A201730 Triangle T(n,k), read by rows, given by (2,1/2,3/2,0,0,0,0,0,0,0,...) DELTA (0,1/2,-1/2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
1, 2, 0, 5, 1, 0, 14, 6, 0, 0, 41, 26, 1, 0, 0, 122, 100, 10, 0, 0, 0, 365, 363, 63, 1, 0, 0, 0, 1094, 1274, 322, 14, 0, 0, 0, 0, 3281, 4372, 1462, 116, 1, 0, 0, 0, 0, 9842, 14760, 6156, 744, 18, 0, 0, 0, 0, 0
Offset: 0
Examples
Triangle begins: 1 2, 0 5, 1, 0 14, 6, 0, 0 41, 26, 1, 0, 0 122, 100, 10, 0, 0, 0 365, 363, 63, 1, 0, 0, 0
Programs
-
Maple
A201730 := proc(n,k) (1-2*x)/(1-4*x+(3-y)*x^2) ; coeftayl(%,y=0,k) ; coeftayl(%,x=0,n) ; end proc: seq(seq(A201730(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Dec 06 2011
-
Mathematica
m = 13; (* DELTA is defined in A084938 *) DELTA[Join[{2, 1/2, 3/2}, Table[0, {m}]], Join[{0, 1/2, -1/2}, Table[0, {m}]], m] // Flatten (* Jean-François Alcover, Feb 19 2020 *)
Formula
G.f.: (1-2x)/(1-4x+(3-y)*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A139011(n), A000079(n), A007051(n), A006012(n), A001075(n), A081294(n), A001077(n), A084059(n), A108851(n), A084128(n), A081340(n), A084132(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively.
Sum_{k, k>+0} T(n+k,k) = A081704(n) .
T(n,k) = 3*T(n-1,k)+ Sum_{j>0} T(n-1-j,k-1).
T(n,k) = 4*T(n-1,k)+ T(n-2,k-1) - 3*T(n-2,k) with T(0,0)=1, T(1,0)= 2, T(1,1) = 0 and T(n,k) = 0 if k<0 or if n
A061594 Number of ways to place 3n nonattacking kings on a 6 X 2n chessboard.
1, 32, 408, 3600, 26040, 166368, 976640, 5392704, 28432288, 144605184, 714611200, 3449705600, 16333065216, 76081271168, 349524164224, 1586790140800, 7130144209024, 31752978219904, 140298397039232, 615604372260736
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- D. E. Knuth, Nonattacking kings on a chessboard, 1994.
- Vaclav Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes [_Vaclav Kotesovec_, Feb 06 2010]
- H. S. Wilf, The problem of the kings, Elec. J. Combin. 2, 1995.
- Index entries for linear recurrences with constant coefficients, signature (19, -148, 604, -1364, 1644, -928, 192).
Crossrefs
Programs
-
PARI
a(n)=polcoeff((1+13*x-52*x^2-20*x^3+60*x^4-20*x^5)/((1-3*x)*(1-4*x)^2*(1-4*x+2*x^2)^2)+x*O(x^n),n)
Formula
G.f.: (1+13x-52x^2-20x^3+60x^4-20x^5)/((1-3x)(1-4x)^2(1-4x+2x^2)^2).
Explicit formula: (231n-2377)*4^n - 384*3^n + (1953*sqrt(2)/2+1381+(35*sqrt(2)+99/2)*n)*(2+sqrt(2))^n + (1381-1953*sqrt(2)/2+(99/2-35*sqrt(2))*n)*(2-sqrt(2))^n. - Vaclav Kotesovec, Feb 06 2010
Extensions
Corrected data by Vincenzo Librandi, Oct 12 2011
A216210 Square array T read by antidiagonals: T(n,k) = 0 if n-k>=4 or if k-n>=4, T(3,0) = T(2,0) = TT(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = 1, T(n,k) = T(n-1,k) + T(n,k-1).
