n in [1..5000000] | forall{2^i*n+2^i-1: i in [0..5] | IsPrime(2^i*n+2^i-1)}]; // Vincenzo Librandi, Aug 04 2010
    
  • Mathematica
    Select[Prime[Range[10^5]], PrimeQ[a1=2*#+1] && PrimeQ[a2=2*a1+1] && PrimeQ[a3=2*a2+1] && PrimeQ[a4=2*a3+1] && PrimeQ[a5=2*a4+1] &] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *)
  • PARI
    is(n)=isprime(n) && isprime(2*n+1) && isprime(4*n+3) && isprime(8*n+7) && isprime(16*n+15) && isprime(32*n+31) \\ Charles R Greathouse IV, Jul 01 2013
    
  • Python
    from sympy import prime, isprime
    A023330_list = [p for p in (prime(n) for n in range(1,10**5)) if all([isprime(2**m*(p+1)-1) for m in range(1,6)])] # Chai Wah Wu, Sep 09 2014

Formula

a(n) == 29 (mod 30). - Zak Seidov, Jan 31 2013

A023302 Primes that remain prime through 4 iterations of function f(x) = 2x + 1.

Original entry on oeis.org

2, 89, 179, 53639, 53849, 61409, 63419, 66749, 126839, 127139, 143609, 167729, 186149, 206369, 254279, 268049, 296099, 340919, 405269, 422069, 446609, 539009, 594449, 607319, 658349, 671249, 725009, 775949, 810539, 810809, 812849, 819509
Offset: 1

Views

Author

Keywords

Comments

Primes p such that 2*p+1, 4*p+3, 8*p+7 and 16*p+15 are also primes. - Vincenzo Librandi, Aug 04 2010
For n > 1, a(n) == 29 (mod 30). One should use it in codes. - Zak Seidov, Jan 31 2013

Crossrefs

Programs

  • Magma
    [n: n in [1..1200000] | IsPrime(n) and IsPrime(2*n+1) and IsPrime(4*n+3) and IsPrime(8*n+7) and IsPrime(16*n+15)] // Vincenzo Librandi, Aug 04 2010
    
  • Mathematica
    Select[Prime[Range[10^4*4]], PrimeQ[a1=2*#+1] && PrimeQ[a2=2*a1+1] && PrimeQ[a3=2*a2+1] && PrimeQ[a4=2*a3+1] &] (* Vladimir Joseph Stephan Orlovsky, May 01 2008 *)
    Join[{2},Select[Range[29,820000,30],And@@PrimeQ[NestList[2#+1&,#,4]]&]] (* Harvey P. Dale, Apr 03 2013 *)
  • PARI
    is(n)=isprime(n) && isprime(2*n+1) && isprime(4*n+3) && isprime(8*n+7) && isprime(16*n+15) \\ Charles R Greathouse IV, Jul 01 2013

A008347 a(n) = Sum_{i=0..n-1} (-1)^i * prime(n-i).

Original entry on oeis.org

0, 2, 1, 4, 3, 8, 5, 12, 7, 16, 13, 18, 19, 22, 21, 26, 27, 32, 29, 38, 33, 40, 39, 44, 45, 52, 49, 54, 53, 56, 57, 70, 61, 76, 63, 86, 65, 92, 71, 96, 77, 102, 79, 112, 81, 116, 83, 128, 95, 132, 97, 136, 103, 138, 113, 144, 119, 150, 121, 156, 125, 158, 135, 172, 139, 174, 143
Offset: 0

