cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 71 results. Next

A306951 Number of weird numbers (A006037) below 10^n.

Original entry on oeis.org

0, 1, 2, 7, 204, 1765, 15554, 173709, 1756426, 17270452, 172559761
Offset: 1

Views

Author

Amiram Eldar, Mar 17 2019

Keywords

Comments

Benkoski and Erdős proved that the asymptotic density of weird numbers is positive, thus lim_{n->oo} a(n)/10^n = c > 0. Is c = 0.0017...?

Examples

			The only weird number below 100 is 70 which is larger than 10, thus a(1) = 0 and a(2) = 1.
		

Crossrefs

Extensions

a(11) from Amiram Eldar, May 26 2023

A362916 Least weird number (A006037) with exactly n divisors that are weird numbers, or -1 if no such number exists.

Original entry on oeis.org

70, 10430, 1554070, 5681270, 34501908070, 1436692670
Offset: 1

Views

Author

Amiram Eldar, May 26 2023

Keywords

Comments

a(8) = 5702250610, and there are no more terms below 10^11.

Examples

			Table of the weird divisors for the first 6 terms:
  n  a(n)         weird divisors
  -  -----------  ----------------------------------------------
  1  70           70
  2  10430        70, 10430
  3  1554070      70, 10430, 1554070
  4  5681270      70, 19390, 20510, 5681270
  5  34501908070  70, 10430, 1554070, 231556430, 34501908070
  6  1436692670   70, 14770, 32270, 3116470, 6808970, 1436692670
		

Crossrefs

A005100 Deficient numbers: numbers k such that sigma(k) < 2k.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 81, 82, 83, 85, 86
Offset: 1

Views

Author

Keywords

Comments

A number k is abundant if sigma(k) > 2k (cf. A005101), perfect if sigma(k) = 2k (cf. A000396), or deficient if sigma(k) < 2k (this sequence), where sigma(k) is the sum of the divisors of k (A000203).
Also, numbers k such that A033630(k) = 1. - Reinhard Zumkeller, Mar 02 2007
According to Deléglise (1998), the abundant numbers have natural density 0.2474 < A(2) < 0.2480. Since the perfect numbers have density 0, the deficient numbers have density 0.7520 < 1 - A(2) < 0.7526. Thus the n-th deficient number is asymptotic to 1.3287*n < n/(1 - A(2)) < 1.3298*n. - Daniel Forgues, Oct 10 2015
The data begins with 3 runs of 5 consecutive terms, from 1 to 5, 7 to 11 and 13 to 17. The maximal length of a run of consecutive terms is 5 because 6 is a perfect number and its proper multiples are abundant numbers. - Bernard Schott, May 19 2019
If p and q are primes such that phi(p*q) > p+1, then p*q^n is a term in the sequence for all n >= 1 where phi is the Euler totient function. - Amrit Awasthi, Sep 10 2024

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B2, pp. 74-84.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 128.

Crossrefs

Cf. A005101 (abundant), A125499 (even deficient), A247328 (odd deficient), A023196 (complement).
By definition, the weird numbers A006037 are not in this sequence.

Programs

  • Haskell
    a005100 n = a005100_list !! (n-1)
    a005100_list = filter (\x -> a001065 x < x) [1..]
    -- Reinhard Zumkeller, Oct 31 2015
    
  • Maple
    with(numtheory); s := proc(n) local i,j,ans; ans := [ ]; j := 0; for i while jA005100 := proc(n)
        numtheory[sigma](n) < 2*n ;
    end proc:
    A005100 := proc(n)
        option remember;
        local a;
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA005100(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc: # R. J. Mathar, Jul 08 2015
  • Mathematica
    Select[Range[100], DivisorSigma[1, # ] < 2*# &] (* Stefan Steinerberger, Mar 31 2006 *)
  • PARI
    isA005100(n) = (sigma(n) < 2*n) \\ Michael B. Porter, Nov 08 2009
    
