A110616
A convolution triangle of numbers based on A001764.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 12, 7, 3, 1, 55, 30, 12, 4, 1, 273, 143, 55, 18, 5, 1, 1428, 728, 273, 88, 25, 6, 1, 7752, 3876, 1428, 455, 130, 33, 7, 1, 43263, 21318, 7752, 2448, 700, 182, 42, 8, 1, 246675, 120175, 43263, 13566, 3876, 1020, 245, 52, 9, 1
Offset: 0
Triangle begins:
1;
1, 1;
3, 2, 1;
12, 7, 3, 1;
55, 30, 12, 4, 1;
273, 143, 55, 18, 5, 1;
1428, 728, 273, 88, 25, 6, 1;
7752, 3876, 1428, 455, 130, 33, 7, 1;
43263, 21318, 7752, 2448, 700, 182, 42, 8, 1;
246675, 120175, 43263, 13566, 3876, 1020, 245, 52, 9, 1;
...
From _Peter Bala_, Feb 04 2025: (Start)
The transposed array factorizes as an infinite product of upper triangular arrays:
/ 1 \^T /1 \^T /1 \^T / 1 \^T
| 1 1 | | 1 1 | | 0 1 | | 0 1 |
| 3 2 1 | = | 2 1 1 | | 0 1 1 | | 0 0 1 | ...
|12 7 3 1 | | 5 2 1 1 | | 0 2 1 1 | | 0 0 1 1 |
|55 30 12 4 1| |14 5 2 1 1| | 0 5 2 1 1 | | 0 0 2 1 1 |
|... | |... | |... | |... |
where T denotes transposition and [1, 1, 2, 5, 14,...] is the sequence of Catalan numbers A000108. (End)
- Peter Bala, Factorisations of some Riordan arrays as infinite products
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See pp. 27, 29.
- Paul Barry, d-orthogonal polynomials, Fuss-Catalan matrices and lattice paths, arXiv:2505.16718 [math.CO], 2025. See p. 21.
- Naiomi Cameron and J. E. McLeod, Returns and Hills on Generalized Dyck Paths, Journal of Integer Sequences, Vol. 19, 2016, #16.6.1.
- V. E. Hoggatt, Jr. and M. Bicknell, Catalan and related sequences arising from inverses of Pascal's triangle matrices, Fib. Quart., 14 (1976), 395-405.
- Sheng-Liang Yang and L. J. Wang, Taylor expansions for the m-Catalan numbers, Australasian Journal of Combinatorics, Volume 64(3) (2016), Pages 420-431.
-
Table[(k + 1) Binomial[3 n - 2 k, 2 n - k]/(2 n - k + 1), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jun 28 2017 *)
-
T(n,k):=((k+1)*binomial(3*n-2*k,2*n-k))/(2*n-k+1); /* Vladimir Kruchinin, Nov 01 2011 */
A167763
Pendular triangle (p=0), read by rows, where row n is formed from row n-1 by the recurrence: if n > 2k, T(n,k) = T(n,n-k) + T(n-1,k), otherwise T(n,k) = T(n,n-1-k) + p*T(n-1,k), for n >= k <= 0, with T(n,0) = 1 and T(n,n) = 0^n.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 7, 4, 1, 0, 1, 5, 12, 12, 5, 1, 0, 1, 6, 18, 30, 18, 6, 1, 0, 1, 7, 25, 55, 55, 25, 7, 1, 0, 1, 8, 33, 88, 143, 88, 33, 8, 1, 0, 1, 9, 42, 130, 273, 273, 130, 42, 9, 1, 0, 1, 10, 52, 182, 455, 728, 455, 182, 52, 10, 1, 0
Offset: 0
Triangle begins:
1;
1, 0;
1, 1, 0;
1, 2, 1, 0;
1, 3, 3, 1, 0;
1, 4, 7, 4, 1, 0;
1, 5, 12, 12, 5, 1, 0; ...
-
function T(n,k,p)
if k lt 0 or n lt k then return 0;
elif k eq 0 then return 1;
elif k eq n then return 0;
elif n gt 2*k then return T(n,n-k,p) + T(n-1,k,p);
else return T(n,n-k-1,p) + p*T(n-1,k,p);
end if;
return T;
end function;
[T(n,k,0): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2021
-
T[n_, k_, p_]:= T[n,k,p] = If[nG. C. Greubel, Feb 17 2021 *)
-
{T(n,k)=if(k==0,1,if(n==k,0,if(n>2*k,binomial(n+k+1,k)*(n-2*k+1)/(n+k+1),T(n,n-1-k))))} \\ Paul D. Hanna, Nov 12 2009
-
@CachedFunction
def T(n, k, p):
if (k<0 or n2*k): return T(n,n-k,p) + T(n-1,k,p)
else: return T(n, n-k-1, p) + p*T(n-1, k, p)
flatten([[T(n, k, 0) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 17 2021
A109971
Inverse of Riordan array (1,x(1-x)^2), A109970.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 7, 4, 1, 0, 30, 18, 6, 1, 0, 143, 88, 33, 8, 1, 0, 728, 455, 182, 52, 10, 1, 0, 3876, 2448, 1020, 320, 75, 12, 1, 0, 21318, 13566, 5814, 1938, 510, 102, 14, 1, 0, 120175, 76912, 33649, 11704, 3325, 760, 133, 16, 1, 0, 690690, 444015, 197340
Offset: 0
Rows begin
1;
0,1;
0,2,1;
0,7,4,1;
0,30,18,6,1;
0,143,88,33,8,1;
Production array begins
0, 1
0, 2, 1
0, 3, 2, 1
0, 4, 3, 2, 1
0, 5, 4, 3, 2, 1
0, 6, 5, 4, 3, 2, 1,
0, 7, 6, 5, 4, 3, 2, 1
0, 8, 7, 6, 5, 4, 3, 2, 1
0, 9, 8, 7, 6, 5, 4, 3, 2, 1
... - _Philippe Deléham_, Mar 05 2013
A230547
a(n) = 3*binomial(3*n+9, n)/(n+3).