Views

Author

Keywords

Comments

Define the sequence b(n) by b(1) = 1; b(n) = 1 - (prime(n-1)/prime(n))*b(n-1) if n > 1. Then b(n) = a(n)/prime(n). Does lim b(n) exist? If so, it must equal 1/2. - Joseph L. Pe, Feb 17 2003
This sequence contains no duplicate values; after the initial 0, 2, the parity alternates, and a(n+2) > a(n). Do even and odd values trade the lead infinitely often (as would be expected if we model their difference as a random walk)? - Franklin T. Adams-Watters, Jan 25 2010
Conjecture: For any m = 1, 2, 3, ... and r = 0, ..., m - 1, there are infinitely many positive integers n with a(n) == r (mod m). - Zhi-Wei Sun, Feb 27 2013
From Zhi-Wei Sun, May 18 2013: (Start)
Conjectures:
(i) The sequence a(1), a(2), a(3), ... contains infinitely many Sophie Germain primes (A005384). (For example, a(1) = 2, a(4) = 3, a(6) = 5, a(18) = 29, a(28) = 53, a(46) = 83, a(54) = 113 and a(86) = 191 are Sophie Germain primes.) Also, there are infinitely many positive integers n such that a(n) - 1 and a(n) + 1 are twin primes. (Such integers n are 3, 7, 11, 41, 53, 57, 69, 95, 147, 191, 253, ....)
(ii) For each non-constant integer-valued polynomial P(x) with positive leading coefficient, there are infinitely many positive integers n such that a(n) = P(x) for some positive integer x. (For example, a(2) = 1^2, a(3) = 2^2, a(9) = 4^2, a(26) = 7^2, a(44) = 9^2, a(55) = 12^2 and a(58) = 11^2 are squares.)
(iii) The only powers of two in the current sequence are a(1) = 2, a(2) = 1, a(3) = 4, a(5) = 8, a(9) = 16, a(17) = 32, a(47) = 128, and a(165) = 512.
(iv) The only solutions to the equation a(n) = m! are (m,n) = (1, 2), (2, 1), (8, 7843). [False!] (End)
Conjecture: For any n > 9 we have a(n+1) < a(n-1)^(1+2/(n+2)). (This yields an upper bound for prime(n+1) - prime(n) in terms of prime(1), ..., prime(n-1). The conjecture has been verified for n up to 10^8.) - Zhi-Wei Sun, Jun 09 2013
Conjecture (iv) above is false since a(1379694977463) = 20922789888000 = 16!. - Giovanni Resta, Sep 04 2018
Conjecture: We have {a(m)+a(n): m,n>0} = {2,3,...}. Also, {a(m)-a(n): m,n>0} contains all the integers, and {a(m)/a(n): m,n>0} contains all the positive rational numbers. (I have noted that {a(m)/a(n): m,n = 1..60000} contains {a/b: a,b = 1..1000}.) - Zhi-Wei Sun, May 23 2019
Let d(n) = a(n) - a(n-1). Since a(n-1) = prime(n) - a(n), d(n) = 2*a(n) - prime(n). If lim inf a(n)/prime(n) = 1/2 as conjectured by Joseph L. Pe above holds, lim inf d(n)/prime(n) = 2*lim inf a(n)/prime(n) - 1 = 0. Numerical analysis of a(n) for n up to 10^9 shows that abs(d(n))/sqrt(prime(n)) < 15, and thus abs(d(n)) = O(sqrt(prime(n))) is conjectured. - Ya-Ping Lu, Aug 31 2020

Crossrefs

Complement is in A226913.

Programs

  • Haskell
    a008347 n = a008347_list !! n
    a008347_list = 0 : zipWith (-) a000040_list a008347_list
    -- Reinhard Zumkeller, Feb 09 2015
    
  • Magma
    [0] cat [&+[ (-1)^k * NthPrime(n-k): k in [0..n-1]]: n in [1..70]]; // Vincenzo Librandi, May 26 2019
    
  • Maple
    A008347 := proc(n) options remember; if n = 0 then 0 else abs(A008347(n-1)-ithprime(n)); fi; end;
  • Mathematica
    Join[{0},Abs[Accumulate[Times@@@Partition[Riffle[Prime[Range[80]],{1,-1}], 2]]]] (* Harvey P. Dale, Dec 11 2011 *)
    f[n_] := Abs@ Sum[(-1)^k Prime[k], {k, n - 1}]; Array[f, 70] (* Robert G. Wilson v, Oct 08 2013 *)
    a[0] = 0; a[n_] := a[n] = Prime[n] - a[n - 1]; Array[a, 70, 0] (* Robert G. Wilson v, Oct 16 2013 *)
    FoldList[#2 - # &, 0, Array[Prime, 30]] (* Horst H. Manninger, Oct 29 2021 *)
  • PARI
    a(n)=abs(sum(i=1,n,(-1)^i*prime(i))) \\ Charles R Greathouse IV, Apr 29 2015
    
