cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A120493 Triangle T(n,k) read by rows ; multiply row n of Pascal's triangle (A007318) by A024175(n).

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 5, 15, 15, 5, 14, 56, 84, 56, 14, 42, 210, 420, 420, 210, 42, 132, 792, 1980, 2640, 1980, 792, 132, 428, 2996, 8988, 14980, 14980, 8988, 2996, 428, 1416, 11328, 39648, 79296, 99120, 79296, 39648, 11328, 1416
Offset: 0

Views

Author

Philippe Deléham, Aug 05 2006

Keywords

Comments

Triangle given by [1, 1, 1, 1, 1, 1, 0, 0, 0, ...] DELTA [1, 1, 1, 1, 1, 1, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Examples

			Triangle begins:
1;
1, 1;
2, 4, 2;
5, 15, 15, 5;
14, 56, 84, 56, 14;
42, 210, 420, 420, 210, 42;
132, 792, 1980, 2640, 1980, 792, 132;
428, 2996, 8988, 14980, 14980, 8988, 2996, 428;
1416, 11328, 39648, 79296, 99120, 79296, 39648, 11328, 1416 ;...
		

Formula

T(n,k)=A007318(n,k)*A024175(n).
T(n,k)=6*T(n-1,k)+6*T(n-1,k-1)-10*T(n-2,k)-20*T(n-2,k-1)-10*T(n-2,k-2)+4*T(n-3,k)+12*T(n-3,k-1)+12*T(n-3,k-2)+4*T(n-3,k-3) for n>3, T(0,0)=T(1,0)=T(1,1)=1, T(2,0)=T(2,2)=2, T(2,1)=4, T(3,0)=T(3,3)=5, T(3,1)=T(3,2)=15, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 22 2013
G.f.: (-1 +5*x +5*x*y -6*x^2 -12*x^2*y -6*x^2*y^2 +x^3 +3*x^3*y +3*x^3*y^2 +x^3*y^3)/( (-1+2*x+2*x*y) *(2*x^2*y^2+4*x^2*y+2*x^2-4*x*y-4*x+1) ). - R. J. Mathar, Aug 12 2015

A006012 a(0) = 1, a(1) = 2, a(n) = 4*a(n-1) - 2*a(n-2), n >= 2.

Original entry on oeis.org

1, 2, 6, 20, 68, 232, 792, 2704, 9232, 31520, 107616, 367424, 1254464, 4283008, 14623104, 49926400, 170459392, 581984768, 1987020288, 6784111616, 23162405888, 79081400320, 270000789504, 921840357376, 3147359850496
Offset: 0