  • PARI
    for(n=1, 100, if(sigma(n) < 2*n, print1(n", "))) \\  Altug Alkan, Oct 15 2015
    
  • Python
    from sympy import divisors
    def ok(n): return sum(divisors(n)) < 2*n
    print(list(filter(ok, range(1, 87)))) # Michael S. Branicky, Aug 29 2021
    
  • Python
    from sympy import divisor_sigma
    from itertools import count, islice
    def A005100_gen(startvalue=1): return filter(lambda n:divisor_sigma(n) < 2*n,count(max(startvalue,1))) # generator of terms >= startvalue
    A005100_list = list(islice(A005100_gen(),20)) # Chai Wah Wu, Jan 14 2022

Formula

A001065(a(n)) < a(n). - Reinhard Zumkeller, Oct 31 2015

Extensions

More terms from Stefan Steinerberger, Mar 31 2006

A005231 Odd abundant numbers (odd numbers m whose sum of divisors exceeds 2m).

Original entry on oeis.org

945, 1575, 2205, 2835, 3465, 4095, 4725, 5355, 5775, 5985, 6435, 6615, 6825, 7245, 7425, 7875, 8085, 8415, 8505, 8925, 9135, 9555, 9765, 10395, 11025, 11655, 12285, 12705, 12915, 13545, 14175, 14805, 15015, 15435, 16065, 16695, 17325, 17955
Offset: 1

Views

Author

Keywords

Comments

While the first even abundant number is 12 = 2^2*3, the first odd abundant is 945 = 3^3*5*7, the 232nd abundant number.
Schiffman notes that 945+630k is in this sequence for all k < 52. Most of the first initial terms are of the form. Among the 1996 terms below 10^6, 1164 terms are of that form, and only 26 terms are not divisible by 5, cf. A064001. - M. F. Hasler, Jul 16 2016
From M. F. Hasler, Jul 28 2016: (Start)
Any multiple of an abundant number is again abundant, see A006038 for primitive terms, i.e., those which are not a multiple of an earlier term.
An odd abundant number must have at least 3 distinct prime factors, and 5 prime factors when counted with multiplicity (A001222), whence a(1) = 3^3*5*7. To see this, write the relative abundancy A(N) = sigma(N)/N = sigma[-1](N) as A(Product p_i^e_i) = Product (p_i-1/p_i^e_i)/(p_i-1) < Product p_i/(p_i-1).
See A115414 for terms not divisible by 3, A064001 for terms not divisible by 5, A112640 for terms coprime to 5*7, and A047802 for other generalizations.
As of today, we don't know of a difference between this set S of odd abundant numbers and the set S' of odd semiperfect numbers: Elements of S' \ S would be perfect (A000396), and elements of S \ S' would be weird (A006037), but no odd weird or perfect number is known. (End)
For any term m in this sequence, A064989(m) is also an abundant number (in A005101), and for any term x in A115414, A064989(x) is in this sequence. If there are no odd perfect numbers, then applying A064989 to these terms and sorting into ascending order gives A337386. - Antti Karttunen, Aug 28 2020
There exist infinitely many terms m such that 2*m+1 is also a term. An example of such a term is given by m = 985571808130707987847768908867571007187. - Max Alekseyev, Nov 16 2023

References

  • W. Dunham, Euler: The Master of Us All, The Mathematical Association of America Inc., Washington, D.C., 1999, p. 13.
  • R. K. Guy, Unsolved Problems in Number Theory, B2.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 128.