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 0, 4, 6, 4, 0, 0, 4, 10, 10, 4, 0, 0, 0, 14, 20, 14, 0, 0, 0, 0, 14, 34, 34, 14, 0, 0, 0, 0, 0, 48, 68, 48, 0, 0, 0, 0, 0, 0, 48, 116, 116, 48, 0, 0, 0, 0, 0, 0, 0, 164, 232, 164, 0, 0, 0, 0
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, ... row n=0 1, 2, 3, 4, 4, 0, 0, 0, 0, 0, ... row n=1 1, 3, 6, 10, 14, 14, 0, 0, 0, 0, ... row n=2 1, 4, 10, 20, 34, 48, 48, 0, 0, 0, ... row n=3 0, 4, 14, 34, 68, 116, 164, 164, 0, 0, ... row n=4 0, 0, 14, 48, 116, 232, 396, 560, 560, 0, ... row n=5 0, 0, 0, 48, 164, 396, 792, 1352, 1912, 1912, row n=6 ...
A083878 a(0)=1, a(1)=3, a(n) = 6*a(n-1) - 7*a(n-2), n >= 2.
1, 3, 11, 45, 193, 843, 3707, 16341, 72097, 318195, 1404491, 6199581, 27366049, 120799227, 533233019, 2353803525, 10390190017, 45864515427, 202455762443, 893682966669, 3944907462913, 17413664010795, 76867631824379
Offset: 0
Comments
Third binomial transform of A077957. Inverse binomial transform of A083879. - Philippe Deléham, Dec 01 2008
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1551
- Yassine Otmani, The 2-Pascal Triangle and a Related Riordan Array, J. Int. Seq. (2025) Vol. 28, Issue 3, Art. No. 25.3.5. See p. 12.
- Index entries for linear recurrences with constant coefficients, signature (6,-7).
Programs
-
Mathematica
f[n_] := Simplify[(3 + Sqrt@2)^n + (3 - Sqrt@2)^n]/2; Array[f, 23, 0] (* Robert G. Wilson v, Oct 31 2010 *)
Formula
a(n) = ((3 - sqrt(2))^n + (3 + sqrt(2))^n)/2;
a(n) = Sum_{k=0..n} C(n, 2k)*3^(n-2k)*2^k;
G.f.: (1-3x)/(1-6x+7x^2);
E.g.f.: exp(3x)*cosh(x*sqrt(2)).
a(n) = Sum_{k=0..n} C(n, k)*2^((n-k)/2)(1+(-1)^(n-k))*3^k/2. - Paul Barry, Jan 22 2005
a(n) = Sum_{k=0..n} A098158(n,k)*3^(2k-n)*2^(n-k). - Philippe Deléham, Dec 01 2008
A024175 Expansion of g.f. (x^3 - 6*x^2 + 5*x - 1)/((2*x - 1)*(2*x^2 - 4*x + 1)).
1, 1, 2, 5, 14, 42, 132, 428, 1416, 4744, 16016, 54320, 184736, 629280, 2145600, 7319744, 24979584, 85262464, 291057920, 993641216, 3392317952, 11581727232, 39541748736, 135002491904, 460924372992, 1573688313856, 5372896120832, 18344191078400, 62630938517504
Offset: 0
Comments
Number of (s(0), s(1), ..., s(2*n)) such that 0 < s(i) < 8 and |s(i) - s(i-1)| = 1 for i = 1, 2, ..., 2*n, s(0) = 1, s(2*n) = 1. - Herbert Kociemba, Jun 11 2004
Counts all paths of length (2*n), n >= 0, starting and ending at the initial node on the path graph P_7, see the Maple program. - Johannes W. Meijer, May 29 2010
Examples
1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 428*x^7 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Jean Luc Baril, Rigoberto Flórez, and José L. Ramirez, Generalized Narayana arrays, restricted Dyck paths, and related bijections, Univ. Bourgogne (France, 2025). See p. 27.
- Giulio Cerbai, Anders Claesson, and Luca Ferrari, Stack sorting with restricted stacks, arXiv:1907.08142 [cs.DS], 2019.