Views

Author

Keywords

Comments

Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 8 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 4, s(2n) = 4. - Herbert Kociemba, Jun 12 2004
a(n-1) counts permutations pi on [n] for which the pairs {i, pi(i)} with i < pi(i), considered as closed intervals [i+1,pi(i)], do not overlap; equivalently, for each i in [n] there is at most one j <= i with pi(j) > i. Counting these permutations by the position of n yields the recurrence relation. - David Callan, Sep 02 2003
a(n) is the sum of (n+1)-th row terms of triangle A140070. - Gary W. Adamson, May 04 2008
The binomial transform is in A083878, the Catalan transform in A084868. - R. J. Mathar, Nov 23 2008
Equals row sums of triangle A152252. - Gary W. Adamson, Nov 30 2008
Counts all paths of length (2*n), n >= 0, starting at the initial node on the path graph P_7, see the second Maple program. - Johannes W. Meijer, May 29 2010
From L. Edson Jeffery, Apr 04 2011: (Start)
Let U_1 and U_3 be the unit-primitive matrices (see [Jeffery])
U_1 = U_(8,1) = [(0,1,0,0); (1,0,1,0); (0,1,0,1); (0,0,2,0)] and
U_3 = U_(8,3) = [(0,0,0,1); (0,0,2,0); (0,2,0,1); (2,0,2,0)]. Then a(n) = (1/4) * Trace(U_1^(2*n)) = (1/2^(n+2)) * Trace(U_3^(2*n)). (See also A084130, A001333.) (End)
Pisano period lengths: 1, 1, 8, 1, 24, 8, 6, 1, 24, 24, 120, 8, 168, 6, 24, 1, 8, 24, 360, 24, ... - R. J. Mathar, Aug 10 2012
a(n) is the first superdiagonal of array A228405. - Richard R. Forberg, Sep 02 2013
Conjecture: With offset 1, a(n) is the number of permutations on [n] with no subsequence abcd such that (i) bc are adjacent in position and (ii) max(a,c) < min(b,d). For example, the 4 permutations of [4] not counted by a(4) are 1324, 1423, 2314, 2413. - David Callan, Aug 27 2014
The conjecture of David Callan above is correct - with offset 1, a(n) is the number of permutations on [n] with no subsequence abcd such that (i) bc are adjacent in position and (ii) max(a,c) < min(b,d). - Yonah Biers-Ariel, Jun 27 2017
From Gary W. Adamson, Jul 22 2016: (Start)
A production matrix for the sequence is M =
1, 1, 0, 0, 0, 0, ...
1, 0, 3, 0, 0, 0, ...
1, 0, 0, 3, 0, 0, ...
1, 0, 0, 0, 3, 0, ...
1, 0, 0, 0, 0, 3, ...
...
Take powers of M, extracting the upper left terms; getting the sequence starting: (1, 1, 2, 6, 20, 68, ...). (End)
From Gary W. Adamson, Jul 24 2016: (Start)
The sequence is the INVERT transform of the powers of 3 prefaced with a "1": (1, 1, 3, 9, 27, ...) and is N=3 in an infinite of analogous sequences starting:
N=1 (A000079): 1, 2, 4, 8, 16, 32, ...
N=2 (A001519): 1, 2, 5, 13, 34, 89, ...
N=3 (A006012): 1, 2, 6, 20, 68, 232, ...
N=4 (A052961): 1, 2, 7, 29, 124, 533, ...
N=5 (A154626): 1, 2, 8, 40, 208, 1088, ...
N=6: 1, 2, 9, 53, 326, 2017, ...
... (End)
Number of permutations of length n > 0 avoiding the partially ordered pattern (POP) {1>2, 1>3, 4>2, 4>3} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first and fourth elements are larger than the second and third elements. - Sergey Kitaev, Dec 08 2020
a(n-1) is the number of permutations of [n] that can be obtained by placing n points on an X-shape (two crossing lines with slopes 1 and -1), labeling them 1,2,...,n by increasing y-coordinate, and then reading the labels by increasing x-coordinate. - Sergi Elizalde, Sep 27 2021
Consider a stack of pancakes of height n, where the only allowed operation is reversing the top portion of the stack. First, perform a series of reversals of decreasing sizes, followed by a series of reversals of increasing sizes. The number of distinct permutations of the initial stack that can be reached through these operations is a(n). - Thomas Baruchel, May 12 2025
Number of permutations of [n] that are correctly sorted after performing one left-to-right pass and one right-to-left pass of the cocktail sort. - Thomas Baruchel, May 16 2025

References

  • D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms. Birkhäuser, Boston, 3rd edition, 1990, p. 86.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, Sect 5.4.8 Answer to Exer. 8.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006012 n = a006012_list !! n
    a006012_list = 1 : 2 : zipWith (-) (tail $ map (* 4) a006012_list)
    (map (* 2) a006012_list)
    -- Reinhard Zumkeller, Oct 03 2011
    
  • Magma
    [n le 2 select n else 4*Self(n-1)- 2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 05 2011
    
  • Maple
    A006012:=-(-1+2*z)/(1-4*z+2*z**2); # Simon Plouffe in his 1992 dissertation
    with(GraphTheory): G:=PathGraph(7): A:= AdjacencyMatrix(G): nmax:=24; n2:=2*nmax: for n from 0 to n2 do B(n):=A^n; a(n):=add(B(n)[1,k],k=1..7); od: seq(a(2*n),n=0..nmax); # Johannes W. Meijer, May 29 2010
  • Mathematica
    LinearRecurrence[{4,-2},{1,2},50] (* or *) With[{c=Sqrt[2]}, Simplify[ Table[((2+c)^n+(3+2c)(2-c)^n)/(2(2+c)),{n,50}]]] (* Harvey P. Dale, Aug 29 2011 *)
  • PARI
    {a(n) = real(((2 + quadgen(8))^n))}; /* Michael Somos, Feb 12 2004 */
    
  • PARI
    {a(n) = if( n<0, 2^n, 1) * polsym(x^2 - 4*x + 2, abs(n))[abs(n)+1] / 2}; /* Michael Somos, Feb 12 2004 */
    
  • PARI
    Vec((1-2*x)/(1-4*x+2*x^2) + O(x^100)) \\ Altug Alkan, Dec 05 2015
    
  • Python
    l = [1, 2]
    for n in range(2, 101): l.append(4 * l[n - 1] - 2 * l[n - 2])
    print(l)  # Indranil Ghosh, Jul 02 2017
    
  • SageMath
    A006012=BinaryRecurrenceSequence(4,-2,1,2)
    print([A006012(n) for n in range(41)]) # G. C. Greubel, Aug 27 2025