Crossrefs

Programs

  • Maple
    A005231 := proc(n) option remember ; local a ; if n = 1 then 945 ; else for a from procname(n-1)+2 by 2 do if numtheory[sigma](a) > 2*a then return a; end if; end do: end if; end proc: # R. J. Mathar, Mar 20 2011
  • Mathematica
    fQ[n_] := DivisorSigma[1, n] > 2n; Select[1 + 2Range@ 9000, fQ] (* Robert G. Wilson v, Mar 20 2011 *)
  • PARI
    je=[]; forstep(n=1,15000,2, if(sigma(n)>2*n, je=concat(je,n))); je
    
  • PARI
    is_A005231(n)={bittest(n,0)&&sigma(n)>2*n} \\ M. F. Hasler, Jul 28 2016
    
  • PARI
    list(lim)=my(v=List()); forfactored(n=945,lim\1, if(n[2][1,1]>2 && sigma(n,-1)>2, listput(v,n[1]))); Vec(v) \\ Charles R Greathouse IV, Apr 21 2022

Formula

a(n) ~ k*n for some constant k (perhaps around 500). - Charles R Greathouse IV, Apr 21 2022
482.8 < k < 489.8 (based on density bounds by Kobayashi et al., 2009). - Amiram Eldar, Jul 17 2022

Extensions

More terms from James Sellers

A033630 Number of partitions of n into distinct divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 8, 1, 1, 1, 4, 1, 3, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 35, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 2, 1, 7, 1, 1, 1, 26, 1, 1, 1, 2, 1, 24, 1, 1, 1, 1, 1, 22, 1, 1, 1, 3
Offset: 0

Views

Author

Keywords

Examples

			a(12) = 3 because we have the partitions [12], [6, 4, 2], and [6, 3, 2, 1].
		

Crossrefs

Programs

  • Haskell
    a033630 0 = 1
    a033630 n = p (a027750_row n) n where
       p _  0 = 1
       p [] _ = 0
       p (d:ds) m = if d > m then 0 else p ds (m - d) + p ds m
    -- Reinhard Zumkeller, Feb 23 2014, Apr 04 2012, Oct 27 2011
  • Maple
    with(numtheory): a:=proc(n) local div, g, gser: div:=divisors(n): g:=product(1+x^div[j],j=1..tau(n)): gser:=series(g,x=0,105): coeff(gser,x^n): end: seq(a(n),n=1..100); # Emeric Deutsch, Mar 30 2006
    # second Maple program:
    with(numtheory):
    a:= proc(n) local b, l; l:= sort([(divisors(n))[]]):
          b:= proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0,
                 b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i-1))))
              end; forget(b):
          b(n, nops(l))
        end:
    seq(a(n), n=0..100); # Alois P. Heinz, Feb 05 2014
  • Mathematica
    A033630 = Table[SeriesCoefficient[Series[Times@@((1 + z^#) & /@ Divisors[n]), {z, 0, n}], n ], {n, 512}] (* Wouter Meeussen *)
    A033630[n_] := f[n, n, 1]; f[n_, m_, k_] := f[n, m, k] = If[k <= m, f[n, m, k + 1] + f[n, m - k, k + 1] * Boole[Mod[n, k] == 0], Boole[m == 0]]; Array[A033630, 101, 0] (* Jean-François Alcover, Jul 29 2015, after Reinhard Zumkeller *)

Formula

a(n) = A065205(n) + 1.
a(A005100(n)) = 1; a(A005835(n)) > 1. - Reinhard Zumkeller, Mar 02 2007
a(n) = f(n, n, 1) with f(n, m, k) = if k <= m then f(n, m, k + 1) + f(n, m - k, k + 1)*0^(n mod k) else 0^m. - Reinhard Zumkeller, Dec 11 2009
a(n) = [x^n] Product_{d|n} (1 + x^d). - Ilya Gutkovskiy, Jul 26 2017
a(n) = 1 if n is deficient (A005100) or weird (A006037). a(n) = 2 if n is perfect (A000396). - Alonso del Arte, Sep 24 2017

Extensions

More terms from Reinhard Zumkeller, Apr 21 2003

A005835 Pseudoperfect (or semiperfect) numbers n: some subset of the proper divisors of n sums to n.

