cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A323956 Triangle read by rows: T(n, k) = 1 + n * (n - k) for 1 <= k <= n.

Original entry on oeis.org

1, 3, 1, 7, 4, 1, 13, 9, 5, 1, 21, 16, 11, 6, 1, 31, 25, 19, 13, 7, 1, 43, 36, 29, 22, 15, 8, 1, 57, 49, 41, 33, 25, 17, 9, 1, 73, 64, 55, 46, 37, 28, 19, 10, 1, 91, 81, 71, 61, 51, 41, 31, 21, 11, 1, 111, 100, 89, 78, 67, 56, 45, 34, 23, 12, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 10 2019

Keywords

Examples

			Triangle begins:
  n\k:   1   2   3   4   5   6   7   8   9  10  11  12
  ====================================================
    1:   1
    2:   3   1
    3:   7   4   1
    4:  13   9   5   1
    5:  21  16  11   6   1
    6:  31  25  19  13   7   1
    7:  43  36  29  22  15   8   1
    8:  57  49  41  33  25  17   9   1
    9:  73  64  55  46  37  28  19  10   1
   10:  91  81  71  61  51  41  31  21  11   1
   11: 111 100  89  78  67  56  45  34  23  12   1
   12: 133 121 109  97  85  73  61  49  37  25  13   1
  etc.
		

Crossrefs

First column is A002061. Second column is A000290. Third column is A028387.

Programs

  • Magma
    [[1+n*(n-k): k in [1..n]]: n in [1..12]]; // G. C. Greubel, Apr 22 2019
    
  • Mathematica
    Table[1+n*(n-k),{n,12},{k,n}]//Flatten
  • PARI
    {T(n,k) = 1+n*(n-k)}; \\ G. C. Greubel, Apr 22 2019
    
  • Sage
    [[1+n*(n-k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Apr 22 2019

Formula

From Werner Schulte, Feb 12 2019: (Start)
G.f.: Sum_{n>0,k=1..n} T(n,k)*x^k*t^n = x*t*((1-t+2*t^2)*(1-x*t) + (1-t)*t)/((1-t)^3*(1-x*t)^2).
Row sums: Sum_{k=1..n} T(n,k) = A006000(n-1) for n > 0.
Recurrence: T(n,k) = T(n,k-1) - n for 1 < k <= n with initial values T(n,1) = n^2-n+1 for n > 0.
Recurrence: T(n,k) = T(n-1,k) + 2*n-k-1 for 1 <= k < n with initial values T(n,n) = 1 for n > 0.
(End)

A218152 a(n) = 1 + n + ((n-1)*n^2)/2.

Original entry on oeis.org

1, 2, 5, 13, 29, 56, 97, 155, 233, 334, 461, 617, 805, 1028, 1289, 1591, 1937, 2330, 2773, 3269, 3821, 4432, 5105, 5843, 6649, 7526, 8477, 9505, 10613, 11804, 13081, 14447, 15905, 17458, 19109, 20861, 22717, 24680, 26753, 28939, 31241, 33662, 36205, 38873
Offset: 0

Views

Author

Mokhtar Mohamed, Oct 24 2012

Keywords

Comments

a(n) = sum(i=0,1,2,...k) d(i)*C(n,i), d(0)=a(0), C(n,i)=0 for all i > n. I would introduce the arithmetic-arithmetic sequence which is defined as the sequence of finite differences, that is, with k consecutive rows of differences, whose first terms are d(1), d(2), d(3),..., d(k), the last row (k-th row) being of a constant difference. Here, it is submitted a special case of the above mentioned sequence with k=3, d(0)=d(1)=1, d(2)=2, d(3)=3.
This sequence is not in Comtet. - T. D. Noe, Nov 16 2012
a(n) appears to be the number of configurations of n equilateral triangles that are allowed to have common vertices, where A002061(n) gives the number of connected configurations and A060354(n) is the number of configurations consisting of several pieces. - Anton Zakharov, May 13 2018

Examples

			for n=5, a(5) = 1+5+(4*25)/2 = 1+5+100/2 = 1+5+50 = 56.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72.