Formula

G.f.: (1-2*x)/(1 - 4*x + 2*x^2).
a(n) = 2*A007052(n-1) = A056236(n)/2.
Limit_{n -> oo} a(n)/a(n-1) = 2 + sqrt(2). - Zak Seidov, Oct 12 2002
From Paul Barry, May 08 2003: (Start)
Binomial transform of A001333.
E.g.f.: exp(2*x)*cosh(sqrt(2)*x). (End)
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*2^(n-k) = Sum_{k=0..n} binomial(n, k)*2^(n-k/2)(1+(-1)^k)/2. - Paul Barry, Nov 22 2003 (typo corrected by Manfred Scheucher, Jan 17 2023)
a(n) = ((2+sqrt(2))^n + (2-sqrt(2))^n)/2.
a(n) = Sum_{k=0..n} 2^k*A098158(n,k). - Philippe Deléham, Dec 04 2006
a(n) = A007070(n) - 2*A007070(n-1). - R. J. Mathar, Nov 16 2007
a(n) = Sum_{k=0..n} A147703(n,k). - Philippe Deléham, Nov 29 2008
a(n) = Sum_{k=0..n} A201730(n,k). - Philippe Deléham, Dec 05 2011
G.f.: G(0) where G(k)= 1 + 2*x/((1-2*x) - 2*x*(1-2*x)/(2*x + (1-2*x)*2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 10 2012
G.f.: G(0)*(1-2*x)/2, where G(k) = 1 + 1/(1 - 2*x*(4*k+2-x)/( 2*x*(4*k+4-x) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 27 2014
a(-n) = a(n) / 2^n for all n in Z. - Michael Somos, Aug 24 2014
a(n) = A265185(n) / 4, connecting this sequence to the simple Lie algebra B_4. - Tom Copeland, Dec 04 2015
From G. C. Greubel, Aug 27 2025: (Start)
a(n) = 2^((n-2)/2)*( (n+1 mod 2)*A002203(n) + 2*sqrt(2)*(n mod 2)*A000129(n) ).
a(n) = 2^(n/2)*ChebyshevT(n, sqrt(2)). (End)

A080937 Number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 2*n steps with all values <= 5.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 131, 417, 1341, 4334, 14041, 45542, 147798, 479779, 1557649, 5057369, 16420730, 53317085, 173118414, 562110290, 1825158051, 5926246929, 19242396629, 62479659622, 202870165265, 658715265222, 2138834994142, 6944753544643, 22549473023585
Offset: 0

Views

Author

Henry Bottomley, Feb 25 2003

Keywords

Comments

With interpolated zeros (1,0,1,0,2,...), counts closed walks of length n at start or end node of P_6. The sequence (0,1,0,2,...) counts walks of length n between the start and second node. - Paul Barry, Jan 26 2005
HANKEL transform of sequence and the sequence omitting a(0) is the sequence A130716. This is the unique sequence with that property. - Michael Somos, May 04 2012
From Wolfdieter Lang, Mar 30 2020: (Start)
a(n) is also the upper left entry of the n-th power of the 3 X 3 tridiagonal matrix M_3 = Matrix([1,1,0], [1,2,1], [0,1,2]) from A332602: a(n) = ((M_3)^n)[1,1].
Proof: (M_3)^n = b(n-2)*(M_3)^2 - (6*b(n-3) - b(n-4))*M_3 + b(n-3)*1_3, for n >= 0, with b(n) = A005021(n), for n >= -4. For the proof of this see a comment in A005021. Hence (M_3)^n[1,1] = 2*b(n-2) - 5*b(n-3) + b(n-4), for n >= 0. This proves the 3 X 3 part of the conjecture in A332602 by Gary W. Adamson.
The formula for a(n) given below in terms of r = rho(7) = A160389 proves that a(n)/a(n-1) converges to rho(7)^2 = A116425 = 3.2469796..., because r - 2/r = 0.6920... < 1, and r^2 - 3 = 0.2469... < 1. This limit was conjectured in A332602 by Gary W. Adamson.
(End)

Examples

			G.f. = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 131*x^6 + 417*x^7 + 1341*x^8 + ...
		

Crossrefs

Cf. A033191 which essentially provide the same sequence for different limits and tend to A000108.

