cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 57 results. Next

A056932 Antichains (or order ideals) in the poset 2*2*2*n or size of the distributive lattice J(2*2*2*n).

Original entry on oeis.org

1, 20, 168, 887, 3490, 11196, 30900, 75966, 170379, 354640, 693836, 1288365, 2287844, 3908776, 6456600, 10352796, 16167765, 24660252, 36824128, 53943395, 77656326, 110029700, 153644140, 211691610, 288086175, 387589176, 515950020, 680063833, 888147272
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of order preserving maps from B_3 into [n+1]. a(n) is also the number of length n+1 multichains from bottom to top in J(B_3). See Stanley reference for bijections with description in title. - Geoffrey Critzer, Jan 07 2021

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
  • R. P. Stanley, Enumerative Combinatorics, Volume I, Second Edition, page 256, Proposition 3.5.1.

Crossrefs

Programs

  • Mathematica
    Table[48*Binomial[n+8,8] - 96*Binomial[n+7,7] + 63*Binomial[n+6,6] - 15*Binomial[n+5,5] + Binomial[n+4,4], {n, 0, nn}] (* T. D. Noe, May 29 2012 *)

Formula

a(n) = 48*C(n+8, 8) - 96*C(n+7, 7) + 63*C(n+6, 6) - 15*C(n+5, 5) + C(n+4, 4).
G.f.: (1+11*x+24*x^2+11*x^3+x^4)/(1-x)^9. [Berman and Koehler]

A212232 T(n,k)=Number of 0..2 arrays of length n+2*k-1 with sum no more than 2*k in any length 2k subsequence (=50% duty cycle).

Original entry on oeis.org

6, 50, 14, 435, 124, 31, 3834, 1113, 311, 70, 34001, 10002, 2902, 775, 157, 302615, 89911, 26637, 7596, 1895, 353, 2699598, 808403, 242780, 71427, 19834, 4663, 793, 24121674, 7269626, 2204646, 660796, 191853, 51440, 11518, 1782, 215786649
Offset: 1

Views

Author

R. H. Hardin May 06 2012

Keywords

Comments

Table starts
....6....50....435....3834....34001....302615....2699598....24121674
...14...124...1113...10002....89911....808403....7269626....65380788
...31...311...2902...26637...242780...2204646...19976155...180744711
...70...775...7596...71427...660796...6062948...55360211...503916387
..157..1895..19834..191853..1804448..16740414..154089343..1411275807
..353..4663..51440..514687..4931630..46305966..429886243..3962696059
..793.11518.131950.1376128.13468524.128148456.1200645159.11143104246
.1782.28446.339564.3659968.36711516.354470546.3354267511.31356940932

Examples

			Some solutions for n=3 k=4
..1....2....2....1....2....0....1....2....2....1....1....2....0....0....1....1
..1....0....0....1....1....1....0....2....2....0....0....2....0....1....1....1
..1....2....2....0....0....0....0....1....0....1....0....0....1....0....0....2
..0....0....1....1....1....2....2....1....1....1....0....0....1....0....1....1
..0....1....0....0....1....2....0....1....1....1....0....1....0....1....1....2
..0....0....2....1....1....0....1....1....1....1....1....2....1....0....0....0
..1....1....0....1....1....0....0....0....0....2....2....1....0....2....1....0
..1....1....0....1....0....0....0....0....0....0....2....0....1....1....1....0
..1....1....1....1....1....1....0....1....1....1....2....0....0....1....0....0
..0....1....2....2....2....0....0....2....1....1....1....1....2....1....0....1
		

Crossrefs

Column 1 is A006356(n+1)

A213464 T(n,k)=Number of 0..3 arrays of length n+2*k-1 with sum less than 3*k in any length 2k subsequence (=less than 50% duty cycle).