  • Python
    from sympy import nextprime
    p = a = 0; L = [a]
    for n in range(1, 67): p = nextprime(p); a = p - a; L.append(a)
    print(*L, sep = ", ") # Ya-Ping Lu, May 07 2023

Formula

a(n) = prime(n) - a(n-1) for n >= 1.
a(n+2) - a(n) = A001223(n+1). - Reinhard Zumkeller, Feb 09 2015
G.f: (x*b(x))/(1+x), where b(x) is the g.f. of A000040. - Mario C. Enriquez, Dec 10 2016
Meštrovic (2018), following Pillai, conjectures that
a(2k) = k*log k + k*loglog k - k + o(k) as k -> oo,
with a similar conjecture for a(2k+1). - N. J. A. Sloane, Dec 21 2019

A111153 Sophie Germain semiprimes: semiprimes n such that 2n+1 is also a semiprime.

Original entry on oeis.org

4, 10, 25, 34, 38, 46, 55, 57, 77, 91, 93, 106, 118, 123, 129, 133, 143, 145, 159, 161, 169, 177, 185, 201, 203, 205, 206, 213, 218, 226, 235, 259, 267, 289, 291, 295, 298, 305, 314, 327, 334, 335, 339, 358, 361, 365, 377, 381, 394, 395, 403, 407, 415, 417
Offset: 1

Views

Author

Christopher M. Tomaszewski (cmt1288(AT)comcast.net), Oct 19 2005

Keywords

Comments

Define a generalized Sophie Germain n-prime of degree m, p, to be an n-prime (n-almost prime) such that 2p+1 is an m-prime (m-almost prime). For example, p=24 is a Sophie Germain 4-prime of degree 2 because 24 is a 4-prime and 2*24+1=49 is a 2-prime. Then this sequence gives all the Sophie Germain 2-primes of degree 2.

Examples

			a(4)=34 because 34 is the 4th semiprime such that 2*34+1=69 is also a semiprime.
		

Crossrefs

Programs

  • Magma
    f:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [4..500] | f(n) and f(2*n+1)]; // Marius A. Burtea, Jan 04 2019
    
  • Mathematica
    SemiPrimeQ[n_] := (Plus@@Transpose[FactorInteger[n]][[2]]==2); Select[Range[2, 500], SemiPrimeQ[ # ]&&SemiPrimeQ[2#+1]&] (* T. D. Noe, Oct 20 2005 *)
    fQ[n_] := Plus @@ Last /@ FactorInteger[n] == 2; Select[ Range[445], fQ[ # ] && fQ[2# + 1] &] (* Robert G. Wilson v, Oct 20 2005 *)
    Flatten@Position[PrimeOmega@{#,1+2*#}&/@Range@1000,{2,2}] (* Hans Rudolf Widmer, Nov 25 2023 *)
  • PARI
    isok(n) = (bigomega(n) == 2) && (bigomega(2*n+1) == 2); \\ Michel Marcus, Jan 04 2019

Formula

a(n) = (A176896(n) - 1)/2. - Zak Seidov, Sep 10 2012

Extensions

Corrected and extended by T. D. Noe, Ray Chandler and Robert G. Wilson v, Oct 20 2005

A059452 Safe primes (A005385) that are not Sophie Germain primes.

Original entry on oeis.org

7, 47, 59, 107, 167, 227, 263, 347, 383, 467, 479, 503, 563, 587, 839, 863, 887, 983, 1187, 1283, 1307, 1319, 1367, 1487, 1523, 1619, 1823, 1907, 2027, 2099, 2207, 2447, 2579, 2879, 2999, 3119, 3167, 3203, 3467, 3947, 4007, 4079, 4127, 4139, 4259, 4283
Offset: 1

Views

Author

Labos Elemer, Feb 02 2001

Keywords

Comments

Except for 7, these primes are congruent to 11 modulo 12.
Terminal primes in complete Cunningham chains of first kind, i.e., the chains cannot be continued from these primes.

