cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A161702 a(n) = (-n^3 + 9n^2 - 5n + 3)/3.

Original entry on oeis.org

1, 2, 7, 14, 21, 26, 27, 22, 9, -14, -49, -98, -163, -246, -349, -474, -623, -798, -1001, -1234, -1499, -1798, -2133, -2506, -2919, -3374, -3873, -4418, -5011, -5654, -6349, -7098, -7903, -8766, -9689, -10674, -11723, -12838, -14021, -15274
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Comments

{a(k): 0 <= k < 4} = divisors of 14:
a(n) = A027750(A006218(13) + k + 1), 0 <= k < A000005(14).

Examples

			Differences of divisors of 14 to compute the coefficients of their interpolating polynomial, see formula:
  1     2     7    14
     1     5     7
        4     2
          -2
		

Crossrefs

Programs

Formula

a(n) = C(n,0) + C(n,1) + 4*C(n,2) - 2*C(n,3).
G.f.: (1-2*x+5*x^2-6*x^3)/(1-x)^4. - Colin Barker, Jan 08 2012
a(0)=1, a(1)=2, a(2)=7, a(3)=14, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Jun 15 2013

A161703 a(n) = (4*n^3 - 12*n^2 + 14*n + 3)/3.

Original entry on oeis.org

1, 3, 5, 15, 41, 91, 173, 295, 465, 691, 981, 1343, 1785, 2315, 2941, 3671, 4513, 5475, 6565, 7791, 9161, 10683, 12365, 14215, 16241, 18451, 20853, 23455, 26265, 29291, 32541, 36023, 39745, 43715, 47941, 52431, 57193, 62235, 67565, 73191, 79121
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Comments

{a(k): 0 <= k < 4} = divisors of 15:
a(n) = A027750(A006218(14) + k + 1), 0 <= k < A000005(15).

Examples

			Differences of divisors of 15 to compute the coefficients of their interpolating polynomial, see formula:
  1     3     5    15
     2     2    10
        0     8
           8
		

Crossrefs

Programs

Formula

a(n) = C(n,0) + 2*C(n,1) + 8*C(n,3).
G.f.: (1-x-x^2+9*x^3)/(1-x)^4. - Colin Barker, Jan 08 2012

A161711 a(n) = (-4*n^3 + 27*n^2 - 20*n + 3)/3.

Original entry on oeis.org

1, 2, 13, 26, 33, 26, -3, -62, -159, -302, -499, -758, -1087, -1494, -1987, -2574, -3263, -4062, -4979, -6022, -7199, -8518, -9987, -11614, -13407, -15374, -17523, -19862, -22399, -25142, -28099, -31278, -34687, -38334, -42227, -46374, -50783
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Comments

{a(k): 0 <= k < 4} = divisors of 26:
a(n) = A027750(A006218(25) + k + 1), 0 <= k < A000005(26).

Examples

			Differences of divisors of 26 to compute the coefficients of their interpolating polynomial, see formula:
  1     2    13    26
     1    11    13
       10     2
          -8
		

Crossrefs

Programs

  • Magma
    [(-4*n^3 + 27*n^2 - 20*n + 3)/3: n in [0..40]]; // Vincenzo Librandi, Jul 17 2011
    
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{1,2,13,26},40] (* Harvey P. Dale, Jul 02 2017 *)
  • PARI
    x='x+O('x^50); Vec((1-2*x+11*x^2-18*x^3)/(1-x)^4) \\ G. C. Greubel, Jul 16 2017

Formula

a(n) = C(n,0) + C(n,1) + 10*C(n,2) - 8*C(n,3).
G.f.: (1-2*x+11*x^2-18*x^3)/(1-x)^4. - Bruno Berselli, Jul 17 2011

A008860 a(n) = Sum_{k=0..7} binomial(n,k).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 255, 502, 968, 1816, 3302, 5812, 9908, 16384, 26333, 41226, 63004, 94184, 137980, 198440, 280600, 390656, 536155, 726206, 971712, 1285624, 1683218, 2182396, 2804012, 3572224, 4514873, 5663890, 7055732
Offset: 0

