A120493 Triangle T(n,k) read by rows ; multiply row n of Pascal's triangle (A007318) by A024175(n).
1, 1, 1, 2, 4, 2, 5, 15, 15, 5, 14, 56, 84, 56, 14, 42, 210, 420, 420, 210, 42, 132, 792, 1980, 2640, 1980, 792, 132, 428, 2996, 8988, 14980, 14980, 8988, 2996, 428, 1416, 11328, 39648, 79296, 99120, 79296, 39648, 11328, 1416
Offset: 0
Examples
Triangle begins: 1; 1, 1; 2, 4, 2; 5, 15, 15, 5; 14, 56, 84, 56, 14; 42, 210, 420, 420, 210, 42; 132, 792, 1980, 2640, 1980, 792, 132; 428, 2996, 8988, 14980, 14980, 8988, 2996, 428; 1416, 11328, 39648, 79296, 99120, 79296, 39648, 11328, 1416 ;...
Formula
T(n,k)=6*T(n-1,k)+6*T(n-1,k-1)-10*T(n-2,k)-20*T(n-2,k-1)-10*T(n-2,k-2)+4*T(n-3,k)+12*T(n-3,k-1)+12*T(n-3,k-2)+4*T(n-3,k-3) for n>3, T(0,0)=T(1,0)=T(1,1)=1, T(2,0)=T(2,2)=2, T(2,1)=4, T(3,0)=T(3,3)=5, T(3,1)=T(3,2)=15, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 22 2013
G.f.: (-1 +5*x +5*x*y -6*x^2 -12*x^2*y -6*x^2*y^2 +x^3 +3*x^3*y +3*x^3*y^2 +x^3*y^3)/( (-1+2*x+2*x*y) *(2*x^2*y^2+4*x^2*y+2*x^2-4*x*y-4*x+1) ). - R. J. Mathar, Aug 12 2015
Comments