Crossrefs

Programs

  • Mathematica
    Table[1+n+((n-1)n^2)/2,{n,0,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,2,5,13},50] (* Harvey P. Dale, May 04 2023 *)
  • PARI
    Vec((1 - 2*x + 3*x^2 + x^3) / (1 - x)^4 + O(x^40)) \\ Colin Barker, May 13 2018

Formula

a(n) = a(n-1)+(4-5*n+3*n^2)/2 for n > 0 and a(0)=1.
a(n) = A006000(n-1)+1 for n > 0. - Antti Karttunen, Oct 24 2012
a(n) = A060354(n) + A002061(n). - Anton Zakharov, May 13 2018
G.f.: (x^3+3*x^2-2*x+1)/(x-1)^4. - Alois P. Heinz, May 13 2018
From Colin Barker, May 13 2018: (Start)
a(n) = (2 + 2*n - n^2 + n^3) / 2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3.
(End)

Extensions

Corrected and edited by Mokhtar Mohamed, Nov 17 2012
Missing term 1937 inserted by Alois P. Heinz, Jun 11 2017

A249973 Positive integers A when the positive roots of r^2 = Ar + B are listed in increasing order.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 1, 2, 3, 4, 1, 2, 3, 1, 4, 2, 1, 3, 2, 4, 1, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 1, 2, 3, 4, 5, 1, 2, 3, 4, 1, 2, 5, 3, 1, 4, 2, 1, 3, 5, 2, 4, 1, 3, 2, 5, 1, 4, 3
Offset: 1

Views

Author

Kerry Mitchell, Nov 09 2014

Keywords

Comments

Generalize the Fibonacci sequence recurrence equation as: F_(n+1) = A*F_n + B*F_(n-1), where A and B are positive integers. As n goes to infinity, the ratio F_n / F_(n-1) approaches the positive real number r = (A + sqrt(A*A + 4B))/2. This sequence gives the A values in increasing order of r.
In case of a tie in r values, then sort in increasing order of sqrt(A*A + B*B).
This A sequence appears to be the ordinal transform of the B sequence (A249974) and vice versa. The associative arrays of A and B are transposes. The first row of A's associative array seems to be A006000.
For the A and B values leading to a positive integer limit r see a comment in A063929. - Wolfdieter Lang, Jan 12 2015

Examples

			a(6) = 2 because the 6th smallest value of r (approximately 2.732050808) is that for A=2, B=2.
		

Crossrefs

Programs

Extensions

Edited. - Wolfdieter Lang, Jan 11 2015

A251630 Column sums of the n X n square array filled with numbers from 1 to n^2, row by row, from left to right.

Original entry on oeis.org

1, 4, 6, 12, 15, 18, 28, 32, 36, 40, 55, 60, 65, 70, 75, 96, 102, 108, 114, 120, 126, 154, 161, 168, 175, 182, 189, 196, 232, 240, 248, 256, 264, 272, 280, 288, 333, 342, 351, 360, 369, 378, 387, 396, 405, 460, 470, 480, 490, 500, 510, 520, 530
Offset: 1

Views

Author

Wolfdieter Lang, Dec 09 2014

Keywords

Comments

This triangle has been considered by Kival Ngaokrajang as a companion of A241016. See the link given there, the second triangle.

Examples

			The n=4 square array is:
1   2  3  4
5   6  7  8
9  10 11 12
13 14 15 16
and the column sums are 28 32 36 40, which appear
in row n=4 of the triangle T.
The triangle T(n,k) begins:
n\k   1   2   3   4   5   6   7   8   9  10 ...
1:    1
2:    4   6
3:   12  15  18
4:   28  32  36  40
5:   55  60  65  70  75
6:   96 102 108 114 120 126
7:  154 161 168 175 182 189 196
8:  232 240 248 256 264 272 280 288
9:  333 342 351 360 369 378 387 396 405
10: 460 470 480 490 500 510 520 530 540 550
...
		