Views

Author

Keywords

Comments

This is a general comment about sequences: A000012, A000027, A000124, A000125, A000127, A006261, A008859, this sequence, A008861, A008862, A008863. Let j in {1, 2, ..., 11} index these 11 sequences respective to their order above. Then a(n) in each sequence is the number of compositions of (n+1) into j or fewer parts. From this we see that the ordinary generating function for each sequence is Sum_{i=0..j-1} x^i/(1-x)^(i+1). - Geoffrey Critzer, Jan 19 2009
a(n) is the maximal number of regions in 7-space formed by n-1 6-dimensional hypercubes. Also the number of binary words of length n matching the regular expression 1*0*1*0*1*0*1*0*. A000124, A000125, A000127, A006261, A008859 count binary words of the form 0*1*0*, 1*0*1*0*, 0*1*0*1*0*, 1*0*1*0*1*0*, and 0*1*0*1*0*1*0* respectively. - Manfred Scheucher, Jun 22 2023

Examples

			a(8)=255 because there are 255 compositions of 9 into eight or fewer parts. - _Geoffrey Critzer_, Jan 23 2009
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.

Crossrefs

Programs

  • GAP
    List([0..40], n-> Sum([0..7], k-> Binomial(n,k)) ); # G. C. Greubel, Sep 13 2019
  • Haskell
    a008860 = sum . take 8 . a007318_row  -- Reinhard Zumkeller, Nov 24 2012
    
  • Magma
    [&+[Binomial(n, k): k in [0..7]]: n in [0..55]]; // Vincenzo Librandi, May 20 2019
    
  • Maple
    seq(sum(binomial(n,j), j=0..7), n=0..40); # G. C. Greubel, Sep 13 2019
  • Mathematica
    CoefficientList[Series[(1-6x+16x^2-24x^3+22x^4-12x^5+4x^6)/(1-x)^8, {x, 0, 34}], x] (* Georg Fischer, May 19 2019 *)
    Sum[Binomial[Range[41]-1, j-1], {j,8}] (* G. C. Greubel, Sep 13 2019 *)
  • PARI
    a(n)=(n+1)*(n^6-15*n^5+127*n^4-477*n^3+1576*n^2-1212*n+5040)/5040 \\ Charles R Greathouse IV, Dec 07 2011
    
  • Sage
    [binomial(n,1)+binomial(n,3)+binomial(n,5)+binomial(n,7) for n in range(1, 36)] # Zerinvary Lajos, May 17 2009
    
  • Sage
    [sum(binomial(n,k) for k in (0..7)) for n in (0..40)] # G. C. Greubel, Sep 13 2019
    

Formula

a(n) = Sum_{k=1..4} binomial(n+1, 2k-1) = (n^6 - 14*n^5 + 112*n^4 - 350*n^3 + 1099*n^2 + 364*n + 3828)*n/5040 + 1. [Len Smiley's formula for A006261, copied by Frank Ellermann]
G.f.: (1 - 6*x + 16*x^2 - 24*x^3 + 22*x^4 - 12*x^5 + 4*x^6)/(1-x)^8. - Geoffrey Critzer, Jan 19 2009 [Corrected by Georg Fischer, May 19 2019]

A008863 a(n) = Sum_{k=0..10} binomial(n,k).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2047, 4083, 8100, 15914, 30827, 58651, 109294, 199140, 354522, 616666, 1048576, 1744436, 2842226, 4540386, 7119516, 10970272, 16628809, 24821333, 36519556, 53009102, 75973189, 107594213, 150676186, 208791332
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of compositions (ordered partitions) of n+1 into eleven or fewer parts. - Geoffrey Critzer, Jan 24 2009
a(n) is the maximal number of regions in 10-space formed by n-1 9-dimensional hypercubes. Also the number of binary words of length n matching the regular expression 0*1*0*1*0*1*0*1*0*1*0*. A000124, A000125, A000127, A006261, A008859, A008860, A008861, A008862 count binary words of the form 0*1*0*, 1*0*1*0*, 0*1*0*1*0*, 1*0*1*0*1*0*, 0*1*0*1*0*1*0*, 1*0*1*0*1*0*1*0*, 0*1*0*1*0*1*0*1*0* and 1*0*1*0*1*0*1*0*1*0* respectively. - Manfred Scheucher, Jun 23 2023

Examples

			a(11) = 2047 because there are 2^11=2048 compositions of 12 into any size parts but one of the compositions (1+1+...+1=12) has more than eleven parts. - _Geoffrey Critzer_, Jan 24 2009
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.