Original entry on oeis.org

6, 106, 14, 1758, 310, 31, 28722, 5542, 927, 70, 466136, 94238, 18018, 2735, 157, 7536790, 1568984, 319078, 58898, 7803, 353, 121573668, 25829770, 5444644, 1091036, 191573, 22506, 793, 1957953138, 422335348, 91147915, 19105020, 3737885
Offset: 1

Views

Author

R. H. Hardin Jun 12 2012

Keywords

Comments

Table starts
....6....106....1758.....28722.....466136.....7536790....121573668
...14....310....5542.....94238....1568984....25829770....422335348
...31....927...18018....319078....5444644....91147915...1508740928
...70...2735...58898...1091036...19105020...325333429...5451265872
..157...7803..191573...3737885...67329406..1167362677..19808276303
..353..22506..615561..12773955..237475982..4198162231..72188618371
..793..65425.1940673..43399990..836356119.15103463125.263422708979
.1782.190318.6155514.146145812.2935825527.54284048195.961420842175

Examples

			Some solutions for n=3 k=4
..2....0....2....0....0....0....2....0....0....2....0....0....0....2....0....0
..2....2....0....2....1....2....2....0....0....0....0....1....1....2....2....0
..2....1....0....0....0....3....0....0....0....0....0....2....0....1....1....0
..1....3....1....1....0....0....0....2....0....0....2....0....0....1....1....1
..1....1....1....3....2....0....2....2....0....3....3....0....0....1....0....2
..0....1....3....1....2....2....1....2....0....0....0....0....0....2....2....0
..1....0....0....0....1....0....1....0....0....0....1....0....2....1....1....1
..1....1....0....0....1....0....3....0....0....2....0....2....2....0....2....2
..2....0....2....1....3....0....2....1....2....2....1....0....2....2....2....2
..3....3....0....3....0....2....1....3....2....3....2....0....2....1....1....2
		

Crossrefs

Column 1 is A006356(n+1)

A006358 Number of distributive lattices; also number of paths with n turns when light is reflected from 5 glass plates.

Original entry on oeis.org

1, 5, 15, 55, 190, 671, 2353, 8272, 29056, 102091, 358671, 1260143, 4427294, 15554592, 54648506, 191998646, 674555937, 2369942427, 8326406594, 29253473175, 102777312308, 361091343583, 1268635610806, 4457144547354
Offset: 0

Views

Author

Keywords

Comments

Let M denotes the 5 X 5 matrix = row by row (1,1,1,1,1)(1,1,1,1,0)(1,1,1,0,0)(1,1,0,0,0)(1,0,0,0,0) and A(n) the vector (x(n),y(n),z(n),t(n),u(n)) = M^n*A where A is the vector (1,1,1,1,1); then a(n)=y(n). - Benoit Cloitre, Apr 02 2002

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
  • J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.
  • D. E. Knuth, Art of Computer Programming, Vol. 3, Sect. 5.4.3, Column T1.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A038201 (5-wave sequence).

Programs

  • Maple
    A=seq(a.j,j=0..4):grammar1:=[Q4,{ seq(Q.i=Union(Epsilon,seq(Prod(a.j,Q.j),j=4-i..4)),i=0..4), seq(a.j=Z,j=0..4) }, unlabeled]: seq(count(grammar1,size=j),j=0..23); # Zerinvary Lajos, Mar 09 2007
    A006358:=-(z-1)*(z**3-3*z-1)/(-1+3*z+3*z**2-4*z**3-z**4+z**5); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    m = Table[ If[j <= 6-i, 1, 0], {i, 1, 5}, {j, 1, 5}] ; a[n_] := MatrixPower[m, n].Table[1, {5}]; Table[ a[n], {n, 0, 23}][[All, 1]] (* Jean-François Alcover, Dec 08 2011, after Benoit Cloitre *)
    LinearRecurrence[{3,3,-4,-1,1},{1,5,15,55,190},30] (* Harvey P. Dale, Jun 16 2016 *)
  • PARI
    k=5; M(k)=matrix(k,k,i,j,if(1-sign(i+j-k),0,1)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n)
    
  • PARI
    {a(n)=local(p=5);polcoeff(sum(k=0,p-1,(-1)^((k+1)\2)*binomial((p+k-1)\2,k)* (-x)^k)/sum(k=0,p,(-1)^((k+1)\2)*binomial((p+k)\2,k)*x^k+x*O(x^n)),n)}

Formula

a(n) = 3*a(n-1) + 3*a(n-2) - 4*a(n-3) - a(n-4) + a(n-5).
a(n) is asymptotic to z(5)*w(5)^n where w(5) = (1/2)/cos(5*Pi/11) and z(5) is the root 1 < x < 2 of P(5, X) = -1 + 55*X + 847*X^2 - 5324*X^3 - 14641*X^4 + 14641*X^5. - Benoit Cloitre, Oct 16 2002
G.f.: A(x) = (1 + 2*x - 3*x^2 - x^3 + x^4)/(1 - 3*x - 3*x^2 + 4*x^3 + x^4 - x^5). - Paul D. Hanna, Feb 06 2006