Programs

  • Magma
    I:=[1,1,2]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jan 09 2016
  • Maple
    a:= n-> (<<0|1|0>, <0|0|1>, <1|-6|5>>^n. <<1, 1, 2>>)[1, 1]:
    seq(a(n), n=0..35);  # Alois P. Heinz, Nov 09 2012
  • Mathematica
    nn=56;Select[CoefficientList[Series[(1-4x^2+3x^4)/(1-5x^2+6x^4-x^6), {x,0,nn}], x],#>0 &] (* Geoffrey Critzer, Jan 26 2014 *)
    LinearRecurrence[{5,-6,1},{1,1,2},30] (* Jean-François Alcover, Jan 09 2016 *)
  • PARI
    a=vector(99); a[1]=1; a[2]=2;a[3]=5; for(n=4,#a,a[n]=5*a[n-1]-6*a[n-2] +a[n-3]); a \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    {a(n) = if( n<0, n = -n; polcoeff( (1 - 3*x + x^2) / (1 - 6*x + 5*x^2 - x^3) + x * O(x^n), n), polcoeff( (1 - 4*x + 3*x^2) / (1 - 5*x + 6*x^2 - x^3) + x * O(x^n), n))} /* Michael Somos, May 04 2012 */
    

Formula

a(n) = A080934(n,5).
G.f.: (1-4*x+3*x^2)/(1-5*x+6*x^2-x^3). - Ralf Stephan, May 13 2003
a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3). - Herbert Kociemba, Jun 11 2004
a(n) = A096976(2*n). - Floor van Lamoen, Nov 02 2005
a(n) = (4/7-4/7*cos(1/7*Pi)^2)*(4*(cos(Pi/7))^2)^n + (1/7-2/7*cos(1/7*Pi) + 4/7*cos(1/7*Pi)^2)*(4*(cos(2*Pi/7))^2)^n + (2/7+2/7*cos(1/7*Pi))*(4*(cos(3*Pi/7))^2)^n for n>=0. - Richard Choulet, Apr 19 2010
G.f.: 1 / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x))))). - Michael Somos, May 04 2012
a(-n) = A038213(n). a(n + 2) * a(n) - a(n + 1)^2 = a(1 - n). Convolution inverse is A123183 with A123183(0)=1. - Michael Somos, May 04 2012
From Wolfdieter Lang, Mar 30 2020: (Start)
In terms of the algebraic number r = rho(7) = A160389 of degree 3 the formula given by Richard Choulet becomes a(n) = (1/7)*(r)^(2*n)*(C1(r) + C2(r)*(r - 2/r)^(2*n) + C3(r)*(r^2 - 3)^(2*n)), with C1(r) = 4 - r^2, C2(r) = 1 - r + r^2, and C3 = 2 + r.
a(n) = ((M_3)^n)[1,1] = 2*b(n-2) - 5*b(n-3) + b(n-4), for n >= 0, with the 3 X 3 tridiagonal matrix M_3 = Matrix([1,1,0], [1,2,1], [0,1,2]) from A332602, and b(n) = A005021(n) (with offset n >= -4). (End)

A211216 Expansion of (1-8*x+21*x^2-20*x^3+5*x^4)/(1-9*x+28*x^2-35*x^3+15*x^4-x^5).

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16795, 58766, 207783, 740924, 2660139, 9603089, 34818270, 126676726, 462125928, 1689438278, 6186432967, 22682699779, 83249302471, 305773834030, 1123771473120, 4131947428007, 15197952958467, 55915691993228
Offset: 0

Views

Author

Bruno Berselli, May 11 2012

Keywords

Comments

In the paper of Kitaev, Remmel and Tiefenbruck (see the Links section), Q_(132)^(k,0,0,0)(x,0) represents a generating function depending on k and x.
For successive values of k we have:
k=1, the g.f. of A000012: 1/(1-x);
k=2, " A011782: (1-x)/(1-2*x);
k=3, " A001519: (1-2*x)/(1-3*x+x^2);
k=4, " A124302: (1-3*x+x^2)/(1-4*x+3*x^2);
k=5, " A080937: (1-4*x+3*x^2)/(1-5*x+6*x^2-x^3);
k=6, " A024175: (1-5*x+6*x^2-x^3)/(1-6*x+10*x^2-4*x^3);
k=7, " A080938: (1-6*x+10*x^2-4*x^3)/(1-7*x+15*x^2-10*x^3+x^4);
k=8, " A033191: (1-7*x+15*x^2-10*x^3+x^4)/(1-8*x+21*x^2
-20*x^3+5*x^4).
This sequence corresponds to the case k=9.
We observe that the coefficients of numerators and denominators are in A115139.
In general, Q_(132)^(k,0,0,0)(x,0) is the generating function for Dyck paths whose maximum height is less than or equal to k; also, it is the generating function of rooted binary trees T which have no nodes 'eta' such that there are >= k left edges on the path from 'eta' to the root of T (see cited paper, page 11).