Original entry on oeis.org

6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 48, 54, 56, 60, 66, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260, 264
Offset: 1

Views

Author

Keywords

Comments

In other words, some subset of the numbers { 1 <= d < n : d divides n } adds up to n. - N. J. A. Sloane, Apr 06 2008
Also, numbers n such that A033630(n) > 1. - Reinhard Zumkeller, Mar 02 2007
Deficient numbers cannot be pseudoperfect. This sequence includes the perfect numbers (A000396). By definition, it does not include the weird, i.e., abundant but not pseudoperfect, numbers (A006037).
From Daniel Forgues, Feb 07 2011: (Start)
The first odd pseudoperfect number is a(233) = 945.
An empirical observation (from the graph) is that it seems that the n-th pseudoperfect number would be asymptotic to 4n, or equivalently that the asymptotic density of pseudoperfect numbers would be 1/4. Any proof of this? (End)
A065205(a(n)) > 0; A210455(a(n)) = 1. - Reinhard Zumkeller, Jan 21 2013
Deléglise (1998) shows that abundant numbers have asymptotic density < 0.2480, resolving the question which he attributes to Henri Cohen of whether the abundant numbers have density greater or less than 1/4. The density of pseudoperfect numbers is the difference between the densities of abundant numbers (A005101) and weird numbers (A006037), since the remaining integers are perfect numbers (A000396), which have density 0. Using the first 22 primitive pseudoperfect numbers (A006036) and the fact that every multiple of a pseudoperfect number is pseudoperfect it can be shown that the density of pseudoperfect numbers is > 0.23790. - Jaycob Coleman, Oct 26 2013
The odd terms of this sequence are given by the odd abundant numbers A005231, up to hypothetical (so far unknown) odd weird numbers (A006037). - M. F. Hasler, Nov 23 2017
The term "pseudoperfect numbers" was coined by Sierpiński (1965). The alternative term "semiperfect numbers" was coined by Zachariou and Zachariou (1972). - Amiram Eldar, Dec 04 2020

Examples

			6 = 1+2+3, 12 = 1+2+3+6, 18 = 3+6+9, etc.
70 is not a member since the proper divisors of 70 are {1, 2, 5, 7, 10, 14, 35} and no subset adds to 70.
		

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, Section B2, pp. 74-75.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 144.

Crossrefs

Subsequence of A023196; complement of A136447.
See A136446 for another version.
Cf. A109761 (subsequence).

Programs

  • Haskell
    a005835 n = a005835_list !! (n-1)
    a005835_list = filter ((== 1) . a210455) [1..]
    -- Reinhard Zumkeller, Jan 21 2013
  • Maple
    with(combinat):
    isA005835 := proc(n)
        local b, S;
        b:=false;
        S:=subsets(numtheory[divisors](n) minus {n});
        while not S[finished] do
            if convert(S[nextvalue](), `+`)=n then
                b:=true;
                break
            end if ;
        end do;
        b
    end proc:
    for n from 1 do
        if isA005835(n) then
            print(n);
        end if;
    end do: # Walter Kehowski, Aug 12 2005
  • Mathematica
    A005835 = Flatten[ Position[ A033630, q_/; q>1 ] ] (* Wouter Meeussen *)
    pseudoPerfectQ[n_] := Module[{divs = Most[Divisors[n]]}, MemberQ[Total/@Subsets[ divs, Length[ divs]], n]]; A005835 = Select[Range[300],pseudoPerfectQ] (* Harvey P. Dale, Sep 19 2011 *)
    A005835 = {}; n = 0; While[Length[A005835] < 100, n++; d = Most[Divisors[n]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c > 0, AppendTo[A005835, n]]]; A005835 (* T. D. Noe, Dec 29 2011 *)
  • PARI
    is_A005835(n, d=divisors(n)[^-1], s=vecsum(d), m=#d)={ m||return; while(d[m]>n, s-=d[m]; m--||return); d[m]==n || if(nA005835(n-d[m], d, s-d[m], m-1) || is_A005835(n, d, s-d[m], m-1), n==s)} \\ Returns nonzero iff n is the sum of a subset of d, which defaults to the set of proper divisors of n. Improved using more recent PARI syntax by M. F. Hasler, Jul 15 2016, Jul 27 2016. NOTE: This function is also used (with 2nd optional arg) in A136446, A122036 and possibly in A006037. - M. F. Hasler, Jul 28 2016
    for(n=1,1000,is_A005835(n)&&print1(n",")) \\ M. F. Hasler, Apr 06 2008
    