Crossrefs

Programs

  • GAP
    List([0..40], n-> Sum([0..10], k-> Binomial(n,k)) ); # G. C. Greubel, Sep 13 2019
  • Haskell
    a008863 = sum . take 11 . a007318_row  -- Reinhard Zumkeller, Nov 24 2012
    
  • Magma
    [(&+[Binomial(n,k): k in [0..10]]): n in [0..40]]; // G. C. Greubel, Sep 13 2019
    
  • Maple
    A008863:=n->add(binomial(n,k), k=0..10): seq(A008863(n), n=0..40); # Wesley Ivan Hurt, Apr 28 2017
  • Mathematica
    Table[Sum[Binomial[n, i], {i, 0, 10}], {n, 0, 40}] (* T. D. Noe, Mar 27 2012 *)
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,2,4,8, 16,32,64,128,256,512,1024}, 40] (* Harvey P. Dale, Apr 25 2012 *)
  • PARI
    a(n)=sum(k=0,10,binomial(n,k)) \\ Charles R Greathouse IV, Apr 07 2016
    
  • Python
    A008863_list, m = [], [1, -8, 29, -62, 86, -80, 50, -20, 5, 0, 1]
    for _ in range(10**2):
        A008863_list.append(m[-1])
        for i in range(10):
            m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
    
  • Sage
    [sum(binomial(n,k) for k in (0..10)) for n in (0..40)] # G. C. Greubel, Sep 13 2019
    

Formula

a(n) = Sum_{k=0..5} binomial(n+1, 2k), compare A008859.
From Geoffrey Critzer, Jan 24 2009: (Start)
G.f.: (1 - 9*x + 37*x^2 - 91*x^3 + 148*x^4 - 166*x^5 + 130*x^6 - 70*x^7 + 25*x^8 - 5*x^9 + x^10)/(1-x)^11.
a(n) = (n^10 - 35*n^9 + 600*n^8 - 5790*n^7 + 36813*n^6 - 140595*n^5 + 408050*n^4 - 382060*n^3 + 1368936*n^2 + 2342880*n + 3628800)/10!. (End)
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11); a(0)=1, a(1)=2, a(2)=4, a(3)=8, a(4)=16, a(5)=32, a(6)=64, a(7)=128, a(8)=256, a(9)=512, a(10)=1024. - Harvey P. Dale, Apr 25 2012

A008861 a(n) = Sum_{k=0..8} binomial(n,k).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 511, 1013, 1981, 3797, 7099, 12911, 22819, 39203, 65536, 106762, 169766, 263950, 401930, 600370, 880970, 1271626, 1807781, 2533987, 3505699, 4791323, 6474541, 8656937, 11460949, 15033173, 19548046
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of compositions (ordered partitions) of n+1 into nine or fewer parts. - Geoffrey Critzer, Jan 24 2009
a(n) is the maximal number of regions in 8-space formed by n-1 7-dimensional hypercubes. Also the number of binary words of length n matching the regular expression 0*1*0*1*0*1*0*1*0*. A000124, A000125, A000127, A006261, A008859, A008860 count binary words of the form 0*1*0*, 1*0*1*0*, 0*1*0*1*0*, 1*0*1*0*1*0*, 0*1*0*1*0*1*0*, and 1*0*1*0*1*0*1*0* respectively. - Manfred Scheucher, Jun 22 2023

Examples

			a(9)=511 because all but one (namely 1+1+1+...+1=10) of the 2^9 compositions of 10 are in nine or fewer parts. - _Geoffrey Critzer_, Jan 24 2009
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.

Crossrefs

Programs

  • GAP
    List([0..40], n-> Sum([0..8], k-> Binomial(n,k)) ); # G. C. Greubel, Sep 13 2019
  • Haskell
    a008861 = sum . take 9 . a007318_row -- Reinhard Zumkeller, Nov 24 2012
    
  • Magma
    [(&+[Binomial(n,k): k in [0..8]]): n in [0..40]]; // G. C. Greubel, Sep 13 2019
    
  • Maple
    seq(sum(binomial(n,j), j=0..8), n=0..40); # G. C. Greubel, Sep 13 2019
  • Mathematica
    Sum[Binomial[Range[41]-1, j-1], {j,9}] (* G. C. Greubel, Sep 13 2019 *)
  • PARI
    vector(40, n, sum(j=0,8, binomial(n-1,j))) \\ G. C. Greubel, Sep 13 2019
    