Original entry on oeis.org
1, 9, 63, 408, 2565, 15939, 98670, 610740, 3786588, 23535820, 146710476, 917263152, 5752004349, 36174046743, 228124619100, 1442387942520, 9142452842985, 58083251802345, 369816259792035, 2359448984037600
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007; Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
- Emanuele Munarini, Shifting Property for Riordan, Sheffer and Connection Constants Matrices, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.2.
-
[9*Binomial(3*n+9, n)/(3*n+9): n in [0..30]];
-
Table[9 Binomial[3 n + 9, n]/(3 n + 9), {n, 0, 30}]
-
a(n) = 9*binomial(3*n+9,n)/(3*n+9);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(3/9))^9+x*O(x^n)); polcoeff(B, n)}
A233657
a(n) = 10 * binomial(3*n+10,n)/(3*n+10).
Original entry on oeis.org
1, 10, 75, 510, 3325, 21252, 134550, 848250, 5340060, 33622600, 211915132, 1337675430, 8458829925, 53591180360, 340185835500, 2163581913780, 13786238414025, 88004926973250, 562763873596575, 3604713725613000, 23126371951808268, 148594788106641360
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- David Bevan, Robert Brignall, Andrew Elvey Price and Jay Pantone, A structural characterisation of Av(1324) and new bounds on its growth rate, arXiv preprint arXiv:1711.10325 [math.CO], 2017-2019.
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007; Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955 (2010).
- Emanuele Munarini, Shifting Property for Riordan, Sheffer and Connection Constants Matrices, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.2.
-
[10*Binomial(3*n+10, n)/(3*n+10): n in [0..30]];
-
A233657:=n->10*binomial(3*n+10,n)/(3*n+10): seq(A233657(n), n=0..20); # Wesley Ivan Hurt, Oct 10 2014
-
Table[10 Binomial[3 n + 10, n]/(3 n + 10), {n, 0, 30}]
-
a(n) = 10*binomial(3*n+10,n)/(3*n+10);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(3/10))^10+x*O(x^n)); polcoeff(B, n)}
A069269
Second level generalization of Catalan triangle (0th level is Pascal's triangle A007318; first level is Catalan triangle A009766; 3rd level is A069270).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 7, 12, 1, 4, 12, 30, 55, 1, 5, 18, 55, 143, 273, 1, 6, 25, 88, 273, 728, 1428, 1, 7, 33, 130, 455, 1428, 3876, 7752, 1, 8, 42, 182, 700, 2448, 7752, 21318, 43263, 1, 9, 52, 245, 1020, 3876, 13566, 43263, 120175, 246675
Offset: 0
Rows start
1;
1, 1;
1, 2, 3;
1, 3, 7, 12;
1, 4, 12, 30, 55;
A093951
Sum of integers generated by n-1 substitutions, starting with 1, k -> k+1, k-1, .., 1.
Original entry on oeis.org
1, 2, 4, 8, 17, 36, 80, 176, 403, 910, 2128, 4896, 11628, 27132, 65208, 153824, 373175, 888030, 2170740, 5202600, 12797265, 30853680, 76292736, 184863168, 459162452, 1117370696, 2786017120, 6804995008, 17024247304, 41717833740, 104673837384
Offset: 1
GF(12) = (1 + 2*x - 7*x^2 - 14*x^3 + 9*x^4 + 20*x^5 + 2*x^6 - 2*x^7 + 2*x^11)/(1 - 11*x^2 + 36*x^4 - 35*x^6 + 5*x^8) produces a(1) to a(12).
a(4)=8 since 4-1 = 3 substitutions on 1 produce 1 -> 2 -> 3+1 -> 4 + 2 + 2 = 8.