Crossrefs

Cf. A002411 (main diagonal), A006000 (column k=1), A241016.

Formula

T(n, k) = sum(n*(j-1)+ k, j=1..n), n >= k >= 1.
T(n, k) = n*(binomial(n+1, 2) + (k-n)).

A303273 Array T(n,k) = binomial(n, 2) + k*n + 1 read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 4, 4, 1, 4, 6, 7, 7, 1, 5, 8, 10, 11, 11, 1, 6, 10, 13, 15, 16, 16, 1, 7, 12, 16, 19, 21, 22, 22, 1, 8, 14, 19, 23, 26, 28, 29, 29, 1, 9, 16, 22, 27, 31, 34, 36, 37, 37, 1, 10, 18, 25, 31, 36, 40, 43, 45, 46, 46, 1, 11, 20, 28, 35, 41
Offset: 0

Views

Author

Keywords

Comments

Columns are linear recurrence sequences with signature (3,-3,1).
8*T(n,k) + A166147(k-1) are squares.
Columns k are binomial transforms of [1, k, 1, 0, 0, 0, ...].
Antidiagonals sums yield A116731.

Examples

			The array T(n,k) begins
1    1    1    1    1    1    1    1    1    1    1    1    1  ...  A000012
1    2    3    4    5    6    7    8    9   10   11   12   13  ...  A000027
2    4    6    8   10   12   14   16   18   20   22   24   26  ...  A005843
4    7   10   13   16   19   22   25   28   31   34   37   40  ...  A016777
7   11   15   19   23   27   31   35   39   43   47   51   55  ...  A004767
11  16   21   26   31   36   41   46   51   56   61   66   71  ...  A016861
16  22   28   34   40   46   52   58   64   70   76   82   88  ...  A016957
22  29   36   43   50   57   64   71   78   85   92   99  106  ...  A016993
29  37   45   53   61   69   77   85   93  101  109  117  125  ...  A004770
37  46   55   64   73   82   91  100  109  118  127  136  145  ...  A017173
46  56   66   76   86   96  106  116  126  136  146  156  166  ...  A017341
56  67   78   89  100  111  122  133  144  155  166  177  188  ...  A017401
67  79   91  103  115  127  139  151  163  175  187  199  211  ...  A017605
79  92  105  118  131  144  157  170  183  196  209  222  235  ...  A190991
...
The inverse binomial transforms of the columns are
1    1    1    1    1    1    1    1    1    1    1    1    1  ...
0    1    2    3    4    5    6    7    8    9   10   11   12  ...
1    1    1    1    1    1    1    1    1    1    1    1    1  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
0    0    0    0    0    0    0    0    0    0    0    0    0  ...
...
T(k,n-k) = A087401(n,k) + 1 as triangle
1
1   1
1   2   2
1   3   4   4
1   4   6   7   7
1   5   8  10  11  11
1   6  10  13  15  16  16
1   7  12  16  19  21  22  22
1   8  14  19  23  26  28  29  29
1   9  16  22  27  31  34  36  37  37
1  10  18  25  31  36  40  43  45  46  46
...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.

Crossrefs

Programs

  • Maple
    T := (n, k) -> binomial(n, 2) + k*n + 1;
    for n from 0 to 20 do seq(T(n, k), k = 0 .. 20) od;
  • Mathematica
    Table[With[{n = m - k}, Binomial[n, 2] + k n + 1], {m, 0, 11}, {k, m, 0, -1}] // Flatten (* Michael De Vlieger, Apr 21 2018 *)
  • Maxima
    T(n, k) := binomial(n, 2)+ k*n + 1$
    for n:0 thru 20 do
        print(makelist(T(n, k), k, 0, 20));
    
  • PARI
    T(n,k) = binomial(n, 2) + k*n + 1;
    tabl(nn) = for (n=0, nn, for (k=0, nn, print1(T(n, k), ", ")); print); \\ Michel Marcus, May 17 2018

