cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 250 results. Next

A059788 a(n) = largest prime < 2*prime(n).

Original entry on oeis.org

3, 5, 7, 13, 19, 23, 31, 37, 43, 53, 61, 73, 79, 83, 89, 103, 113, 113, 131, 139, 139, 157, 163, 173, 193, 199, 199, 211, 211, 223, 251, 257, 271, 277, 293, 293, 313, 317, 331, 337, 353, 359, 379, 383, 389, 397, 421, 443, 449, 457, 463, 467, 479, 499, 509, 523
Offset: 1

Views

Author

Labos Elemer, Feb 22 2001

Keywords

Comments

Also, smallest member of the first pair of consecutive primes such that between them is a composite number divisible by the n-th prime. - Amarnath Murthy, Sep 25 2002
Except for its initial term, A006992 is a subsequence based on iteration of n -> A151799(2n). The range of this sequence is a subset of A065091. - M. F. Hasler, May 08 2016

Examples

			n=18: p(18)=61, so a(18) is the largest prime below 2*61=122, which is 113.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    A059788 := proc(n)
        prevprime(2*ithprime(n)) ;
    end proc:
    seq(A059788(n),n=1..50) ; # R. J. Mathar, May 08 2016
  • Mathematica
    a[n_] := Prime[PrimePi[2Prime[n]]]
    NextPrime[2*Prime[Range[100]], -1] (* Zak Seidov, May 08 2016 *)
  • PARI
    a(n) = precprime(2*prime(n)); \\ Michel Marcus, May 08 2016

Formula

a(n) = A007917(A100484(n)). - R. J. Mathar, May 08 2016

A156592 Product p*q of two primes with q = 2*p + 1.

Original entry on oeis.org

10, 21, 55, 253, 1081, 1711, 3403, 5671, 13861, 15931, 25651, 34453, 60031, 64261, 73153, 108811, 114481, 126253, 158203, 171991, 258121, 351541, 371953, 392941, 482653, 518671, 703891, 822403, 853471, 869221, 933661, 1034641, 1104841
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 10 2009

Keywords

Comments

Subsequence of A068443.
Products of Sophie Germain primes p with their corresponding safe primes 2p+1. The smallest prime factor of a(n) is (a(n) - phi(a(n)))/3 and the largest prime factor of a(n) is 2(a(n) - phi(a(n)))/3 + 1. - Wesley Ivan Hurt, Oct 03 2013

Crossrefs

Cf. A005384, A005385. Subset of A001358.

Programs

Formula

a(n) = A005384(n)*A005385(n).

A156659 Characteristic function of safe primes.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 13 2009

Keywords

Crossrefs

Programs

  • Haskell
    a156659 n = fromEnum $ a010051 n == 1 && a010051 (n `div` 2) == 1
    -- Reinhard Zumkeller, Sep 18 2011
    
  • Mathematica
    Array[Boole[And[PrimeQ@ #, PrimeQ[(# - 1)/2]]] &, 105, 0] (* Michael De Vlieger, Dec 16 2017 *)
  • PARI
    a(n) = isprime(n) && isprime(floor((n-1)/2)) \\ Iain Fox, Dec 17 2017

Formula

a(n) = if n and also (n-1)/2 is prime then 1 else 0;
a(A005385(n)) = 1; a(A156657(n)) = 0; a(A059456(n)) = 0.
a(n) = A010051(n)*A010051((n-1)/2).
A156875(n) = Sum_{k=1..n} a(k). - Reinhard Zumkeller, Feb 18 2009
a(n) = 1 iff A292936(n) > 1. - Antti Karttunen, Dec 15 2017

A059763 Primes starting a Cunningham chain of the first kind of length 4.

Original entry on oeis.org

509, 1229, 1409, 2699, 3539, 6449, 10589, 11549, 11909, 12119, 17159, 19709, 19889, 22349, 26189, 27479, 30389, 43649, 55229, 57839, 60149, 71399, 74699, 75329, 82499, 87539, 98369, 101399, 104369, 112919, 122099, 139439, 148829, 166739
Offset: 1

Views

Author

Labos Elemer, Feb 20 2001

Keywords

Comments

Initial (unsafe) primes of Cunningham chains of first type with length exactly 4. Primes in A059453 that survive as primes just three "2p+1 iterations", forming chains of exactly 4 terms.
The definition indicates each chain is exactly 4 primes long (i.e., the chain cannot be a subchain of a longer one). That is why this sequence is different from A023272, which also gives primes included in longer chains ("starting" them or not).
Prime p such that {(p-1)/2, p, 2p+1, 4p+3, 8p+7, 16p+15} = {composite, prime, prime, prime, prime, composite}.