  • Sage
    [sum(binomial(n,k) for k in (0..8)) for n in (0..40)] # G. C. Greubel, Sep 13 2019
    

Formula

a(n) = Sum_{k=0..4} binomial(n+1, 2*k), compare A008859.
From Geoffrey Critzer, Jan 24 2009: (Start)
G.f.: (1 - 7*x + 22*x^2 - 40*x^3 + 46*x^4 - 34*x^5 + 16*x^6 - 4*x^7 + x^8)/(1-x)^9.
a(n) = (n^8 - 20*n^7 + 210*n^6 - 1064*n^5 + 3969*n^4 - 4340*n^3 + 15980*n^2 + 25584*n + 40320)/8!. (End)

A008862 a(n) = Sum_{k=0..9} binomial(n,k).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1023, 2036, 4017, 7814, 14913, 27824, 50643, 89846, 155382, 262144, 431910, 695860, 1097790, 1698160, 2579130, 3850756, 5658537, 8192524, 11698223, 16489546, 22964087, 31621024, 43081973, 58115146, 77663192, 102875128
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of compositions (ordered partitions) of n+1 into ten or fewer parts. - Geoffrey Critzer, Jan 24 2009
a(n) is the maximal number of regions in 9-space formed by n-1 8-dimensional hypercubes. Also the number of binary words of length n matching the regular expression 1*0*1*0*1*0*1*0*1*0*. A000124, A000125, A000127, A006261, A008859, A008860, A008861 count binary words of the form 0*1*0*, 1*0*1*0*, 0*1*0*1*0*, 1*0*1*0*1*0*, 0*1*0*1*0*1*0*, 1*0*1*0*1*0*1*0* and 0*1*0*1*0*1*0*1*0* respectively. - Manfred Scheucher, Jun 23 2023

Examples

			a(10)=1023 because there are (2^10)-1 compositions of 11 into ten or fewer parts. - _Geoffrey Critzer_, Jan 24 2009
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.

Crossrefs

Programs

  • GAP
    List([0..40], n-> Sum([0..9], k-> Binomial(n,k)) ); # G. C. Greubel, Sep 13 2019
  • Haskell
    a008862 = sum . take 10 . a007318_row  -- Reinhard Zumkeller, Nov 24 2012
    
  • Magma
    [(&+[Binomial(n,k): k in [0..9]]): n in [0..40]]; // G. C. Greubel, Sep 13 2019
    
  • Maple
    seq(add(binomial(n,j), j=0..9), n=0..40); # G. C. Greubel, Sep 13 2019
  • Mathematica
    Table[Sum[Binomial[n,k],{k,0,9}],{n,0,40}] (* or *) LinearRecurrence[ {10,-45,120,-210,252,-210,120,-45,10,-1}, {1,2,4,8,16,32,64,128,256, 512}, 40] (* Harvey P. Dale, Mar 18 2012 *)
  • PARI
    vector(40, n, sum(j=0,9, binomial(n-1,j))) \\ G. C. Greubel, Sep 13 2019
    
  • Sage
    [sum(binomial(n,k) for k in (0..9)) for n in (0..40)] # G. C. Greubel, Sep 13 2019
    

Formula

a(n) = Sum_{k=1..5} binomial(n+1, 2*k-1), compare A008860.
From Geoffrey Critzer, Jan 24 2009: (Start)
G.f.: (1 - 8*x + 29*x^2 - 62*x^3 + 86*x^4 - 80*x^5 + 50*x^6 - 20*x^7 + 5*x^8)/(1-x)^10.
a(n) = (n^9 - 27*n^8 + 366*n^7 - 2646*n^6 + 12873*n^5 - 31563*n^4 + 79064*n^3 + 34236*n^2 + 270576*n + 362880)/9!. (End)
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10); a(0)=1, a(1)=2, a(2)=4, a(3)=8, a(4)=16, a(5)=32, a(6)=64, a(7)=128, a(8)=256, a(9)=512. - Harvey P. Dale, Mar 18 2012

A219531 a(n) = Sum_{k=0..11} C(n, k).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4095, 8178, 16278, 32192, 63019, 121670, 230964, 430104, 784626, 1401292, 2449868, 4194304, 7036530, 11576916, 18696432, 29666704, 46295513, 71116846, 107636402, 160645504, 236618693, 344212906, 494889092
Offset: 0

Views

Author

Mokhtar Mohamed, Nov 21 2012

Keywords

Comments

a(n) is the number of compositions (ordered partitions) of n+1 into twelve or fewer parts. a(n) = sum(binomial(n + 1, 2k - 1), for k = 1 .. 6). a(n) is the sum of the first twelve terms in the n-th row of Pascal's triangle.