Extensions

Alternative description and formula from Jacques Haubrich (jhaubrich(AT)freeler.nl)
More terms from James Sellers, Dec 24 1999

A038196 3-wave sequence starting with 1, 1, 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 11, 14, 25, 31, 56, 70, 126, 157, 283, 353, 636, 793, 1429, 1782, 3211, 4004, 7215, 8997, 16212, 20216, 36428, 45425, 81853, 102069, 183922, 229347, 413269, 515338, 928607, 1157954, 2086561, 2601899, 4688460, 5846414
Offset: 0

Views

Author

Keywords

Comments

The 3-wave sequence with initial values a, b, c is formed by the following construction:
a.......a+b+c............3a+5b+6c...
..b...b+c...a+2b+2c..2a+4b+5c...
....c..........a+2b+3c...

References

  • J. Kappraff, Beyond Measure, World Scientific, Inc. 2002, p. 497.

Crossrefs

a(2n) forms A006356, a(2n+1) ("the middle row") forms A006054. Cf. A038197, A038201, A187070.

Programs

  • PARI
    a(n)=if(n>-1,polcoeff((1+x-x^2)/(1-2*x^2-x^4+x^6)+x*O(x^n),n),if(n<-3,polcoeff((1-x-x^2)/(1-x^2-2*x^4+x^6)+O(x^(-3-n)),-4-n),0))

Formula

a(n) = a(n-1) + a(n-2) if n is odd,
a(n) = a(n-1) + a(n-4) if n is even.
Also: a(n) = 2*a(n-2) + a(n-4) - a(n-6).
G.f.: (1 + x - x^2)/(1 - 2*x^2 - x^4 + x^6).

Extensions

Edited by Floor van Lamoen, Feb 05 2002

A025030 Number of distributive lattices; also number of paths with n turns when light is reflected from 7 glass plates.

Original entry on oeis.org

1, 7, 28, 140, 658, 3164, 15106, 72302, 345775, 1654092, 7911970, 37846314, 181033035, 865951710, 4142180085, 19813648817, 94776329265, 453351783116, 2168556616440, 10373043626906, 49618272850056, 237343357526002
Offset: 0

Views

Author

Jacques Haubrich (jhaubrich(AT)freeler.nl)

Keywords

Comments

Let M(7) be the 7 X 7 matrix: (0,0,0,0,0,0,1)/(0,0,0,0,0,1,1)/(0,0,0,0,1,1,1)/(0,0,0,1,1,1,1)/(0,0,1,1,1,1,1)/(0,1,1,1,1,1,1)/(1,1,1,1,1,1,1) and let v(7) be the vector (1,1,1,1,1,1,1); then v(7)*M(7)^n = (x,y,z,t,u,v,a(n)). - Benoit Cloitre, Sep 29 2002

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.

Crossrefs

Programs

  • Magma
    I:=[1, 7, 28, 140, 658, 3164, 15106]; [n le 7 select I[n] else 4*Self(n-1)+6*Self(n-2)-10*Self(n-3)-5*Self(n-4)+6*Self(n-5)+Self(n-6)-Self(n-7): n in [1..30]]; // Vincenzo Librandi, Apr 22 2012
  • Mathematica
    CoefficientList[Series[(1+3*x-6*x^2-4*x^3+5*x^4+x^5-x^6)/((1-x)*(1+x-x^2)*(1-4*x-4*x^2+x^3+x^4)),{x,0,30}],x] (* Vincenzo Librandi, Apr 22 2012 *)
    LinearRecurrence[{4,6,-10,-5,6,1,-1},{1,7,28,140,658,3164,15106},30] (* Harvey P. Dale, Feb 26 2023 *)
  • PARI
    k=7; M(k)=matrix(k,k,i,j,if(1-sign(i+j-k),0,1)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n)
    

Formula

a(n) = 4*a(n-1) + 6*a(n-2) - 10*a(n-3) - 5*a(n-4) + 6*a(n-5) + a(n-6) - a(n-7).
a(n) is asymptotic to z(7)*w(7)^n where w(7) = (1/2)/cos(7*Pi/15) and z(7) is the root 1 < x < 2 of P(7, X) = 1 - 120*X - 8100*X^2 - 57375*X^3 + 50625*X^4. - Benoit Cloitre, Oct 16 2002
G.f.: (1 + 3*x - 6*x^2 - 4*x^3 + 5*x^4 + x^5 - x^6)/((1 - x)*(1 + x - x^2)*(1 - 4*x - 4*x^2 + x^3 + x^4)). - Colin Barker, Mar 31 2012

Extensions

More terms from Benoit Cloitre, Sep 29 2002

A030112 Number of distributive lattices; also number of paths with n turns when light is reflected from 8 glass plates.