Examples

			1229 is a term because, through 2p+1, 1229 -> 2459 -> 4919 -> 9839 and the chain ends here since 2*9839 + 1 = 11*1789 is composite.
		

Crossrefs

Programs

  • Maple
    isA059763 := proc(p) local pitr,itr ; if isprime(p) then if isprime( (p-1)/2 ) then RETURN(false) ; else pitr := p ; for itr from 1 to 3 do pitr := 2*pitr+1 ; if not isprime(pitr) then RETURN(false) ; fi ; od: pitr := 2*pitr+1 ; if isprime(pitr) then RETURN(false) ; else RETURN(true) ; fi ; fi ; else RETURN(false) ; fi ; end: for i from 2 to 100000 do p := ithprime(i) ; if isA059763(p) then printf("%d,",p) ; fi ; od: # R. J. Mathar, Jul 23 2008

Extensions

Edited and extended by R. J. Mathar, Jul 23 2008, Aug 18 2008

A059764 Initial (unsafe) primes of Cunningham chains of first type with length exactly 5. Primes in A059453 that survive as primes just four "2p+1 iterations", forming chains of exactly 5 terms.

Original entry on oeis.org

2, 53639, 53849, 61409, 66749, 143609, 167729, 186149, 206369, 268049, 296099, 340919, 422069, 446609, 539009, 594449, 607319, 658349, 671249, 725009, 775949, 812849, 819509, 926669, 1008209, 1092089, 1132949, 1271849
Offset: 1

Views

Author

Labos Elemer, Feb 20 2001

Keywords

Comments

Primes p such that {(p-1)/2, p, 2p+1, 4p+3, 8p+7, 16p+15, 32p+31} = {nonprime, prime, prime, prime, prime, prime, composite}.

Examples

			2 is here because (2-1)/2 = 1/2 and 32*2+31 = 95 are not primes, while 2, 5, 11, 23, and 47 give a first-kind Cunningham chain of 5 primes which cannot be continued.
53639 is here because through <2p+1>, 53639 -> 107279 -> 214559 -> 429119 -> 858239 and the chain ends here (with this operator).
		

Crossrefs

Programs

  • Mathematica
    l5Q[n_]:=Module[{a=PrimeQ[(n-1)/2],b=PrimeQ[ NestList[2#+1&,n,5]]}, Join[{a},b]=={False,True,True,True,True,True,False}]; Select[Range[ 1300000],l5Q] (* Harvey P. Dale, Oct 14 2012 *)

Extensions

Definition corrected by Alexandre Wajnberg, Aug 31 2005
Entry revised by N. J. A. Sloane, Apr 01 2006

A079148 Primes p such that p-1 has at most 2 prime factors, counted with multiplicity; i.e., primes p such that bigomega(p-1) = A001222(p-1) <= 2.

Original entry on oeis.org

2, 3, 5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983, 1019, 1187, 1283, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907, 2027, 2039, 2063, 2099, 2207, 2447, 2459, 2579, 2819, 2879
Offset: 1

Views

Author

Cino Hilliard, Dec 27 2002

Keywords

Comments

Sum of reciprocals ~ 1.477.

Examples

			83 is in the sequence because 83 - 1 = 2*41 has 2 prime factors.
		

Crossrefs

Except for 2 and 3, this is identical to A005385.

Programs

  • Mathematica
    Select[Prime[Range[500]],PrimeOmega[#-1]<3&] (* Harvey P. Dale, May 17 2011 *)
  • PARI
    s(n) = {sr=0; forprime(x=2,n, if(bigomega(x-1) < 3, print1(x" "); sr+=1.0/x; ); ); print(); print(sr); } \\ Lists primes p<=n such that p-1 has at most 2 prime factors.