Extensions

Better description and more terms from Jud McCranie, Oct 15 1997

A023196 Nondeficient numbers: numbers k such that sigma(k) >= 2k; union of A000396 and A005101.

Original entry on oeis.org

6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252
Offset: 1

Views

Author

Keywords

Comments

Also called the non-deficient numbers.
If k is a term, so is every positive multiple of k. The "primitive" terms form A006039.
The sequence of numbers k that give local minima for A004125, i.e., such that A004125(k-1) > A004125(k) and A004125(k) < A004125(k+1) coincides with this sequence for the first 1014 terms. Then there appears 4095 which is a term of A023196 but is not a local minimum. - Max Alekseyev, Jan 26 2005
Also, union of pseudoperfect and weird numbers. Cf. A005835, A006037. - Franklin T. Adams-Watters, Mar 29 2006
k is in the sequence if and only if A004125(k-1) > A004125(k). - Jaycob Coleman, Mar 31 2014
Like the abundant numbers, this sequence has density between 0.2474 and 0.2480, see A005101. - Charles R Greathouse IV, Nov 30 2022

Crossrefs

Programs

A002975 Primitive weird numbers: weird numbers with no proper weird divisors.

Original entry on oeis.org

70, 836, 4030, 5830, 7192, 7912, 9272, 10792, 17272, 45356, 73616, 83312, 91388, 113072, 243892, 254012, 338572, 343876, 388076, 519712, 539744, 555616, 682592, 786208, 1188256, 1229152, 1713592, 1901728, 2081824, 2189024, 3963968, 4128448
Offset: 1

Views

Author

Keywords

Comments

Sidney Kravitz notes that a(21) = 539744; it was misprinted as 539774 in the Benkoski & Erdős article. - Charles R Greathouse IV, Apr 04 2012
It appears that a weird number is primitive iff, divided by its largest prime factor, it is not weird. Is there a simple proof for this? - M. F. Hasler, Aug 20 2014 [The comment below does not answer this question.]
Yes, any primitive weird number, pwn, multiplied by any prime > sigma_1(pwn) is also weird. - Robert G. Wilson v, Jun 09 2015
A proper subsequence of A006037 and A091191. - Robert G. Wilson v, May 25 2015
Number of terms < 10^n: 0, 1, 2, 7, 13, 24, 48, 85, 152, 276, 499, 881, ..., . - Robert G. Wilson v, Jun 21 2017
The primitive weird number (pwn) 176405960704 is the least term which has as its abundance a pwn. Two other terms are 81152249741312, 14327148694372352. - Robert G. Wilson v, Sep 22 2017
Primitive weird numbers == 2 (mod 4): {70, 4030, 5830, 4199030, 1550860550, 66072609790, ...}. All the terms in A258374 appear so far. - Robert G. Wilson v, Nov 21 2015
See A258882 (and A258333) for terms of the form a(n)=2^k*p*q and A258401 for all other terms, with subsets A258883 (a(n)=2^k*p*q*r), A258884 (a(n)=2^k*p*q*r*s), A258885 (six distinct prime factors). A258374 and A258375 list the smallest terms with n prime factors (with / without counting multiplicity). - M. F. Hasler, Jul 12 2016
Sequence A273815 lists terms with nonsquarefree odd part, by definition excluded in A258883 and A258884. - M. F. Hasler, Feb 18 2018
Let n be a weird number and d be a divisor of n. If n/d is not weird, then either it is deficient or it is pseudoperfect. But if n/d is pseudoperfect, then multiplying the subset of the divisors of n/d that sums to n/d by d gives a solution for n, contradicting the assumption that n is weird. Therefore, n/d must be deficient. Of all the prime factors of n contributing to sigma(n)/n, the largest prime will contribute the least, and so if n/gpf(n) is deficient, then n/d is deficient for all divisors d of n, and n is a primitive weird number. - Charlie Neder, Oct 08 2018
The second part of the above reasoning is incorrect: gpf(n) may contribute more to sigma(n)/n than a smaller prime factor. For example, for n = 24, we have n/3 deficient, but n/2 abundant; for n = 350, n/7 is deficient but n/5 is abundant. - M. F. Hasler, Jan 25 2020