- Michael Dairyko, Lara Pudwell, Samantha Tyner, and Casey Wynn, Non-contiguous pattern avoidance in binary trees. Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227.
- Stefan Felsner and Daniel Heldt, Lattice Path Enumeration and Toeplitz Matrices, J. Int. Seq. 18 (2015) # 15.1.3.
- Daniel Heldt, On the mixing time of the face flip-and up/down Markov chain for some families of graphs, Dissertation, Mathematik und Naturwissenschaften der Technischen Universitat Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften, 2016.
- Matthew Hyatt and Jeffrey Remmel, The classification of 231-avoiding permutations by descents and maximum drop, arXiv preprint arXiv:1208.1052, 2012. - From _N. J. A. Sloane_, Dec 24 2012
- Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv:1201.6243v1 [math.CO], 2012 (Corollary 3, case k=6, pages 10-11). - From _N. J. A. Sloane_, May 09 2012
- Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, Volume 15 #A16. (arXiv:1302.2274)
- Huyile Liang, Jeffrey Remmel, and Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017, see page 13.
- David Nečas and Ivan Ohlídal, Consolidated series for efficient calculation of the reflection and transmission in rough multilayers, Optics Express, Vol. 22, 2014, No. 4; DOI:10.1364/OE.22.004499.
- László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
- Lara Pudwell, Pattern avoidance in trees (slides from a talk, mentions many sequences), 2012. - From N. J. A. Sloane, Jan 03 2013
- Santiago Rojas-Rojas, Camila Muñoz, Edgar Barriga, Pablo Solano, Aldo Delgado, and Carla Hermann-Avigliano, Analytic Evolution for Complex Coupled Tight-Binding Models: Applications to Quantum Light Manipulation, arXiv:2310.12366 [quant-ph], 2023. See p. 12.
- Index entries for linear recurrences with constant coefficients, signature (6,-10,4).
Programs
-
Maple
with(GraphTheory): G:=PathGraph(7): A:= AdjacencyMatrix(G): nmax:=26; n2:=2*nmax: for n from 0 to n2 do B(n):=A^n; a(n):=B(n)[1,1]; od: seq(a(2*n),n=0..nmax); # Johannes W. Meijer, May 29 2010
-
Mathematica
CoefficientList[Series[(x^3-6*x^2+5*x-1)/((2*x-1)*(2*x^2-4*x+1)),{x,0,30}],x] (* Vincenzo Librandi, May 10 2012 *)
-
PARI
{a(n) = local(A); A = 1; for( i=1, 6, A = 1 / (1 - x*A)); polcoeff( A + x * O(x^n), n)} /* Michael Somos, May 12 2012 */
Formula
From Herbert Kociemba, Jun 11 2004: (Start)
a(n) = (1/4)*Sum_{r=1..7} sin(r*Pi/8)^2*(2*cos(r*Pi/8))^(2n), n >= 1.
a(n) = 6*a(n-1) - 10*a(n-2) + 4*a(n-3), n >= 4. (End)
a(n) = (1/4)*((2 + sqrt(2))^(n - 1) + (2 - sqrt(2))^(n - 1) + 2^n) for n >= 1. - Richard Choulet, Apr 19 2010
a(n) = 2^(n - 2) + A006012(n-1)/2, n > 0. - R. J. Mathar, Mar 14 2011
G.f.: 1 / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x)))))). - Michael Somos, May 12 2012
E.g.f.: (1 + exp(2*x)*(1 + 2*cosh(sqrt(2)*x) - sqrt(2)*sinh(sqrt(2)*x)))/4. - Stefano Spezia, Jun 14 2023
A056236 a(n) = (2 + sqrt(2))^n + (2 - sqrt(2))^n.
2, 4, 12, 40, 136, 464, 1584, 5408, 18464, 63040, 215232, 734848, 2508928, 8566016, 29246208, 99852800, 340918784, 1163969536, 3974040576, 13568223232, 46324811776, 158162800640, 540001579008, 1843680714752, 6294719700992
Offset: 0
Comments
First differences give A060995. - Jeremy Gardiner, Aug 11 2013
Binomial transform of A002203 [Bhadouria].