Formula

G.f.: (3*x^2*y - 3*x*y + y - 2*x^2 + 2*x - 1)/((x - 1)^3*(y - 1)^2).
E.g.f.: (1/2)*(2*x*y + x^2 + 2)*exp(y + x).
T(n,k) = 3*T(n-1,k) - 3*T(n-2,k) + T(n-3,k), with T(0,k) = 1, T(1,k) = k + 1 and T(2,k) = 2*k + 2.
T(n,k) = T(n-1,k) + n + k - 1.
T(n,k) = T(n,k-1) + n, with T(n,0) = 1.
T(n,0) = A152947(n+1).
T(n,1) = A000124(n).
T(n,2) = A000217(n).
T(n,3) = A034856(n+1).
T(n,4) = A052905(n).
T(n,5) = A051936(n+4).
T(n,6) = A246172(n+1).
T(n,7) = A302537(n).
T(n,8) = A056121(n+1) + 1.
T(n,9) = A056126(n+1) + 1.
T(n,10) = A051942(n+10) + 1, n > 0.
T(n,11) = A101859(n) + 1.
T(n,12) = A132754(n+1) + 1.
T(n,13) = A132755(n+1) + 1.
T(n,14) = A132756(n+1) + 1.
T(n,15) = A132757(n+1) + 1.
T(n,16) = A132758(n+1) + 1.
T(n,17) = A212427(n+1) + 1.
T(n,18) = A212428(n+1) + 1.
T(n,n) = A143689(n) = A300192(n,2).
T(n,n+1) = A104249(n).
T(n,n+2) = T(n+1,n) = A005448(n+1).
T(n,n+3) = A000326(n+1).
T(n,n+4) = A095794(n+1).
T(n,n+5) = A133694(n+1).
T(n+2,n) = A005449(n+1).
T(n+3,n) = A115067(n+2).
T(n+4,n) = A133694(n+2).
T(2*n,n) = A054556(n+1).
T(2*n,n+1) = A054567(n+1).
T(2*n,n+2) = A033951(n).
T(2*n,n+3) = A001107(n+1).
T(2*n,n+4) = A186353(4*n+1) (conjectured).
T(2*n,n+5) = A184103(8*n+1) (conjectured).
T(2*n,n+6) = A250657(n-1) = A250656(3,n-1), n > 1.
T(n,2*n) = A140066(n+1).
T(n+1,2*n) = A005891(n).
T(n+2,2*n) = A249013(5*n+4) (conjectured).
T(n+3,2*n) = A186384(5*n+3) = A186386(5*n+3) (conjectured).
T(2*n,2*n) = A143689(2*n).
T(2*n+1,2*n+1) = A143689(2*n+1) (= A030503(3*n+3) (conjectured)).
T(2*n,2*n+1) = A104249(2*n) = A093918(2*n+2) = A131355(4*n+1) (= A030503(3*n+5) (conjectured)).
T(2*n+1,2*n) = A085473(n).
a(n+1,5*n+1)=A051865(n+1) + 1.
a(n,2*n+1) = A116668(n).
a(2*n+1,n) = A054569(n+1).
T(3*n,n) = A025742(3*n-1), n > 1 (conjectured).
T(n,3*n) = A140063(n+1).
T(n+1,3*n) = A069099(n+1).
T(n,4*n) = A276819(n).
T(4*n,n) = A154106(n-1), n > 0.
T(2^n,2) = A028401(n+2).
T(1,n)*T(n,1) = A006000(n).
T(n*(n+1),n) = A211905(n+1), n > 0 (conjectured).
T(n*(n+1)+1,n) = A294259(n+1).
T(n,n^2+1) = A081423(n).
T(n,A000217(n)) = A158842(n), n > 0.
T(n,A152947(n+1)) = A060354(n+1).
floor(T(n,n/2)) = A267682(n) (conjectured).
floor(T(n,n/3)) = A025742(n-1), n > 0 (conjectured).
floor(T(n,n/4)) = A263807(n-1), n > 0 (conjectured).
ceiling(T(n,2^n)/n) = A134522(n), n > 0 (conjectured).
ceiling(T(n,n/2+n)/n) = A051755(n+1) (conjectured).
floor(T(n,n)/n) = A133223(n), n > 0 (conjectured).
ceiling(T(n,n)/n) = A007494(n), n > 0.
ceiling(T(n,n^2)/n) = A171769(n), n > 0.
ceiling(T(2*n,n^2)/n) = A046092(n), n > 0.
ceiling(T(2*n,2^n)/n) = A131520(n+2), n > 0.