Examples

			10430 = A006037(8) is weird but not primitive weird because it has the proper weird divisor 70 = A006037(1).
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, B2.
  • R. Honsberger, Mathematical Gems, M.A.A., 1973, p. 113.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    (* first do *) << Combinatorica` (* then *) fQ[n_] := Block[{d = Most@ Divisors@ n, l = 2^(DivisorSigma[0, n] - 1), i = 1}, i = 1; While[i < l && Plus @@ NthSubset[i, d] != n, i++ ]; i == l]; lst = {}; Do[m = n; If[ Mod[n, 6] != 0 && DivisorSigma[1, n] > 2 n && Union[ Mod[ n, Join[lst, {n + 1}]]][[1]] != 0 && fQ@n, AppendTo[lst, n]; Print@n], {n, 2, 42000000, 2}] (* Robert G. Wilson v, Aug 04 2009 *)
    (* Input: Range of even numbers --- Output: Primitive weird numbers *)
    Block[{$RecursionLimit = Infinity},
      subOfSum[ss_, kk_, rr_] :=
       Module[{s = ss, k = kk, r = rr},
        If[s + w[[k]] >= mm && s + w[[k]] <= m, t = False;
         Goto[done] (* Found *),
         If[s + w[[k]] + w[[k + 1]] <= m,
          subOfSum[s + w[[k]], k + 1, r - w[[k]]]];
         If[s + r - w[[k]] >= m && s + w[[k + 1]] <= m,
          subOfSum[s, k + 1, r - w[[k]] ]]]; t]; (* end subOfSum *)
      greedyQ[ab_] := Module[{abn = ab, v, sum, s, j, jj, k}, tt = False;
        jj = Length[w]; (* start search *)
        Do[s = r; sum = 0; Do[v = w[[j]]; sum = sum + v;
          If[sum > abn, sum = sum - v; Goto[nxt]];
          If[sum == abn, tt = True; Goto[doneG]]; s = s - v;
          Label[nxt], {j, jj, 1, -1}];
         jj = jj - 1, {k, 1, jj - 1}]; Label[doneG];
        (* True means found, False not found *) tt]; (* end greedyQ *)
      cnt = 0;
      Do[ If[ Mod[n, 3] == 0, Goto[agn]]; r = DivisorSigma[1, n];
       m = r - 2*n;
       If[m > 0, fi = FactorInteger[n]; largestP = fi[[Length[fi]]][[1]];
        nn = n/largestP; If[m > 2*nn || Length[fi] < 3, Goto[agn]];
        If[DivisorSigma[1, nn] > 2*nn, Goto[agn]]; t = True; r = r - n;
        ww = Divisors[n]; lenW = Length[ww];
        Do[ If[ ww[[i]] <= m, w = Drop[ww, i - lenW]; Break[],
          r = r - ww[[i]]], {i, lenW - 1, 1, -1}];
        If[r >= m,
         If[ greedyQ[m], t = False, (* Powers of 2 dropped *)
          exp2 = fi[[1]][[2]]; sig2 = 2^(exp2 + 1) - 1; mm = m - sig2;
          lenW = Length[w]; ww = {};
          If[exp2 > 1,
           Do[ Do[ If[ w[[i]] == 2^ii, ww = AppendTo[ww, w[[i]]]],
          {i, 1, lenW}], {ii, 0, exp2}];
            w = Complement[w, ww]
           (* end T if *), w = Drop[w, 2]];
          (* end Pwr2 *) t = subOfSum[0, 1, r]]]; Label[done];
        If[t, Print[++cnt, "   ", n, "  ", t]]];
       Label[agn], {n, 2, 10000000, 2}]]
    (* from Brent Baughn via http://mathematica.stackexchange.com/questions/73301/calculating-weird-numbers, Robert G. Wilson v, Nov 21 2015 *)
  • PARI
    is_A002975(n)=is_A006037(n)&&!fordiv(n,d,!bittest(d,0)&&dA006037(d)&&return) \\ M. F. Hasler, Jan 07 2014