Examples

			347 is a term because 173 is a prime but 695 is not.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p-1)/2],If[ !PrimeQ[2*p+1],AppendTo[lst,p]]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jun 24 2009 *)
  • PARI
    is(p) = p > 2 && isprime(p) && isprime((p-1)/2) && !isprime(2*p+1); \\ Amiram Eldar, Jul 15 2024
  • Python
    from itertools import count, islice
    from sympy import isprime, prime
    def A059452_gen(): # generator of terms
        return filter(lambda p:isprime(p>>1) and not isprime(p<<1|1),(prime(i) for i in count(1)))
    A059452_list = list(islice(A059452_gen(),10)) # Chai Wah Wu, Jul 12 2022
    

Formula

A156659(a(n))*(1-A156660(a(n))) = 1. - Reinhard Zumkeller, Feb 18 2009

Extensions

Broken link updated by R. J. Mathar, Apr 12 2010

A192580 Monotonic ordering of set S generated by these rules: if x and y are in S and xy+1 is a prime, then xy+1 is in S, and 2 is in S.

Original entry on oeis.org

2, 5, 11, 23, 47
Offset: 1

Views

Author

Clark Kimberling, Jul 04 2011

Keywords

Comments

Following the discussion at A192476, the present sequence introduces a restriction: that the generated terms must be prime. A192580 is the first of an ascending chain of finite sequences, determined by the initial set called "start":
A192580: f(x,y)=xy+1 and start={2}
A192581: f(x,y)=xy+1 and start={2,4}
A192582: f(x,y)=xy+1 and start={2,4,6}
A192583: f(x,y)=xy+1 and start={2,4,6,8}
A192584: f(x,y)=xy+1 and start={2,4,6,8,10}
For other choices of the function f(x,y) and start, see A192585-A192598.
A192580 consists of only 5 terms, A192581 of 7 terms, and A192582 of 28,...; what can be said about the sequence (5,7,28,...)?
2, 5, 11, 23, 47 is the complete Cunningham chain that begins with 2. Each term except the last is a Sophie Germain prime A005384. - Jonathan Sondow, Oct 28 2015

Examples

			2 is in the sequence by decree.
The generated numbers are 5=2*2+1, 11=2*5+1, 23=2*11+1, 47=2*23+1.
		

Crossrefs

Programs

  • Mathematica
    start = {2}; primes = Table[Prime[n], {n, 1, 10000}];
    f[x_, y_] := If[MemberQ[primes, x*y + 1], x*y + 1]
    b[x_] := Block[{w = x}, Select[Union[Flatten[AppendTo[w, Table[f[w[[i]], w[[j]]], {i, 1, Length[w]}, {j, 1, i}]]]], # < 50000 &]];
    t = FixedPoint[b, start]  (* A192580 *)

A023212 Primes p such that 4*p+1 is also prime.

Original entry on oeis.org

3, 7, 13, 37, 43, 67, 73, 79, 97, 127, 139, 163, 193, 199, 277, 307, 373, 409, 433, 487, 499, 577, 619, 673, 709, 727, 739, 853, 883, 919, 997, 1033, 1039, 1063, 1087, 1093, 1123, 1129, 1297, 1327, 1423, 1429, 1453, 1543, 1549, 1567, 1579, 1597, 1663, 1753
Offset: 1

Views

Author

Keywords

Comments

If p > 3 is a Sophie Germain prime (A005384), p cannot be in this sequence, because all Germain primes greater than 3 are of the form 6k - 1, and then 4p + 1 = 3*(8k-1). - Enrique Pérez Herrero, Aug 15 2011
a(n), except 3, is of the form 6k+1. - Enrique Pérez Herrero, Aug 16 2011
According to Beiler: the integer 2 is a primitive root of all primes of the form 4p + 1 with p prime. - Martin Renner, Nov 06 2011
Chebyshev showed that 2 is a primitive root of all primes of the form 4p + 1 with p prime. - Jonathan Sondow, Feb 04 2013
Also solutions to the equation: floor(4/A000005(4*n^2+n)) = 1. - Enrique Pérez Herrero, Jan 12 2013
Prime numbers p such that p^p - 1 is divisible by 4*p + 1. - Gary Detlefs, May 22 2013
It appears that whenever (p^p - 1)/(4*p + 1) is an integer, then this integer is even (see previous comment). - Alexander R. Povolotsky, May 23 2013
4p + 1 does not divide p^n + 1 for any n. - Robin Garcia, Jun 20 2013
Primes in this sequence of the form 4k+1 are listed in A113601. - Gary Detlefs, May 07 2019
There are no numbers with last digit 1 in this list (i.e., members of A030430) because primes p == 1 (mod 10) lead to 5|(4p+1) such that 4p+1 is not prime. - R. J. Mathar, Aug 13 2019