The binomial transform of this sequence is 2, 6, 22, 90, 386, .. = 2*A083878(n). - R. J. Mathar, Nov 10 2013
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Pooja Bhadouria, Deepika Jhala, and Bijendra Singh, Binomial Transforms of the k-Lucas Sequences and its Properties, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92, sequence B_2.
- Sela Fried, Even-up words and their variants, arXiv:2505.14196 [math.CO], 2025. See p. 9.
- Takao Komatsu, Asymmetric Circular Graph with Hosoya Index and Negative Continued Fractions, arXiv:2105.08277 [math.CO], 2021.
- Youngwoo Kwon, Binomial transforms of the modified k-Fibonacci-like sequence, arXiv:1804.08119 [math.NT], 2018.
- Index entries for linear recurrences with constant coefficients, signature (4,-2).
Programs
-
Mathematica
LinearRecurrence[{4,-2},{2,4},30] (* Harvey P. Dale, Jan 18 2013 *)
-
PARI
a(n) = 2*real((2+quadgen(8))^n);
-
Sage
[lucas_number2(n,4,2) for n in range(37)] # Zerinvary Lajos, Jun 25 2008
Formula
a(n) = 4*a(n-1) - 2*a(n-2).
a(n) = a(n-2) - a(n-1) + 2*A020727(n-1).
For n>2, a(n) = floor((2+sqrt(2))*a(n-1)).
G.f.: 2*(1-2*x)/(1-4*x+2*x^2).
From L. Edson Jeffery, Apr 08 2011: (Start)
a(n) = 2^(2*n)*(cos(Pi/8)^(2*n) + cos(3*Pi/8)^(2*n)).
a(n) = 3*a(n-1) + Sum_{k=1..(n-2)} a(k), for n>1, with a(0)=2, a(1)=4. (End)
a(n) = [x^n] ( (1 + 4*x + sqrt(1 + 8*x + 8*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015
Extensions
More terms from James Sellers, Aug 25 2000
A124182 A skewed version of triangular array A081277.
1, 0, 1, 0, 1, 2, 0, 0, 3, 4, 0, 0, 1, 8, 8, 0, 0, 0, 5, 20, 16, 0, 0, 0, 1, 18, 48, 32, 0, 0, 0, 0, 7, 56, 112, 64, 0, 0, 0, 0, 1, 32, 160, 256, 128, 0, 0, 0, 0, 0, 9, 120, 432, 576, 256, 0, 0, 0, 0, 0, 1, 50, 400, 1120, 1280, 512
Offset: 0
Comments
Examples
Triangle begins: 1; 0, 1; 0, 1, 2; 0, 0, 3, 4; 0, 0, 1, 8, 8; 0, 0, 0, 5, 20, 16; 0, 0, 0, 1, 18, 48, 32; 0, 0, 0, 0, 7, 56, 112, 64; 0, 0, 0, 0, 1, 32, 160, 256, 128; 0, 0, 0, 0, 0, 9, 120, 432, 576, 256; 0, 0, 0, 0, 0, 1, 50, 400, 1120, 1280, 512;
Crossrefs
Formula
T(0,0)=T(1,1)=1, T(n,k)=0 if n < k or if k < 0, T(n,k) = T(n-2,k-1) + 2*T(n-1,k-1).
Sum_{k=0..n} x^k*T(n,k) = (-1)^n*A090965(n), (-1)^n*A084120(n), (-1)^n*A006012(n), A033999(n), A000007(n), A001333(n), A084059(n) for x = -4, -3, -2, -1, 0, 1, 2 respectively.
Sum_{k=0..floor(n/2)} T(n-k,k) = Fibonacci(n-1) = A000045(n-1).