Crossrefs

Programs

  • Magma
    m:=28; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-8*x+21*x^2-20*x^3+5*x^4)/(1-9*x+28*x^2-35*x^3+15*x^4-x^5)));
  • Mathematica
    CoefficientList[Series[(1 - 8 x + 21 x^2 - 20 x^3 + 5 x^4)/(1 - 9 x + 28 x^2 - 35 x^3 + 15 x^4 - x^5), {x, 0, 27}], x]
  • PARI
    Vec((1-8*x+21*x^2-20*x^3+5*x^4)/(1-9*x+28*x^2-35*x^3+15*x^4-x^5)+O(x^28))
    

Formula

G.f.: (1-3*x+x^2)*(1-5*x+5*x^2)/(1-9*x+28*x^2-35*x^3+15*x^4-x^5).
G.f.: 1/(1-x/(1-x/(1-x/(1-x/(1-x/(1-x/(1-x/(1-x/(1-x))))))))). - Philippe Deléham, Mar 14 2013
a(n) = A000108(n) + Sum_{k=1..n} (4*binomial(2*n, n+11*k) - binomial(2*n+2, n+11*k+1)). - Greg Dresden, Jan 28 2023

A030436 Expansion of g.f. (1 + x - 2*x^2 - x^3)/(1 - 4*x^2 + 2*x^4).

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 20, 34, 68, 116, 232, 396, 792, 1352, 2704, 4616, 9232, 15760, 31520, 53808, 107616, 183712, 367424, 627232, 1254464, 2141504, 4283008, 7311552, 14623104, 24963200, 49926400, 85229696, 170459392, 290992384, 581984768, 993510144, 1987020288, 3392055808
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Also (starting 3, 6, ...) the number of zig-zag paths from top to bottom of a rectangle of width 7 whose color is not that of the top right corner.
From Johannes W. Meijer, May 29 2010: (Start)
The a(n) represent the number of possible chess games, ignoring the fifty-move and the triple repetition rules, after n moves by White in the following position: White Ka1, Nh1, pawns a2, b6, c2, d6, f2, g3 and h2; Black Ka8, Bc8, pawns a3, b7, c3, d7, f3, g4 and h3.
Counts all paths of length n, n>=0, starting at the initial node on the path graph P_7, see the Maple program. (End)
Range of row n of the circular Pascal array of order 8. - Shaun V. Ault, Jun 05 2014.
In general, a(n,m) = (2^n/(m+1))*Sum_{r=1..m} (1-(-1)^r)*cos(Pi*r/(m+1))^n*(1+cos(Pi*r/(m+1))) gives the number of paths of length n starting at the initial node on the path graph P_m. Here we have m=7. - Herbert Kociemba, Sep 17 2020

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 + 34*x^7 + 68*x^8 + ...
		

Crossrefs

Programs

  • Maple
    with(GraphTheory): P:=7: G:=PathGraph(P): A:= AdjacencyMatrix(G): nmax:=31; for n from 0 to nmax do B(n):=A^n; a(n):=add(B(n)[1,k],k=1..P); od: seq(a(n),n=0..nmax); # Johannes W. Meijer, May 29 2010
    X := j -> (-1)^(j/8) - (-1)^(1-j/8):
    a := k -> add((2 + X(j))*X(j)^k, j in [1, 3, 5, 7])/8:
    seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 17 2020
  • Mathematica
    CoefficientList[Series[(1+x-2x^2-x^3)/(1-4x^2+2x^4),{x,0,40}],x] (* or *) LinearRecurrence[{0,4,0,-2},{1,1,2,3},41] (* Harvey P. Dale, May 11 2011 *)
    a[n_,m_]:=2^(n+1)/(m+1) Module[{x=(Pi r)/(m+1)},Sum[Cos[x]^n (1+Cos[x]),{r,1,m,2}]]
    Table[a[n,7],{n,0,40}]//Round (* Herbert Kociemba, Sep 17 2020 *)
  • PARI
    Vec((1+x-2*x^2-x^3)/(1-4*x^2+2*x^4)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • PARI
    {a(n) = if( n<0, 0, polsym( x^4 - 4*x^2 + 2, n + n%2)[n + n%2 + 1] / (4 * (n%2 + 1)))}; /* Michael Somos, Feb 08 2015 */