A329523 a(n) = n * (binomial(n + 1, 3) + 1).

Original entry on oeis.org

0, 1, 4, 15, 44, 105, 216, 399, 680, 1089, 1660, 2431, 3444, 4745, 6384, 8415, 10896, 13889, 17460, 21679, 26620, 32361, 38984, 46575, 55224, 65025, 76076, 88479, 102340, 117769, 134880, 153791, 174624, 197505, 222564, 249935, 279756, 312169, 347320, 385359, 426440
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 15 2019

Keywords

Comments

The n-th centered n-gonal pyramidal number.

Examples

			Square array begins:
  (0), 1,  2,   3,   4,    5,  ... A001477
   0, (1), 3,   7,  14,   25,  ... A004006
   0,  1, (4), 11,  24,   45,  ... A006527
   0,  1,  5, (15), 34,   65,  ... A006003 (partial sums of A005448)
   0,  1,  6,  19, (44),  85,  ... A005900 (partial sums of A001844)
   0,  1,  7,  23,  54, (105), ... A004068 (partial sums of A005891)
...
This sequence is the main diagonal of the array.
		

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), 142.

Crossrefs

Programs

  • Magma
    [ n*(Binomial(n+1,3)+1):n in [0..40]]; // Marius A. Burtea, Nov 15 2019
    
  • Magma
    R:=PowerSeriesRing(Integers(), 41); [0] cat Coefficients(R!(x*(1-x+5*x^2-x^3)/(1-x)^5)); // Marius A. Burtea, Nov 15 2019
  • Mathematica
    Table[n (Binomial[n + 1, 3] + 1), {n, 0, 40}]
    nmax = 40; CoefficientList[Series[x (1 - x + 5 x^2 - x^3)/(1 - x)^5, {x, 0, nmax}], x]
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 4, 15, 44}, 41]

Formula

G.f.: x * (1 - x + 5*x^2 - x^3) / (1 - x)^5.
E.g.f.: exp(x) * x * (1 + x + x^2 + x^3 / 6).
a(n) = n * (n + 2) * (n^2 - 2*n + 3) / 6.
a(n) = n * (A000292(n-1) + 1).
a(n) = n + 2 * Sum_{k=1..n} A000330(k-1).
a(n) + a(-n) = 4 * A002415(n).

A361474 a(n) = 1*binomial(n,2) + 3*binomial(n,3) + 6*binomial(n,4) + 10*binomial(n,5).

Original entry on oeis.org

0, 0, 1, 6, 24, 80, 225, 546, 1176, 2304, 4185, 7150, 11616, 18096, 27209, 39690, 56400, 78336, 106641, 142614, 187720, 243600, 312081, 395186, 495144, 614400, 755625, 921726, 1115856, 1341424, 1602105, 1901850, 2244896, 2635776, 3079329, 3580710, 4145400, 4779216, 5488321, 6279234
Offset: 0

Views

Author

Enrique Navarrete, Mar 13 2023

Keywords

Comments

a(n) is the number of ordered set partitions of an n-set into 2 sets such that the first set has either 3, 2, 1 or no elements, the second set has no restrictions, and two elements are selected from the second set.
Note the coefficients 1,3,6,10 in a(n) are triangular numbers (in accordance with the selection of two elements from the second set).