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A011782(n), A001333(n), A026150(n), A046717(n), A084057(n), A002533(n), A083098(n), A084058(n), A003665(n), A002535(n), A133294(n), A090042(n), A125816(n), A133343(n), A133345(n), A120612(n), A133356(n), A125818(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 respectively. - Philippe Deléham, Dec 26 2007
Sum_{k=0..n} T(n,k)*(-x)^(n-k) = A011782(n), A000012(n), A146559(n), A087455(n), A138230(n), A006495(n), A138229(n) for x= 0,1,2,3,4,5,6 respectively. - Philippe Deléham, Nov 14 2008
G.f.: (1-y*x)/(1-2y*x-y*x^2). - Philippe Deléham, Dec 04 2011
Sum_{k=0..n} T(n,k)^2 = A002002(n) for n > 0. - Philippe Deléham, Dec 04 2011
A154626 a(n) = 2^n*A001519(n).
1, 2, 8, 40, 208, 1088, 5696, 29824, 156160, 817664, 4281344, 22417408, 117379072, 614604800, 3218112512, 16850255872, 88229085184, 461973487616, 2418924584960, 12665653559296, 66318223015936, 347246723858432, 1818207451086848, 9520257811087360
Offset: 0
Comments
From Gary W. Adamson, Jul 22 2016: (Start)
A production matrix for the sequence is M =
1, 1, 0, 0, 0, ...
1, 0, 5, 0, 0, ...
1, 0, 0, 5, 0, ...
1, 0, 0, 0, 5, ...
...
Take powers of M, extracting the upper left terms; getting
the sequence starting (1, 1, 2, 8, 40, 208, ...). (End)
The sequence is N=5 in an infinite set of INVERT transforms of powers of N prefaced with a "1". (1, 2, 8, 40, ...) is the INVERT transform of (1, 1, 5, 25, 125, ...). The first six of such sequences are shown in A006012 (N=3). - Gary W. Adamson, Jul 24 2016
From Gary W. Adamson, Jul 27 2016: (Start)
The sequence is the first in an infinite set in which we perform the operation for matrix M (Cf. Jul 22 2016), but change the left border successively from (1, 1, 1, 1, ...) then to (1, 2, 2, 2, ...), then (1, 3, 3, 3, ...) ...; generally (1, N, N, N, ...). Extracting the upper left terms of each matrix operation, we obtain the infinite set beginning:
N=1 (A154626): 1, 2, 8, 40, 208, 1088, ...
N=2 (A084120): 1, 3, 15, 81, 441, 1403, ...
N=3 (A180034): 1, 4, 22, 124, 700, 3952, ...
N=4 (A001653): 1, 5, 29, 169, 985, 5741, ...
N=5 (A000400): 1, 6, 36, 216, 1296, 7776, ...
N=6 (A015451): 1, 7, 43, 265, 1633, 10063, ...
N=7 (A180029): 1, 8, 50, 316, 1996, 12608, ...
N=8 (A180028): 1, 9, 57, 369, 1285, 15417, ...
N=9 (.......): 1, 10, 64, 424, 2800, 18496, ...
N=10 (A123361): 1, 11, 71, 481, 3241, 21851, ...
N=11 (.......): 1, 12, 78, 540, 3708, 25488, ...
... Each of the sequences begins (1, (N+1), (7*N + 1),
(40*N + (N-1)^2), ... (End)
The set of infinite sequences shown (Cf. comment of Jul 27 2016), can be generated from the matrices P = [(1,N; 1,5]^n, (N=1,2,3,...) by extracting the upper left terms. Example: N=6 sequence (A015451): (1, 7, 43, 265, ...) can be generated from the matrix P = [(1,6); (1,5)]^n. - Gary W. Adamson, Jul 28 2016
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 0..1000
- Bishal Deb, Cyclic sieving phenomena via combinatorics of continued fractions, arXiv:2508.13709 [math.CO], 2025. See p. 42.
- Index entries for linear recurrences with constant coefficients, signature (6,-4).