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York: Dover, (2nd ed.) 1966, p. 102, nr. 5.
  • P. L. Chebyshev, Theory of congruences, Elements of number theory, Chelsea, 1972, p. 306.

Crossrefs

Programs

  • Magma
    [n: n in [0..1000] | IsPrime(n) and IsPrime(4*n+1)]; // Vincenzo Librandi, Nov 20 2010
    
  • Maple
    isA023212 := proc(n)
        isprime(n) and isprime(4*n+1) ;
    end proc:
    for n from 1 to 1800 do
        if isA023212(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, May 26 2013
  • Mathematica
    Select[Range[2000], PrimeQ[#] && PrimeQ[4# + 1] &] (* Alonso del Arte, Aug 15 2011 *)
    Join[{3}, Select[Range[7, 2000, 6], PrimeQ[#] && PrimeQ[4# + 1] &]] (* Zak Seidov, Jan 21 2012 *)
    Select[Prime[Range[300]],PrimeQ[4#+1]&] (* Harvey P. Dale, Oct 17 2021 *)
  • PARI
    forprime(p=2,1800,if(Mod(p,4*p+1)^p==1, print1(p", \n"))) \\ Alexander R. Povolotsky, May 23 2013

Formula

Sum_{n>=1} 1/a(n) is in the interval (0.892962433, 1.1616905) (Wagstaff, 2021). - Amiram Eldar, Nov 04 2021

Extensions

Name edited by Michel Marcus, Nov 27 2020

A179882 a(n) is the corresponding value of contraharmonic mean B(h) of numbers k such that gcd(k, h) = 1 (k < h) for numbers h from A179877(n) and A179878(n).

Original entry on oeis.org

1, 7, 15, 31, 39, 55, 71, 111, 119, 151, 175, 177, 231, 239, 255, 303, 311, 313, 319, 329, 335, 337, 345, 375, 391, 393, 479, 521, 559, 575, 591, 593, 601, 607, 623, 655, 657, 679, 777, 785, 791, 823, 855, 863, 871, 879, 889, 905, 911, 929, 937, 959, 961, 991
Offset: 1

Views

Author

Jaroslav Krizek, Jul 30 2010, Jul 31 2010

Keywords

Comments

Subsequence of A179873 and A179874.
It appears that for n >= 3, (4*A005384(n)+1)/3 is a subsequence. - Hilko Koning, Jul 27 2018
This happens for this subsequence of A179877: 10, 22, 46, 58, 82, 106, 166, 178, ... apparently "Semiprimes of form prime - 1" >= 10 (see A077065). - Michel Marcus, Jul 27 2018

Crossrefs

Programs

  • Mathematica
    {1}~Join~Select[Partition[Table[ContraharmonicMean@ Select[Range[n - 1], GCD[#, n] == 1 &], {n, 2, 1500}], 2, 1], And[IntegerQ@ First@ #, SameQ @@ #] &][[All, 1]] (* Michael De Vlieger, Jul 30 2018 *)
  • PARI
    lista(nn) = {vch = vector(nn, k, ch(k)); for (i=1, nn-1, if ((vch[i] == vch[i+1]) && !frac(vch[i]), print1(vch[i], ", ")););} \\ Michel Marcus, Jul 27 2018

Formula

a(n) = A175505(A179877(n)) / A175506(A179877(n)).
a(n) = A175505(A179878(n)) / A175506(A179878(n)).

Extensions

More terms from Michel Marcus, Jul 27 2018
Previous Showing 31-40 of 433 results. Next