Formula

a(0)=a(1)=1, a(2)=2, a(3)=3, a(n)=4*a(n-2)-2*a(n-4). - Harvey P. Dale, May 11 2011
a(n) = (2+sqrt(2+sqrt(2)))/8*(sqrt(2+sqrt(2)))^n + (2-sqrt(2+sqrt(2)))/8*(-sqrt(2+sqrt(2)))^n + (2+sqrt(2-sqrt(2)))/8*(sqrt(2-sqrt(2)))^n + (2-sqrt(2-sqrt(2)))/8*(-sqrt(2-sqrt(2)))^n. - Sergei N. Gladkovskii, Aug 23 2012
a(n) = A030435(n)/2. a(2*n) = A006012(n). a(2*n + 1) = A007052(n). - Michael Somos, Mar 06 2003
a(n) = (2^n/8)*Sum_{r=1..7} (1-(-1)^r)cos(Pi*r/8)^n*(1+cos(Pi*r/8)). - Herbert Kociemba, Sep 17 2020
E.g.f.: (2*cosh(r*x) + 2*cosh(s*x) + r*sinh(r*x) + s*sinh(s*x))/4, where r = sqrt(2 - sqrt(2)) and s = sqrt(2 + sqrt(2)). - Stefano Spezia, Jun 14 2023

Extensions

Comment and link added and typo in cross-reference corrected by Joseph Myers, Dec 24 2008, May 30 2010

A080934 Square array read by antidiagonals of number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 2n steps with all values less than or equal to k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 4, 1, 0, 1, 1, 2, 5, 8, 1, 0, 1, 1, 2, 5, 13, 16, 1, 0, 1, 1, 2, 5, 14, 34, 32, 1, 0, 1, 1, 2, 5, 14, 41, 89, 64, 1, 0, 1, 1, 2, 5, 14, 42, 122, 233, 128, 1, 0, 1, 1, 2, 5, 14, 42, 131, 365, 610, 256, 1, 0, 1, 1, 2, 5, 14, 42, 132, 417, 1094, 1597, 512, 1, 0
Offset: 0

Views

Author

Henry Bottomley, Feb 25 2003

Keywords

Comments

Number of permutations in S_n avoiding both 132 and 123...k.
T(n,k) = number of rooted ordered trees on n nodes of depth <= k. Also, T(n,k) = number of {1,-1} sequences of length 2n summing to 0 with all partial sums are >=0 and <= k. Also, T(n,k) = number of closed walks of length 2n on a path of k nodes starting from (and ending at) a node of degree 1. - Mitch Harris, Mar 06 2004
Also T(n,k) = k-th coefficient in expansion of the rational function R(n), where R(1) = 1, R(n+1) = 1/(1-x*R(n)), which means also that lim(n->inf,R(n)) = g.f. of Catalan numbers (A000108) wherever it has real value (see Mansour article). - Clark Kimberling and Ralf Stephan, May 26 2004
Row n of the array gives Taylor series expansion of F_n(t)/F_{n+1}(t), where F_n(t) are the Fibonacci polynomials defined in A259475 [Kreweras, 1970]. - N. J. A. Sloane, Jul 03 2015

Examples

			T(3,2) = 4 since the paths of length 2*3 (7 points) with all values less than or equal to 2 can take the routes 0101010, 0101210, 0121010 or 0121210, but not 0123210.
From _Peter Luschny_, Aug 27 2014: (Start)
Trees with n nodes and height <= h:
h\n  1  2  3  4   5   6    7    8     9    10     11
---------------------------------------------------------
[ 1] 1, 0, 0, 0,  0,  0,   0,   0,    0,    0,     0, ...  A063524
[ 2] 1, 1, 1, 1,  1,  1,   1,   1,    1,    1,     1, ...  A000012
[ 3] 1, 1, 2, 4,  8, 16,  32,  64,  128,  256,   512, ...  A011782
[ 4] 1, 1, 2, 5, 13, 34,  89, 233,  610, 1597,  4181, ...  A001519
[ 5] 1, 1, 2, 5, 14, 41, 122, 365, 1094, 3281,  9842, ...  A124302
[ 6] 1, 1, 2, 5, 14, 42, 131, 417, 1341, 4334, 14041, ...  A080937
[ 7] 1, 1, 2, 5, 14, 42, 132, 428, 1416, 4744, 16016, ...  A024175
[ 8] 1, 1, 2, 5, 14, 42, 132, 429, 1429, 4846, 16645, ...  A080938
[ 9] 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4861, 16778, ...  A033191
[10] 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16795, ...  A211216
---------------------------------------------------------
The generating functions are listed in A211216. Note that the values up to the main diagonal are the Catalan numbers A000108.
(End)
		

Crossrefs

Cf. A000108, A079214, A080935, A080936. Rows include A000012, A057427, A040000 (offset), columns include (essentially) A000007, A000012, A011782, A001519, A007051, A080937, A024175, A080938, A033191, A211216. Main diagonal is A000108.
Cf. A094718 (involutions). Cf. also A259475.