Original entry on oeis.org

1, 8, 36, 204, 1086, 5916, 31998, 173502, 940005, 5094220, 27604798, 149590922, 810627389, 4392774126, 23804329059, 128995094597, 699021261776, 3787979292364, 20526967746120, 111235140046330, 602780523265720, 3266453022809170, 17700829632401740, 95920366069513405
Offset: 0

Views

Author

Jacques Haubrich (jhaubrich(AT)freeler.nl)

Keywords

Comments

Let M(8) be the 8 X 8 matrix (0,0,0,0,0,0,0,1)/(0,0,0,0,0,0,1,1)/(0,0,0,0,0,1,1,1)/(0,0,0,0,1,1,1,1)/(0,0,0,1,1,1,1,1)/(0,0,1,1,1,1,1,1)/(0,1,1,1,1,1,1,1)/(1,1,1,1,1,1,1,1) and let v(8) be the vector (1,1,1,1,1,1,1,1); then v(8)*M(8)^n = (x,y,z,t,u,v, w,a(n)). - Benoit Cloitre, Sep 29 2002
For a k-glass sequence, say a(n,k), a(n,k) is always asymptotic to z(k)*w(k)^n where w(k)=(1/2)/cos(k*Pi/(2k+1)) and it is conjectured that z(k) is the root 1Benoit Cloitre, Oct 16 2002

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.

Crossrefs

Programs

  • Magma
    I:=[1, 8, 36, 204, 1086, 5916, 31998, 173502]; [n le 8 select I[n] else 4*Self(n-1)+10*Self(n-2)-10*Self(n-3)-15*Self(n-4)+6*Self(n-5)+7*Self(n-6)-Self(n-7)-Self(n-8):  n in [1..25]]; // Vincenzo Librandi, Apr 22 2012
  • Maple
    nmax:=20: with(LinearAlgebra): M:=Matrix([[0,0,0,0,0,0,0,1], [0,0,0,0,0,0,1,1], [0,0,0,0,0,1,1,1], [0,0,0,0,1,1,1,1], [0,0,0,1,1,1,1,1], [0,0,1,1,1,1,1,1], [0,1,1,1,1,1,1,1], [1,1,1,1,1,1,1,1]]): v:= Vector[row]([1,1,1,1,1,1,1,1]): for n from 0 to nmax do b:=evalm(v&*M^n): a(n):=b[8] od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Aug 03 2011
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x-x^2)*(1+4*x-4*x^2-x^3+x^4)/(1-4*x-10*x^2+10*x^3+15*x^4-6*x^5-7*x^6+x^7+x^8),{x,0,30}],x] (* Vincenzo Librandi, Apr 22 2012 *)
  • PARI
    k=8; M(k)=matrix(k,k,i,j,if(1-sign(i+j-k),0,1)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n)
    

Formula

a(n) = 4*a(n-1)+ 10*a(n-2)-10*a(n-3)-15*a(n-4)+ 6*a(n-5)+7*a(n-6)-a(n-7)-a(n-8). - Benoit Cloitre, Oct 09 2002
a(n) is asymptotic to z(8)*w(8)^n where w(8)=(1/2)/cos(8*Pi/17) and z(8) is the root 1Benoit Cloitre, Oct 16 2002
G.f.: (1+x)*(1-x-x^2)*(1+4*x-4*x^2-x^3+x^4)/(1-4*x-10*x^2+10*x^3+15*x^4-6*x^5-7*x^6+x^7+x^8). - Colin Barker, Mar 31 2012

Extensions

More terms from Benoit Cloitre, Sep 29 2002
Comment corrected by Johannes W. Meijer, Aug 03 2011

A052534 Expansion of (1-x)*(1+x)/(1-2*x-x^2+x^3).