Extensions

More terms from Jud McCranie, Oct 21 2001
One more term from Robert G. Wilson v, Aug 04 2009
a(1)-a(123) double-checked by M. F. Hasler, Jan 07 2014
Edited by M. F. Hasler, Jul 12 2016

A006038 Odd primitive abundant numbers.

Original entry on oeis.org

945, 1575, 2205, 3465, 4095, 5355, 5775, 5985, 6435, 6825, 7245, 7425, 8085, 8415, 8925, 9135, 9555, 9765, 11655, 12705, 12915, 13545, 14805, 15015, 16695, 18585, 19215, 19635, 21105, 21945, 22365, 22995, 23205, 24885, 25935, 26145, 26565, 28035, 28215
Offset: 1

Views

Author

Keywords

Comments

Dickson proves that there are only a finite number of odd primitive abundant numbers having n distinct prime factors. Sequence A188342 lists the smallest such numbers. - T. D. Noe, Mar 28 2011
Sequence A188439 sorts the numbers in this sequence by the number of distinct prime factors. Eight numbers have exactly three prime factors; 576 have exactly four prime factors. - T. D. Noe, Apr 04 2011
Any multiple of an abundant number (A005101) is again an abundant number. Primitive abundant numbers (A091191) are those not of this form, i.e., without an abundant proper divisor. We don't know any odd perfect number (A000396), so the (odd) terms here have only deficient proper divisors (A071395), and their prime factors p are less than sigma(n/p)/deficiency(n/p). See A005231 (odd abundant numbers) for an explanation why all terms have at least 3 distinct prime factors, and 5 prime factors when counted with multiplicity (A001222), whence a(1) = 3^3*5*7. All known terms are semiperfect (A005835, and thus in A006036): no odd weird number (A006037) is known, but if it exists, the smallest one is in this sequence. - M. F. Hasler, Jul 28 2016
So far, a(173) = 351351 is the only known term of A122036, i.e., which can't be written as sum of its proper divisors > 1. - M. F. Hasler, Jan 26 2020

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005101, A005231. Subsequence of A091191.
Cf. A000203, A027751, A379949 (subsequence of square terms).

Programs

  • Haskell
    a006038 n = a006038_list !! (n-1)
    a006038_list = filter f [1, 3 ..] where
       f x = sum pdivs > x && all (<= 0) (map (\d -> a000203 d - 2 * d) pdivs)
             where pdivs = a027751_row x
    -- Reinhard Zumkeller, Jan 31 2014
  • Maple
    isA005101 := proc(n) is(numtheory[sigma](n) > 2*n ); end proc:
    isA005100 := proc(n) is(numtheory[sigma](n) < 2*n ); end proc:
    isA006038 := proc(n) local d; if type(n,'odd') and isA005101(n) then for d in numtheory[divisors](n) minus {1,n} do if not isA005100(d) then return false; end if; end do: return true;else false; end if; end proc:
    n := 1 ; for a from 1 by 2 do if isA006038(a) then printf("%d %d\n",n,a) ; n := n+1 ; end if; end do: # R. J. Mathar, Mar 28 2011
  • Mathematica
    t = {}; n = 1; While[Length[t] < 50, n = n + 2; If[DivisorSigma[1, n] > 2 n && Intersection[t, Divisors[n]] == {}, AppendTo[t, n]]]; t (* T. D. Noe, Mar 28 2011 *)
  • PARI
    is(n)=n%2 && sumdiv(n,d,sigma(d,-1)>2)==1 \\ Charles R Greathouse IV, Jun 10 2013
    