Crossrefs

Programs

  • GAP
    List([0..40], n-> Sum([0..11], k-> Binomial(n,k)) ); # G. C. Greubel, Sep 13 2019
  • Haskell
    a219531 = sum . take 12 . a007318_row  -- Reinhard Zumkeller, Nov 24 2012
    
  • Magma
    [(&+[Binomial(n,k): k in [0..11]]): n in [0..40]]; // G. C. Greubel, Sep 13 2019
    
  • Maple
    seq(sum(binomial(n,j), j=0..11), n=0..40); # G. C. Greubel, Sep 13 2019
  • Mathematica
    Table[Sum[Binomial[n, k], {k, 0, 11}], {n, 0, 40}] (* T. D. Noe, Nov 23 2012 *)
    LinearRecurrence[{12,-66,220,-495,792,-924,792,-495,220,-66,12,-1},{1,2,4,8,16,32,64,128,256,512,1024,2048},40] (* Harvey P. Dale, Sep 19 2019 *)
  • PARI
    vector(40, n, sum(j=0,11, binomial(n-1,j))) \\ G. C. Greubel, Sep 13 2019
    
  • Python
    A219531_list, m = [], [1, -9, 37, -91, 148, -166, 130, -70, 25, -5, 1, 1]
    for _ in range(10**2):
        A219531_list.append(m[-1])
        for i in range(11):
            m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
    
  • Sage
    [sum(binomial(n,k) for k in (0..11)) for n in (0..40)] # G. C. Greubel, Sep 13 2019
    

Formula

a(n) = 1 + (n^11 - 44*n^10 + 935*n^9 - 11550*n^8 + 94083*n^7 - 497112*n^6 +1870385*n^5 -3920950*n^4 +8550916*n^3 +4429656*n^2 +29400480*n)/11!. a(n) = 2*a(n - 1), for 1 <= n <= 11 with a(0) = 1, a(n) = 2*a(n - 1) - C(n - 1, 11), for n > 11. - Mohamed
G.f.: (1 - 10*x + 46*x^2 - 128*x^3 + 239*x^4 - 314*x^5 + 296*x^6 - 200*x^7 + 95*x^8 - 30*x^9 + 6*x^10)/(1-x)^12. - Mokhtar Mohamed, Nov 23 2012

A256816 T(n,k) = Number of length n+k 0..1 arrays with at most two downsteps in every k consecutive neighbor pairs.

Original entry on oeis.org

4, 8, 8, 16, 16, 16, 32, 32, 32, 32, 63, 64, 64, 64, 64, 120, 124, 128, 128, 128, 128, 219, 229, 245, 256, 256, 256, 256, 382, 402, 442, 484, 512, 512, 512, 512, 638, 673, 753, 856, 956, 1024, 1024, 1024, 1024, 1024, 1080, 1220, 1424, 1656, 1888, 2048, 2048, 2048
Offset: 1

Views

Author

R. H. Hardin, Apr 10 2015

Keywords

Comments

Table starts
....4....8...16....32....63...120...219...382....638...1024...1586...2380
....8...16...32....64...124...229...402...673...1080...1670...2500...3638
...16...32...64...128...245...442...753..1220...1894...2836...4118...5824
...32...64..128...256...484...856..1424..2249...3402...4965...7032...9710
...64..128..256...512...956..1656..2693..4158...6153...8792..12202..16524
..128..256..512..1024..1888..3204..5088..7677..11120..15579..21230..28264
..256..512.1024..2048..3728..6192..9613.14168..20075..27566..36888..48304
..512.1024.2048..4096..7362.11955.18104.26117..36218..48738..64024..82440
.1024.2048.4096..8192.14539.23088.34013.47858..65130..86008.110976.140536
.2048.4096.8192.16384.28712.44617.63928.87338.116104.150906.191620.238932