A057192 Least m such that 1 + prime(n)*2^m is a prime, or -1 if no such m exists.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 3, 6, 1, 1, 8, 2, 1, 2, 583, 1, 5, 4, 2, 3, 2, 2, 1, 1, 2, 3, 16, 3, 6, 1, 2, 1, 3, 2, 3, 4, 8, 2, 7, 1, 1, 4, 1, 2, 15, 2, 20, 8, 11, 6, 1, 1, 36, 1, 279, 29, 3, 4, 2, 1, 30, 1, 2, 9, 4, 7, 4, 4, 3, 10, 21, 1, 12, 2, 14, 6393, 11, 4, 3, 2, 1, 4, 1, 2, 6, 1, 3, 8, 5, 6, 19, 3, 2, 1, 2, 5
Offset: 1

Views

Author

Labos Elemer, Jan 10 2001

Keywords

Comments

Primes p such that p * 2^m + 1 is composite for all m are called Sierpiński numbers. The smallest known prime Sierpiński number is 271129. Currently, 10223 is the smallest prime whose status is unknown.
For 0 < k < a(n), prime(n)*2^k is a nontotient. See A005277. - T. D. Noe, Sep 13 2007
With the discovery of the primality of 10223 * 2^31172165 + 1 on November 6, 2016, we now know that 10223 is not a Sierpiński number. The smallest prime of unknown status is thus now 21181. The smallest confirmed instance of a(n) = -1 is for n = 78557. - Alonso del Arte, Dec 16 2016 [Since we only care about prime Sierpiński numbers in this sequence, 78557 should be replaced by primepi(271129) = 23738. - Jianing Song, Dec 15 2021]
Aguirre conjectured that, for every n > 1, a(n) is even if and only if prime(n) mod 3 = 1 (see the MathStackExchange link below). - Lorenzo Sauras Altuzarra, Feb 12 2021
If prime(n) is not a Fermat prime, then a(n) is also the least m such that prime(n)*2^m is a totient number, or -1 if no such m exists. If prime(n) = 2^2^e + 1 is a Fermat prime, then the least m such that prime(n)*2^m is a totient number is min{2^e, a(n)} if a(n) != -1 or 2^e if a(n) = -1, since 2^2^e * (2^2^e + 1) = phi((2^2^e+1)^2) is a totient number. For example, the least m such that 257*2^m is a totient number is m = 8, rather than a(primepi(257)) = 279; the least m such that 65537*2^m is a totient number is m = 16, rather than a(primepi(65537)) = 287. - Jianing Song, Dec 15 2021

Examples

			a(8) = 6 because prime(8) = 19 and the first prime in the sequence 1 + 19 * {2, 4, 8,1 6, 32, 64} = {39, 77, 153, 305, 609, 1217} is 1217 = 1 + 19 * 2^6.
		

References

Crossrefs

Cf. A046067 (least k such that (2n - 1) * 2^k + 1 is prime).
a(n) = -1 if and only if n is in A076336.

Programs

  • Maple
    a := proc(n)
       local m:
       m := 0:
       while not isprime(1+ithprime(n)*2^m) do m := m+1: od:
       m:
    end: # Lorenzo Sauras Altuzarra, Feb 12 2021
  • Mathematica
    Table[p = Prime[n]; k = 0; While[Not[PrimeQ[1 + p * 2^k]], k++]; k, {n, 100}] (* T. D. Noe *)
  • PARI
    a(n) = my(m=0, p=prime(n)); while (!isprime(1+p*2^m), m++); m; \\ Michel Marcus, Feb 12 2021

Extensions

Corrected by T. D. Noe, Aug 03 2005

A066179 Primes p such that (p-1)/2 and (p-3)/4 are also prime.

Original entry on oeis.org

11, 23, 47, 167, 359, 719, 1439, 2039, 2879, 4079, 4127, 4919, 5639, 5807, 5927, 6047, 7247, 7559, 7607, 7727, 9839, 10799, 11279, 13799, 13967, 14159, 15287, 15647, 20327, 21599, 21767, 23399, 24407, 24527, 25799, 28319, 28607, 29399
Offset: 1

Views

Author

Vladeta Jovovic, Dec 14 2001

Keywords

Comments

Call p "m-prime" iff (p-(2^i-1))/2^i is prime for i=0..m; sequence gives 2-primes. 0-primes are primes (A000040) and 1-primes are safe primes (A005385). a(n)-1 and a(n) are consecutive terms of the sequence A065966. It is not known if there are infinitely many m-primes for m > 0.

Crossrefs

Programs

  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[a=(p-1)/2]&&PrimeQ[(a-1)/2],AppendTo[lst,p]],{n,8!}];lst (* Vladimir Joseph Stephan Orlovsky, Feb 27 2009 *)
  • PARI
    { n=0; default(primelimit, 4294965247); for (m=1, 10^9, p=prime(m); if (frac((p-3)/4), next); if (isprime((p-3)/4) && isprime((p-1)/2), write("b066179.txt", n++, " ", p); if (n==1000, return)) ) } \\ Harry J. Smith, Feb 05 2010

Extensions

Offset changed from 0 to 1 by Harry J. Smith, Feb 05 2010

A092307 Primes p such that there are no primes q, 3 < q < p, such that (q-1) divides (p-1).