  • PARI
    is_A006038(n)=bittest(n,0) && sigma(n)>2*n && !for(i=1,#f=factor(n)[,1],sigma(n\f[i],-1)>2&&return) \\ More than 5 times faster. - M. F. Hasler, Jul 28 2016
    

A064771 Let S(n) = set of divisors of n, excluding n; sequence gives n such that there is a unique subset of S(n) that sums to n.

Original entry on oeis.org

6, 20, 28, 78, 88, 102, 104, 114, 138, 174, 186, 222, 246, 258, 272, 282, 304, 318, 354, 366, 368, 402, 426, 438, 464, 474, 490, 496, 498, 534, 572, 582, 606, 618, 642, 650, 654, 678, 748, 762, 786, 822, 834, 860, 894, 906, 940, 942, 978, 1002, 1014, 1038
Offset: 1

Views

Author

Jonathan Ayres (jonathan.ayres(AT)btinternet.com), Oct 19 2001

Keywords

Comments

Perfect numbers (A000396) are a proper subset of this sequence. Weird numbers (A006037) are numbers whose proper divisors sum to more than the number, but no subset sums to the number.
Odd elements are rare: the first few are 8925, 32445, 351351, 442365; there are no more below 100 million. See A065235 for more details.
A065205(a(n)) = 1. - Reinhard Zumkeller, Jan 21 2013

Examples

			Proper divisors of 20 are 1, 2, 4, 5 and 10. {1,4,5,10} is the only subset that sums to 20, so 20 is in the sequence.
		

Crossrefs

A005835 gives n such that some subset of S(n) sums to n. Cf. A065205.
Cf. A006037, A065205, A378448 (characteristic function).
Subsequences: A000396, A065235 (odd terms), A378519, A378530.
Cf. A027751.

Programs

  • Haskell
    a064771 n = a064771_list !! (n-1)
    a064771_list = map (+ 1) $ elemIndices 1 a065205_list
    -- Reinhard Zumkeller, Jan 21 2013
    
  • Maple
    filter:= proc(n)
      local P,x,d;
      P:= mul(x^d+1, d = numtheory:-divisors(n) minus {n});
      coeff(P,x,n) = 1
    end proc:
    select(filter, [$1..2000]); # Robert Israel, Sep 25 2024
  • Mathematica
    okQ[n_]:= Module[{d=Most[Divisors[n]]}, SeriesCoefficient[Series[ Product[ 1+x^i, {i, d}], {x, 0, n}], n] == 1];Select[ Range[ 1100],okQ] (* Harvey P. Dale, Dec 13 2010 *)
  • Python
    from sympy import divisors
    def isok(n):
        dp = {0: 1}
        for d in divisors(n)[:-1]:
            u = {}
            for k in dp.keys():
                if (s := (d + k)) <= n:
                    u[s] = dp.get(s, 0) + dp[k]
                    if s == n and u[s] > 1:
                        return False
            for k,v in u.items():
                dp[k] = v
        return dp.get(n, 0) == 1
    print([n for n in range(1, 1039) if isok(n)]) # Darío Clavijo, Sep 17 2024

Extensions

More terms from Don Reble, Jud McCranie and Naohiro Nomoto, Oct 22 2001
Previous Showing 11-20 of 71 results. Next