Examples

			Some solutions for n=4, k=4
..1....1....0....0....0....0....1....0....0....0....0....0....1....0....0....1
..0....0....1....1....0....1....0....1....1....0....0....0....1....0....0....1
..1....1....0....1....0....0....1....0....1....1....1....1....0....1....0....1
..0....1....1....1....0....1....1....1....1....1....0....0....1....1....0....0
..0....1....0....0....1....1....1....1....0....0....1....1....1....1....0....0
..0....1....1....0....1....1....0....0....0....1....0....0....0....1....0....1
..0....0....1....0....1....1....1....0....0....1....1....1....0....0....0....0
..0....1....0....1....1....1....0....1....0....1....0....1....0....1....0....1
		

Crossrefs

Column 1 is A000079(n+1).
Column 2 is A000079(n+2).
Column 3 is A000079(n+3).
Column 4 is A000079(n+4).
Row 1 is A006261(n+1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1)
k=3: a(n) = 2*a(n-1)
k=4: a(n) = 2*a(n-1)
k=5: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -a(n-4) +2*a(n-5) -a(n-6)
k=6: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -a(n-4) +3*a(n-6) -2*a(n-7) -6*a(n-9) +4*a(n-10)
k=7: [order 15]
Empirical for row n:
n=1: a(n) = (1/120)*n^5 + (1/8)*n^3 + (1/2)*n^2 + (41/30)*n + 2
n=2: a(n) = (1/120)*n^5 + (1/24)*n^4 + (3/8)*n^3 - (1/24)*n^2 + (277/60)*n + 3
n=3: a(n) = (1/120)*n^5 + (1/12)*n^4 + (31/24)*n^3 - (31/12)*n^2 + (66/5)*n + 4
n=4: [polynomial of degree 5] for n>2
n=5: [polynomial of degree 5] for n>3
n=6: [polynomial of degree 5] for n>4
n=7: [polynomial of degree 5] for n>5

A059174 Maximal number of regions into which 5-space can be divided by n hyperspheres.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 126, 240, 438, 764, 1276, 2048, 3172, 4760, 6946, 9888, 13770, 18804, 25232, 33328, 43400, 55792, 70886, 89104, 110910, 136812, 167364, 203168, 244876, 293192, 348874, 412736, 485650, 568548, 662424, 768336, 887408, 1020832, 1169870
Offset: 0

Views

Author

N. J. A. Sloane, Feb 15 2001

Keywords

Comments

n hyperspheres divide R^k into at most binomial(n-1, k) + Sum_{i=0..k} binomial(n, i) regions.

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 4.

Crossrefs

Cf. A014206 (dim 2), A046127 (dim 3), A059173 (dim 4), this sequence (dim 5).
Fifth row (k=5) of A059250.
Cf. A006261.

Programs

  • GAP
    Concatenation([1], List([1..40], n-> Binomial(n-1,5) + Sum([0..5], i-> Binomial(n,i)))); # Muniru A Asiru, Dec 18 2018
    
  • Magma
    [1] cat [(n^5-5*n^4+25*n^3+5*n^2+94*n+120)/60: n in [0..40]]; // Vincenzo Librandi, Dec 21 2018
  • Maple
    seq(coeff(series((x^6+3*x^4-6*x^3+7*x^2-4*x+1)/(1-x)^6,x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Dec 18 2018
  • Mathematica
    Join[{1}, Table[((n^5 - 5 n^4 + 25 n^3 + 5 n^2 + 94 n + 120) / 60), {n, 0, 50}]] (* Vincenzo Librandi, Dec 21 2018 *)
  • PARI
    a(n) = binomial(n-1, 5) + sum(i=0, 5, binomial(n, i)); \\ Michel Marcus, Jan 29 2016
    

Formula

a(n) = binomial(n-1, 5) + Sum_{i=0..5} binomial(n, i).
G.f.: (x^6 + 3*x^4 - 6*x^3 + 7*x^2 - 4*x + 1)/(x - 1)^6. - Colin Barker, Oct 06 2012
a(n) = 2*A006261(n-1), for n > 0. - Günter Rote, Dec 18 2018, by elementary manipulations.
E.g.f.: 1 + (1/60)*(120*x + 20*x^3 + x^5)*exp(x). - Franck Maminirina Ramaharo, Dec 21 2018
Previous Showing 21-30 of 38 results. Next