Programs
-
Magma
[n le 2 select (n) else 6*Self(n-1)-4*Self(n-2): n in [1..25]]; // Vincenzo Librandi, May 15 2015
-
Mathematica
LinearRecurrence[{6, -4}, {1, 2}, 30] (* Vincenzo Librandi, May 15 2015 *)
-
PARI
Vec((1-4*x) / (1-6*x+4*x^2) + O(x^30)) \\ Colin Barker, Sep 22 2017
Formula
G.f.: (1 - 4*x) / (1 - 6*x + 4*x^2).
From Colin Barker, Sep 22 2017: (Start)
a(n) = (((3-sqrt(5))^n*(1+sqrt(5)) + (-1+sqrt(5))*(3+sqrt(5))^n)) / (2*sqrt(5)).
a(n) = 6*a(n-1) - 4*a(n-2) for n>1. (End)
E.g.f.: exp(3*x)*(5*cosh(sqrt(5)*x) - sqrt(5)*sinh(sqrt(5)*x))/5. - Stefano Spezia, Aug 26 2025
A062110 A(n,k) is the coefficient of x^k in (1-x)^n/(1-2*x)^n for n, k >= 0; Table A read by descending antidiagonals.
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 5, 3, 1, 0, 8, 12, 9, 4, 1, 0, 16, 28, 25, 14, 5, 1, 0, 32, 64, 66, 44, 20, 6, 1, 0, 64, 144, 168, 129, 70, 27, 7, 1, 0, 128, 320, 416, 360, 225, 104, 35, 8, 1, 0, 256, 704, 1008, 968, 681, 363, 147, 44, 9, 1, 0, 512, 1536, 2400, 2528, 1970
Offset: 0
Comments
The triangular version of this square array is defined by T(n,k) = A(k,n-k) for 0 <= k <= n. Conversely, A(n,k) = T(n+k,n) for n,k >= 0. We have [o.g.f of T](x,y) = [o.g.f. of A](x*y, x) and [o.g.f. of A](x,y) = [o.g.f. of T](y,x/y). - Petros Hadjicostas, Feb 11 2021
From Paul Barry, Nov 10 2008: (Start)
[0,1,1,0,0,0,....] DELTA [1,0,0,0,.....]. (Philippe Deléham's DELTA is defined in A084938.) (End)
Modulo 2, this triangle T becomes triangle A106344. - Philippe Deléham, Dec 18 2008
Examples
Table A(n,k) (with rows n >= 0 and columns k >= 0) begins: 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, ... 1, 2, 5, 12, 28, 64, 144, 320, 704, 1536, ... 1, 3, 9, 25, 66, 168, 416, 1008, 2400, 5632, ... 1, 4, 14, 44, 129, 360, 968, 2528, 6448, 16128, ... 1, 5, 20, 70, 225, 681, 1970, 5500, 14920, 39520, ... 1, 6, 27, 104, 363, 1182, 3653, 10836, 31092, 86784, ... ... - _Petros Hadjicostas_, Feb 15 2021 Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins: 1; 0, 1; 0, 1, 1; 0, 2, 2, 1; 0, 4, 5, 3, 1; 0, 8, 12, 9, 4, 1; 0, 16, 28, 25, 14, 5, 1; 0, 32, 64, 66, 44, 20, 6, 1; 0, 64, 144, 168, 129, 70, 27, 7, 1; 0, 128, 320, 416, 360, 225, 104, 35, 8, 1; ... - _Philippe Deléham_, Nov 30 2008
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened.)
- Eunice Y. S. Chan, Robert M. Corless, Laureano Gonzalez-Vega, J. Rafael Sendra, and Juana Sendra, Upper Hessenberg and Toeplitz Bohemians, arXiv:1907.10677 [cs.SC], 2019.
- Milan Janjić, Words and Linear Recurrences, J. Int. Seq., 21 (2018), #18.1.4.