Original entry on oeis.org

1, 2, 4, 9, 20, 45, 101, 227, 510, 1146, 2575, 5786, 13001, 29213, 65641, 147494, 331416, 744685, 1673292, 3759853, 8448313, 18983187, 42654834, 95844542, 215360731, 483911170, 1087338529, 2443227497, 5489882353, 12335653674
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Pairwise sums of A006356. Cf. A033303, A077850. - Ralf Stephan, Jul 06 2003
Number of (3412, P)-avoiding involutions in S_{n+1}, where P={1342, 1423, 2314, 3142, 2431, 4132, 3241, 4213, 21543, 32154, 43215, 15432, 53241, 52431, 42315, 15342, 54321}. - Ralf Stephan, Jul 06 2003
Number of 31- and 22-avoiding words of length n on alphabet {1,2,3} which do not end in 3 (e.g., at n=3, we have 111, 112, 121, 132, 211, 212, 232, 321 and 332). See A028859, A001519. - Jon Perry, Aug 04 2003
Form the graph with matrix A=[1, 1, 1; 1, 0, 0; 1, 0, 1]. Then the sequence 1,1,2,4,... with g.f. (1-x-x^2)/(1-2x-x^2+x^3) counts closed walks of length n at the degree 3 vertex. - Paul Barry, Oct 02 2004
a(n) is the number of Motzkin (n+1)-sequences whose flatsteps all occur at level <=1 and whose height is <=2. For example, a(5)=45 counts all 51 Motzkin 6-paths except FUUFDD, UFUFDD, UUFDDF, UUFDFD, UUFFDD, UUUDDD (the first five violate the flatstep restriction and the last violates the height restriction). - David Callan, Dec 09 2004
From Paul Barry, Nov 03 2010: (Start)
The g.f. of 1,1,2,4,9,... can be expressed as 1/(1-x/(1-x/(1-x^2))) and as 1/(1-x-x^2/(1-x-x^2)).
The second expression shows the link to the Motzkin numbers. (End)
From Emeric Deutsch, Oct 31 2010: (Start)
a(n) is the number of compositions of n into odd summands when we have two kinds of 1's. Proof: the g.f. of the set S={1,1',3,5,7,...} is g=2x+x^3/(1-x^2) and the g.f. of finite sequences of elements of S is 1/(1-g). Example: a(4)=20 because we have 1+3, 1'+3, 3+1, 3+1', and 2^4=16 of sums x+y+z+u, where x,y,z,u are taken from {1,1'}.
(End)
a(n-1) is the top left entry of the n-th power of any of the six 3 X 3 matrices [1, 1, 0; 1, 1, 1; 0, 1, 0] or [1, 1, 1; 0, 1, 1; 1, 1, 0] or [1, 0, 1; 1, 1, 1; 1, 1, 0] or [1, 1, 1; 1, 0, 1; 0, 1, 1] or [1, 0, 1; 0, 0, 1; 1, 1, 1] or [1, 1, 0; 1, 0, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014

Examples

			G.f. = 1 + 2*x + 4*x^2 + 9*x^3 + 20*x^4 + 45*x^5 + 101*x^6 + 227*x^7 + 510*x^8 + ... - _Michael Somos_, Dec 12 2023
		

Crossrefs

Programs

  • GAP
    a:=[1,2,4];; for n in [4..40] do a[n]:=2*a[n-1]+a[n-2]-a[n-3]; od; a; # G. C. Greubel, May 09 2019
  • Magma
    [n le 3 select 2^(n-1) else 2*Self(n-1)+Self(n-2)-Self(n-3): n in [1..40]]; // Vincenzo Librandi, Mar 17 2015
    
  • Maple
    spec := [S,{S=Sequence(Union(Z,Prod(Z,Sequence(Prod(Z,Z)))))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    LinearRecurrence[{2,1,-1},{1,2,4},40] (* Roman Witula, Aug 07 2012 *)
    CoefficientList[Series[(1-x^2)/(1-2x-x^2+x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 17 2015 *)
    a[ n_] := {0, 1, 0} . MatrixPower[{{1, 1, 1}, {1, 1, 0}, {1, 0, 0}}, n+1] . {0, 1, 0}; (* Michael Somos, Dec 12 2023 *)
  • Maxima
    h(n):=if n=0 then 1 else sum(sum(binomial(k,j)*binomial(j,n-3*k+2*j)*2^(3*k-n-j)*(-1)^(k-j),j,0,k),k,1,n); a(n):=if n<2 then h(n) else h(n)-h(n-2); /* Vladimir Kruchinin, Sep 09 2010 */
    