Examples

			The 546 set partitions for n=7 are the following (where the 2 elements selected from the second set are in parentheses):
   { }, {(1),(2),3,4,5,6,7}  (21 of these);
   {1}, {(2),(3),4,5,6,7}    (105 of these);
   {1,2}, {(3),(4),5,6,7}    (210 of these);
   {1,2,3}, {(4),(5),6,7}    (210 of these).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Total[Binomial[n, Range[2, 5]]*{1, 3, 6, 10}]; Array[a, 40, 0] (* Amiram Eldar, Mar 28 2023 *)
  • PARI
    a(n) = binomial(n,2) + 3*binomial(n,3) + 6*binomial(n,4) + 10*binomial(n,5); \\ Michel Marcus, Mar 16 2023
    
  • Python
    def A361474(n): return n*(n*(n*(n*(n - 7) + 23) - 29) + 12)//12 # Chai Wah Wu, Apr 16 2023

Formula

E.g.f.: (1 + x + x^2/2 + x^3/6)*x^2/2*exp(x).
O.g.f.: x^2*(1 + 3*x^2 + 6*x^3)/(1 - x)^6. - Stefano Spezia, Mar 16 2023

A364843 Integers are repeated in runs of 1, 2, 3, ... Each new integer (following a run) is given the value of its sequence index value.

Original entry on oeis.org

1, 2, 2, 4, 4, 4, 7, 7, 7, 7, 11, 11, 11, 11, 11, 16, 16, 16, 16, 16, 16, 22, 22, 22, 22, 22, 22, 22, 29, 29, 29, 29, 29, 29, 29, 29, 37, 37, 37, 37, 37, 37, 37, 37, 37, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56
Offset: 1

Views

Author

Peter Woodward, Aug 10 2023

Keywords

Comments

Omitting repeats yields the triangular numbers plus 1 sequence A000124.

Examples

			Illustrated as a triangle begins:
   1;
   2,  2;
   4,  4,  4;
   7,  7,  7,  7;
  11, 11, 11, 11, 11;
  16, 16, 16, 16, 16, 16;
  22, 22, 22, 22, 22, 22, 22;
  ...
		

Crossrefs

Row sums give A006000(n-1).

Programs

  • Maple
    T:= (n, k)-> n*(n-1)/2+1:
    seq(seq(T(n,k), k=1..n), n=1..11);  # Alois P. Heinz, Aug 31 2023
  • PARI
    a(n) = my(t=(sqrtint(8*n-1)-1)\2); t*(t+1)/2+1 \\ Thomas Scheuerle, Aug 10 2023
    
  • Python
    from math import isqrt
    def A364843(n): return ((t:=isqrt((n<<3)-1)-1>>1)*(t+1)>>1)+1 # Chai Wah Wu, Sep 15 2023

Formula

G.f.: x*y*(1 + 2*x^4*y^2 - x*(1 + y) - 2*x^3*y*(1 + y) + x^2*(1 + y + y^2))/((1 - x)^3*(1 - x*y)^3). - Stefano Spezia, Sep 02 2023
Sum_{k=1..n} k = T(n,k) = A006528(n). - Alois P. Heinz, Sep 15 2023

A330601 Array T read by antidiagonals: T(m,n) is the number of lattice walks from (0,0) to (m,n) using one step from {(3,0), (2,1), (1,2), (0,3)} and all other steps from {(1,0), (0,1)}.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 4, 4, 4, 2, 3, 9, 12, 12, 9, 3, 4, 16, 28, 32, 28, 16, 4, 5, 25, 55, 75, 75, 55, 25, 5, 6, 36, 96, 156, 180, 156, 96, 36, 6, 7, 49, 154, 294, 392, 392, 294, 154, 49, 7, 8, 64, 232, 512, 784, 896, 784, 512, 232, 64, 8, 9, 81, 333, 837, 1458, 1890, 1890, 1458, 837, 333, 81, 9
Offset: 0