Programs

  • Maple
    # As a triangular array:
    b:= proc(x, y, k) option remember; `if`(y>min(k, x) or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, k)+ b(x-1, y+1, k)))
        end:
    A:= (n, k)-> b(2*n, 0, k):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Aug 06 2012
    # As a square array:
    A := proc(n,k) option remember; local j; if n = 1 then 1 elif k = 1 then 0 else add(A(n-j,k)*A(j,k-1), j=1..n-1) fi end:
    linalg[matrix](10, 12, (n,k) -> A(k,n)); # Peter Luschny, Aug 27 2014
  • Mathematica
    A[n_, k_] := A[n, k] = Which[n == 1, 1, k == 1, 0, True, Sum[A[n-j, k]*A[j, k-1], {j, 1, n-1}]]; Table[A[k-n+1, n], {k, 1, 13}, {n, k, 1, -1}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Peter Luschny *)
  • PARI
    A(N, K) = {
      my(m = matrix(N, K, n, k, n==1));
      for (n = 2, N,
      for (k = 2, K,
           m[n,k] = sum(i = 1, n-1, m[n-i,k] * m[i,k-1])));
      return(m);
    }
    A(11,10)~  \\ Gheorghe Coserea, Jan 13 2016

Formula

T(n, k) = Sum_{0A080935(n, k) = T(n, k-1)+A080936(n, k); for k>=n T(n, k) = A000108(n).
T(n, k) = 2^(2n+1)/(k+2) * Sum_{i=1..k+1} (sin(Pi*i/(k+2))*cos(Pi*i/(k+2))^n)^2 for n>=1. - Herbert Kociemba, Apr 28 2004
G.f. of n-th row: B(n)/B(n+1) where B(j)=[(1+sqrt(1-4x))/2]^j-[(1-sqrt(1-4x))/2]^j.

A080938 Number of Catalan paths (nonnegative, starting and ending at 0, step +-1) of 2*n steps with all values less than or equal to 7.

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 132, 429, 1429, 4846, 16645, 57686, 201158, 704420, 2473785, 8704089, 30664890, 108126325, 381478030, 1346396146, 4753200932, 16783118309, 59266297613, 209302921830, 739203970773, 2610763825782, 9221050139566, 32568630376132
Offset: 0

Views

Author

Henry Bottomley, Feb 25 2003

Keywords

Comments

From Wolfdieter Lang, Mar 27 2020: (Start)
a(n) also gives the upper left entry of the n-th power of the 4 X 4 tridiagonal matrix M_4, given in A332602: M_4 = Matrix([1,1,0,0], [1,2,1,0], [0,1,2,1], [0,0,1,2]): a(n) = (M_4)^n[1,1]. Proof from the formula for (M_4)^n, given in a comment in A094256, derived from the Cayley-Hamilton theorem, which leads to the recurrence. The formula for a(n) in terms of A094256 is given below.
For A094256(n+1)/A094256(n), like for A094829(n+1)/A094829(n), the limit for n -> infinity is rho(9)^2 = A332438 = 3.53208888..., with rho(9) = 2*cos(Pi/9) = A332437. Therefore the formula of a(n) in terms of A094256 shows that the same limit is reached for a(n+1)/a(n). See this conjecture by Gary W. Adamson in A332602.
(End)

Examples

			1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + ...
		

Crossrefs

Cf. A000007, A000012, A011782, A001519, A007051, A080937, A024175, A033191 which essentially provide the same sequence for different limits and tend to A000108.
Cf. A211216, A094826 (first differences), A094829, A094829, A332602, A332437, A332438.

Programs

  • Magma
    I:=[1,1,2,5]; [n le 4 select I[n] else 7*Self(n-1)-15*Self(n-2)+10*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Nov 30 2018
  • Mathematica
    CoefficientList[Series[(1 - 2 x) (2 x^2 - 4 x + 1) / ((x - 1) (x^3 - 9 x^2 + 6 x - 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 30 2018 *)
    LinearRecurrence[{7, -15, 10, -1}, {1, 1, 2, 5}, 30] (* Jean-François Alcover, Jan 07 2019 *)
  • PARI
    {a(n) = local(A); A = 1; for( i=1, 7, A = 1 / (1 - x*A)); polcoeff( A + x * O(x^n), n)} /* Michael Somos, May 12 2012 */
    

Formula

a(n) = A080934(n,7).
G.f.: -(2*x - 1)*(2*x^2 - 4*x + 1) / ( (x - 1)*(x^3 - 9*x^2 + 6*x - 1) ). - Ralf Stephan, May 13 2003
a(n) = 7*a(n-1) - 15*a(n-2) + 10*a(n-3) - a(n-4). - Herbert Kociemba, Jun 13 2004
G.f.: 1 / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x))))))). - Michael Somos, May 12 2012
a(n) = 5*b(n-2) - 21*b(n-3) + 19*b(n-4) - 2*b(n-5), for n >= 0, with b(n) = A094256(n), for n >= -5. See a comment in A094256 for this offset, and the above comment. - Wolfdieter Lang, Mar 28 2020

A094803 Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 8 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 1, s(2n) = 3.