Original entry on oeis.org

5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 239, 263, 347, 359, 383, 443, 467, 479, 503, 563, 587, 647, 659, 719, 827, 839, 863, 887, 983, 1019, 1187, 1223, 1259, 1283, 1307, 1319, 1367, 1439, 1487, 1499, 1523, 1619, 1787, 1823, 1847, 1907, 2027, 2039, 2063
Offset: 1

Views

Author

T. D. Noe, Feb 12 2004

Keywords

Comments

Using a sieve, these primes can be generated quickly. In the set of primes < 10^9, the density of these primes is about 1/10. It is easy to show that this sequence contains all "safe" primes (A005385).
Primes p such that 6p is the denominator of some Bernoulli number. - T. D. Noe, Sep 26 2006
Except for 5 and 7, primes p such that 12p is the denominator of B(p - 1)/(p - 1) where B(n) is the Bernoulli number. [Peter Luschny, Dec 24 2008]
Primes p such that A027642(p-1) = 6p. Composites m such that A027642(m-1) = 6m are Carmichael numbers 310049210890163447, 18220439770979212619, ... - Amiram Eldar and Thomas Ordowski, May 26 2021

Examples

			11 is in the sequence because 10 is not a multiple of either 4 or 6.
13 is not in the sequence because, although 12 is not a multiple of 6 or 10, it is a multiple of 4.
		

Crossrefs

Cf. A090801 (distinct numbers appearing as denominators of Bernoulli numbers)
Cf. A092308 (for p=prime(n), the number of primes q such that q-1 divides p-1).
Cf. A005385 (primes p such that (p-1)/2 is also prime).
Cf. A152951. [From Peter Luschny, Dec 24 2008]

Programs

  • Maple
    For p>7: seq(`if`(denom(bernoulli(n-1)/(n-1))=12*n,n,NULL),n=2..500); # Peter Luschny, Dec 24 2008
  • Mathematica
    t = Table[p = Prime[n]; Length[Select[Divisors[p - 1] + 1, PrimeQ]], {n, 311}]; Prime[Flatten[Position[t, 3]]]
    npqQ[n_]:=NoneTrue[Prime[Range[3,PrimePi[n]-1]],Mod[n-1,#-1]==0&]; Select[ Prime[ Range[3,400]],npqQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 26 2019 *)
  • Perl
    use ntheory ":all"; forprimes { say if (bernfrac($-1))[1] == 6*$ } 1000; # Dana Jacobsen, Dec 29 2015
    
  • Perl
    use ntheory ":all"; forprimes { my $p=$; say if vecnone { $ > 3 && $ < $p-1 && is_prime($+1) } divisors($p-1); } 5,1000; # Dana Jacobsen, Dec 29 2015

Formula

Let h(x) = 12x(x + log(exp(-x) -1) - log(x)) and [x^n]S(h) denote the coefficient of x^n in the series expansion of h. Consider for n > 1 the relation n = denominator((n - 1)![x^n]S(h)). [Peter Luschny, Dec 24 2008]

A051644 Primes of the form 6*p + 1 where p is also prime.

Original entry on oeis.org

13, 19, 31, 43, 67, 79, 103, 139, 223, 283, 367, 439, 499, 607, 619, 643, 787, 823, 907, 1039, 1087, 1399, 1447, 1543, 1579, 1627, 1663, 1699, 1759, 1867, 1879, 1987, 2083, 2203, 2239, 2383, 2659, 2767, 2803, 3019, 3343, 3463, 3559, 3607, 3643, 3847, 3919
Offset: 1

Views

Author

Keywords

Comments

Analogous to A005385; can be called 6-safe primes.

Examples

			103 is in the sequence because both 17 and 6*17 + 1 = 103 are primes.
		

Crossrefs

Programs

  • Mathematica
    Select[1 + 6Prime@Range[120], PrimeQ] (* Ray Chandler, Mar 14 2007 *)
  • PARI
    isok(k) = isprime(k) && k % 6 == 1 && isprime((k-1)/6); \\ Amiram Eldar, Feb 24 2025

Formula

a(n) = 6*A007693(n) + 1.

Extensions

Edited, corrected and extended by Ray Chandler, Mar 14 2007
Previous Showing 41-50 of 250 results. Next