  • PARI
    my(x='x+O('x^40)); Vec((1-x^2)/(1-2*x-x^2+x^3)) \\ G. C. Greubel, May 09 2019
    
  • PARI
    {a(n) = [0, 1, 0] * [1, 1, 1; 1, 1, 0; 1, 0, 0]^(n+1) * [0, 1, 0]~}; /* Michael Somos, Dec 12 2023 */
    
  • SageMath
    ((1-x^2)/(1-2*x-x^2+x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019
    

Formula

G.f.: (1 - x^2)/(1 - 2*x - x^2 + x^3).
a(n) = 2*a(n-1) + a(n-2) - a(n-3), with a(0)=1, a(1)=2, a(2)=4.
a(n) = Sum_{alpha = RootOf(1-2*x-x^2+x^3)} (1/7)*(2 + alpha)*alpha^(-1-n).
a(n) = central term in the (n+1)-th power of the 3 X 3 matrix (shown in the example of A066170): [1 1 1 / 1 1 0 / 1 0 0]. E.g. a(6) = 101 since the central term in M^7 = 101. - Gary W. Adamson, Feb 01 2004
a(n) = A006054(n+2) - A006054(n). - Vladimir Kruchinin, Sep 09 2010
a(n) = A077998(n+2) - 2*A006054(n+2), which implies 7*a(n-2) = (2 + c(4) - 2*c(2))*(1 + c(1))^n + (2 + c(1) - 2*c(4))*(1 + c(2))^n + (2 + c(2) - 2*c(1))*(1 + c(4))^n, where c(j)=2*Cos(2Pi*j/7), a(-2)=a(-1)=1 since A077998 and A006054 are equal to the respective quasi-Fibonacci numbers. [Witula, Slota and Warzynski] - Roman Witula, Aug 07 2012
a(n+1) = A033303(n+1) - A033303(n). - Roman Witula, Sep 14 2012
a(n) = A006054(n+2)-A006054(n). - R. J. Mathar, Nov 23 2020
a(n) = A028495(-1-n) for all n in Z. - Michael Somos, Dec 12 2023

A030116 Number of distributive lattices; also number of paths with n turns when light is reflected from 12 glass plates.

Original entry on oeis.org

1, 12, 78, 650, 5083, 40690, 323401, 2576795, 20514715, 163369570, 1300879372, 10358963615, 82488063476, 656851828075, 5230500095281, 41650400765615, 331661528811227, 2641015991983270, 21030372117368865, 167464549591889570, 1333517788817519126
Offset: 0

Views

Author

Jacques Haubrich (jhaubrich(AT)freeler.nl)

Keywords

Comments

Let M(12) be the 12 X 12 matrix (0,0,0,1)/(0,0,1,1)/(0,1,1,1)/(1,1,1,1) and let v(12) be the 12-vector (1,1,..,1,1,1); then v(12)*M(12)^n = (x(1),x(2),...x(11),a(n)) - Benoit Cloitre, Sep 29 2002

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.

Crossrefs

Programs

  • PARI
    k=12; M(k)=matrix(k,k,i,j,if(1-sign(i+j-k),0,1)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n)

Formula

G.f.: 1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x- 1/(-x-1/(-x-1)))))))))))). [Paul Barry, Mar 24 2010]

Extensions

More terms from Benoit Cloitre, Sep 29 2002

A006360 Antichains (or order ideals) in the poset 2*2*3*n or size of the distributive lattice J(2*2*3*n).

Original entry on oeis.org

1, 50, 887, 8790, 59542, 307960, 1301610, 4701698, 14975675, 43025762, 113414717, 277904900, 639562508, 1393844960, 2896063220, 5768600412, 11066514565, 20526933442, 36936277875, 64660182026, 110394412610
Offset: 0

Views

Author

Keywords

References

  • J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.
  • Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

Empirical G.f.: (x+1)*(x^6+36*x^5+279*x^4+594*x^3+279*x^2+36*x+1)/(1-x)^13. - Colin Barker, May 29 2012

Extensions

More terms from Mitch Harris, Jul 16 2000
Previous Showing 21-30 of 57 results. Next