Original entry on oeis.org

1, 3, 9, 28, 90, 296, 988, 3328, 11272, 38304, 130416, 444544, 1516320, 5174144, 17659840, 60282880, 205795456, 702583296, 2398676736, 8189409280, 27960021504, 95460743168, 325921881088, 1112763940864, 3799207806976, 12971294957568, 44286747439104, 151204366286848
Offset: 1

Views

Author

Herbert Kociemba, Jun 11 2004

Keywords

Comments

In general, a(n) = (2/m)*Sum_{r=1..m-1} sin(r*j*Pi/m)*sin(r*k*Pi/m)*(2*cos(r*Pi/m))^(2n)) counts (s(0), s(1), ..., s(2n)) such that 0 < s(i) < m and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = j, s(2n) = k.
Counts all paths of length (2*n+1), n >= 0, starting and ending at the initial node and ending at the nodes 1, 2, 3, 4 and 5 on the path graph P_7, see the Maple program. - Johannes W. Meijer, May 29 2010

Crossrefs

Programs

  • Maple
    with(GraphTheory): G:=PathGraph(7): A:= AdjacencyMatrix(G): nmax:=25; n2:=2*nmax: for n from 0 to n2 do B(n):=A^n; a(n):=add(B(n)[1,k],k=1..5); od: seq(a(2*n+1),n=0..nmax-1); # Johannes W. Meijer, May 29 2010
  • Mathematica
    f[n_] := FullSimplify[ TrigToExp[(1/4)Sum[ Sin[Pi*k/8]Sin[3Pi*k/8](2Cos[Pi*k/8])^(2n), {k, 1, 7}]]]; Table[ f[n], {n, 25}] (* Robert G. Wilson v, Jun 18 2004 *)
    Rest@ CoefficientList[Series[-x (1 - 3 x + x^2)/((2 x - 1)*(2 x^2 - 4 x + 1)), {x, 0, 25}], x] (* Michael De Vlieger, Aug 04 2021 *)

Formula

a(n) = (1/4)*Sum_{k=1..7} sin(Pi*k/8)*sin(3*Pi*k/8)*(2*cos(Pi*k/8))^(2n).
a(n) = 6*a(n-1) - 10*a(n-2) + 4*a(n-3).
G.f.: -x*(1 - 3*x + x^2)/((2*x - 1)*(2*x^2 - 4*x + 1)).
E.g.f.: (2*sinh(x)^2 + sinh(2*x) + sqrt(2)*exp(2*x)*sinh(sqrt(2)*x))/4. - Stefano Spezia, Jun 14 2023

A217257 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 1 or if k-n >= 7, T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,3) = T(0,4) = T(0,5) = T(0,6) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 5, 0, 0, 0, 1, 5, 9, 5, 0, 0, 0, 0, 6, 14, 14, 0, 0, 0, 0, 0, 6, 20, 28, 14, 0, 0, 0, 0, 0, 0, 26, 48, 42, 0, 0, 0, 0, 0, 0, 0, 26, 74, 90, 42, 0, 0, 0, 0, 0, 0, 0, 0, 100, 164, 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 100, 264, 296, 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 364, 560, 428, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 17 2013

Keywords

Comments

A hexagon arithmetic of E. Lucas.

Examples

			Square array begins:
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=0
0, 1, 2, 3, 4, 5, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=1
0, 0, 2, 5, 9, 14, 20, 26, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=2
0, 0, 0, 5, 14, 28, 48, 74, 100, 100, 0, 0, 0, 0, 0, 0, 0, ... row n=3
0, 0, 0, 0, 14, 42, 90, 162, 264, 364, 364, 0, 0, 0, 0, 0, ... row n=4
0, 0, 0, 0, 0, 42, 132, 296, 560, 924, 1288, 1288, 0, 0, 0, ... row n=5
...
		

References

  • E. Lucas, Théorie des nombres, A. Blanchard, Paris, 1958, p.89

Crossrefs

Cf. similar sequences: A216230, A216228, A216226, A216238, A216054.

Formula

T(n,n) = A024175(n).
T(n,n+1) = A024175(n+1).
T(n,n+2) = A094803(n+1).
T(n,n+3) = A007070(n).
T(n,n+4) = A094806(n+2).
T(n,n+5) = T(n,n+6) = A094811(n+2).
Sum_{k, 0<=k<=n} T(n-k,k) = A030436(n).

Extensions

a(69) = 0 deleted by Georg Fischer, Oct 16 2021
Showing 1-9 of 9 results.