Crossrefs
Programs
-
Mathematica
t[n_, n_] = 1; t[n_, k_] := 2^(n-2*k)*k*Hypergeometric2F1[1-k, n-k+1, 2, -1]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 30 2013, after Philippe Deléham + symbolic sum *)
-
PARI
a(i,j)=if(i<0 || j<0,0,polcoeff(((1-x)/(1-2*x)+x*O(x^j))^i,j))
Formula
Formulas for the square array (A(n,k): n,k >= 0):
A(n, k) = A(n-1, k) + Sum_{0 <= j < k} A(n, j) for n >= 1 and k >= 0 with A(0, k) = 0^k for k >= 0.
G.f.: 1/(1-x*(1-y)/(1-2*y)) = Sum_{i, j >= 0} A(i, j) x^i*y^j.
From Petros Hadjicostas, Feb 15 2021: (Start)
A(n,k) = 2^(k-n)*n*hypergeom([1-n, k+1], [2], -1) for n >= 0 and k >= 1.
A(n,k) = 2*A(n,k-1) + A(n-1,k) - A(n-1,k-1) for n,k >= 1 with A(n,0) = 1 for n >= 0 and A(0,k) = 0 for k >= 1. (End)
Formulas for the triangle (T(n,k): 0 <= k <= n):
From Philippe Deléham, Aug 01 2006: (Start)
T(n,k) = A121462(n+1,k+1)*2^(n-2*k) for 0 <= k < n.
T(n,k) = 2^(n-2*k)*k*hypergeom([1-k, n-k+1], [2], -1) for 0 <= k < n. (End)
Sum_{k=0..n} T(n,k)*x^k = A152239(n), A152223(n), A152185(n), A152174(n), A152167(n), A152166(n), A152163(n), A000007(n), A001519(n), A006012(n), A081704(n), A082761(n), A147837(n), A147838(n), A147839(n), A147840(n), A147841(n), for x = -7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Dec 09 2008
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) for 1 <= k <= n-1 with T(0,0) = T(1,1) = T(2,1) = T(2,2) = 1, T(1,0) = T(2,0) = 0, and T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Oct 30 2013
G.f.: Sum_{n.k>=0} T(n,k)*x^n*y^k = (1 - 2*x)/(x^2*y - x*y - 2*x + 1). - Petros Hadjicostas, Feb 15 2021
Extensions
Various sections edited by Petros Hadjicostas, Feb 15 2021
A062112 a(0)=0; a(1)=1; a(n) = a(n-1) + (3 + (-1)^n)*a(n-2)/2.
0, 1, 1, 2, 4, 6, 14, 20, 48, 68, 164, 232, 560, 792, 1912, 2704, 6528, 9232, 22288, 31520, 76096, 107616, 259808, 367424, 887040, 1254464, 3028544, 4283008, 10340096, 14623104, 35303296, 49926400, 120532992, 170459392, 411525376
Offset: 0
Examples
a(4) = a(3) + 2*a(2) = 2 + 2 = 4.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..200
- Sean A. Irvine, Walks on Graphs.
- Index entries for linear recurrences with constant coefficients, signature (0, 4, 0, -2).
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1+x-2*x^2)/(1-4*x^2+2*x^4))); // G. C. Greubel, Oct 16 2018 -
Mathematica
RecurrenceTable[{a[0]==0,a[1]==1,a[n]==a[n-1]+(3+(-1)^n) (a[n-2])/2},a,{n,40}] (* or *) LinearRecurrence[{0,4,0,-2},{0,1,1,2},40] (* Harvey P. Dale, May 24 2013 *)
-
PARI
{ for (n=0, 200, if (n>1, a=a1 + (3 + (-1)^n)*a2/2; a2=a1; a1=a, if (n==0, a=a2=0, a=a1=1)); write("b062112.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 01 2009
Formula
a(2*n) = A007070(n+1).
a(2*n+1) = A006012(n).
G.f.: x*(1+x-2*x^2)/(1-4*x^2+2*x^4).
a(n) = 4*a(n-2) - 2*a(n-4), a(0)=0, a(1)=1, a(2)=1, a(3)=2. - Harvey P. Dale, May 24 2013
Comments