Views

Author

Steven Klee, Dec 19 2019

Keywords

Examples

			For (m,n) = (3,1), there are T(3,1) = 4 paths:
(3,0), (0,1)
(0,1), (3,0)
(2,1), (1,0)
(1,0), (2,1).
Array T(m,n) begins
n/m 0   1    2     3     4      5      6      7       8       9
0   0   0    0     1     2      3      4      5       6       7
1   0   0    1     4     9     16     25     36      49      64
2   0   1    4    12    28     55     96    154     232     333
3   1   4   12    32    75    156    294    512     837    1300
4   2   9   28    75   180    392    784   1458    2550    4235
5   3  16   55   156   392    896   1890   3720    6897   12144
6   4  25   96   294   784   1890   4200   8712   17028   31603
7   5  36  154   512  1458   3720   8712  19008   39039   76076
8   6  49  232   837  2550   6897  17028  39039   84084  171600
9   7  64  333  1300  4235  12144  31603  76076  171600  366080
		

Crossrefs

T(m,0) is A000027 for m >= 2.
T(m,1) is A000290 for m >= 1.
T(m,2) is A006000.

Programs

  • Sage
    def T(m,n):
        return (m+n-2)*(binomial(m+n-2, m) + binomial(m+n-2, n))

Formula

T(m,n) = (m+n-2)*(binomial(m+n-2,m) + binomial(m+n-2,n)).

A330892 Square array of polygonal numbers read by descending antidiagonals (the transpose of A317302).

Original entry on oeis.org

0, 1, 0, 0, 1, 0, -3, 1, 1, 0, -8, 0, 2, 1, 0, -15, -2, 3, 3, 1, 0, -24, -5, 4, 6, 4, 1, 0, -35, -9, 5, 10, 9, 5, 1, 0, -48, -14, 6, 15, 16, 12, 6, 1, 0, -63, -20, 7, 21, 25, 22, 15, 7, 1, 0, -80, -27, 8, 28, 36, 35, 28, 18, 8, 1, 0, -99, -35, 9, 36, 49, 51, 45, 34, 21, 9, 1, 0
Offset: 1

Views

Author

Robert G. Wilson v, Apr 27 2020

Keywords

Comments

\c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
r\
_0 0 1 0 -3 -8 -15 -24 -35 -48 -63 -80 -99 -120 -143 -168 -195 A067998
_1 0 1 1 0 -2 -5 -9 -14 -20 -27 -35 -44 -54 -65 -77 -90 A080956
_2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A001477
_3 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 A000217
_4 0 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 A000290
_5 0 1 5 12 22 35 51 70 92 117 145 176 210 247 287 330 A000326
_6 0 1 6 15 28 45 66 91 120 153 190 231 276 325 378 435 A000384
_7 0 1 7 18 34 55 81 112 148 189 235 286 342 403 469 540 A000566
_8 0 1 8 21 40 65 96 133 176 225 280 341 408 481 560 645 A000567
_9 0 1 9 24 46 75 111 154 204 261 325 396 474 559 651 750 A001106
10 0 1 10 27 52 85 126 175 232 297 370 451 540 637 742 855 A001107
11 0 1 11 30 58 95 141 196 260 333 415 506 606 715 833 960 A051682
12 0 1 12 33 64 105 156 217 288 369 460 561 672 793 924 1065 A051624
13 0 1 13 36 70 115 171 238 316 405 505 616 738 871 1015 1170 A051865
14 0 1 14 39 76 125 186 259 344 441 550 671 804 949 1106 1275 A051866
15 0 1 15 42 82 135 201 280 372 477 595 726 870 1027 1197 1380 A051867
...
Each row has a second forward difference of (r-2) and each column has a forward difference of c(c-1)/2.

Crossrefs

Cf. A317302 (the same array) but read by ascending antidiagonals.
Sub-arrays: A089000, A139600, A206735;
Number of times k>1 appears: A129654, First occurrence of k: A063778.

Programs

  • Mathematica
    Table[ PolygonalNumber[r - c, c], {r, 0, 11}, {c, r, 0, -1}] // Flatten

Formula

P(r, c) = (r - 2)(c(c-1)/2) + c.
Previous Showing 11-20 of 20 results.