-
function A093951(n)
if (n mod 2) eq 0 then return 8*Binomial(Floor(3*n/2), Floor((n-2)/2))/(n+2);
else return 6*Binomial(Floor((3*n+1)/2), Floor((n-1)/2))/(n+2) - 2*Binomial(Floor((3*n-1)/2), Floor((n-1)/2))/(n+1);
end if; return A093951;
end function;
[A093951(n): n in [1..40]]; // G. C. Greubel, Oct 17 2022
-
Plus@@@Flatten/@NestList[ #/.k_Integer:>Range[k+1, 1, -2]&, {1}, 8];(*or for n>16 *); f[1]=1; f[2]=1-x^2; f[3]=1-2x^2; f[n_]:=f[n]=Expand[f[n-1]-x^2 f[n-3]]; g[1]=1; g[2]=1+2x; g[3]=1+2x+2x^2; g[n_]:=g[n]=Expand[g[n-1] -x^2 g[n-3]+2 x^(n-1)]; GF[n_]:=g[n]/f[n]; CoefficientList[Series[GF[36], {x, 0, 36}], x]
-
{a(n)=if(n%2==0,4*binomial(3*n/2,n/2-1)/(n/2+1), 6*binomial(3*(n\2)+2, n\2)/(2*(n\2)+3) - binomial(3*(n\2)+1,n\2)/(n\2+1))} \\ Paul D. Hanna, Apr 24 2006
-
def A093951(n):
if (n%2==0): return 8*binomial(3*n/2, (n-2)/2)/(n+2)
else: return 6*binomial((3*n+1)/2, (n-1)/2)/(n+2) - 2*binomial((3*n-1)/2, (n-1)/2)/(n+1)
[A093951(n) for n in range(1,40)] # G. C. Greubel, Oct 17 2022
A102593
Triangle read by rows: T(n,k) is the number of noncrossing trees with n edges in which the maximum number of contiguous border edges starting from the root in counterclockwise direction is equal to k.
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 5, 4, 2, 1, 25, 18, 8, 3, 1, 130, 88, 37, 13, 4, 1, 700, 455, 185, 63, 19, 5, 1, 3876, 2448, 973, 325, 97, 26, 6, 1, 21945, 13566, 5304, 1748, 518, 140, 34, 7, 1, 126500, 76912, 29697, 9690, 2856, 775, 193, 43, 8, 1, 740025, 444015, 169763, 54967
Offset: 0
T(2,0) = T(2,1) = T(2,2) = 1 because in _\, /\ and /_ the maximum number of contiguous border edges starting from the root in counterclockwise direction is 0,1 and 2, respectively.
Triangle starts:
1;
0, 1;
1, 1, 1;
5, 4, 2, 1;
25, 18, 8, 3, 1;
130, 88, 37, 13, 4, 1;
700, 455, 185, 63, 19, 5, 1;
...
- Andrew Howroyd, Table of n, a(n) for n = 0..1274
- P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999.
- M. Noy, Enumeration of noncrossing trees on a circle, Discrete Math., 180, 301-313, 1998.
-
T:=proc(n,k) if n=0 and k=0 then 1 elif n=1 and k=1 then 1 elif k<=n then (k+1)*binomial(3*n-2*k,n-k)/(2*n-k+1)-(k+2)*binomial(3*n-2*k-2,n-k-1)/(2*n-k) else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
T[n_ /; n>1, k_] /; 0 <= k <= n := (k + 1) Binomial[3n - 2k, n - k]/(2n - k + 1) - (k + 2) Binomial[3n - 2k - 2, n - k - 1]/(2n - k); T[1, 1] = T[0, 0] = 1; T[, ] = 0;
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 06 2018 *)
-
T(n,k) = {if(n==0, k==0, if(k<=n, (k+1)*binomial(3*n-2*k, n-k)/(2*n-k+1)-(k+2)*binomial(3*n-2*k-2, n-k-1)/(2*n-k)))} \\ Andrew Howroyd, Nov 06 2017
A109956
Inverse of Riordan array (1/(1-x), x/(1-x)^3), A109955.
Original entry on oeis.org
1, -1, 1, 3, -4, 1, -12, 18, -7, 1, 55, -88, 42, -10, 1, -273, 455, -245, 75, -13, 1, 1428, -2448, 1428, -510, 117, -16, 1, -7752, 13566, -8379, 3325, -910, 168, -19, 1, 43263, -76912, 49588, -21252, 6578, -1472, 228, -22, 1, -246675, 444015, -296010, 134550, -45630, 11700, -2223, 297, -25, 1
Offset: 0
Triangle begins:
1;
-1, 1;
3, -4, 1;
-12, 18, -7, 1;
55, -88, 42, -10, 1;
-273, 455, -245, 75, -13, 1;
...
-
# Function RiordanSquare defined in A321620.
tt := sin(arcsin(3*sqrt(x*3/4))/3)/sqrt(x*3/4): R := RiordanSquare(tt, 11):
seq(seq(LinearAlgebra:-Row(R,n)[k]*(-1)^(n+k), k=1..n), n=1..11); # Peter Luschny, Nov 27 2018
-
T[n_, k_] := (-1)^(n - k)((3k + 1)/(2n + k + 1)) Binomial[3n, n - k];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
-
tabl(nn) = {my(m = matrix(nn, nn, n, k, if (nMichel Marcus, Nov 20 2015
A355172
The Fuss-Catalan triangle of order 2, read by rows. Related to ternary trees.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 1, 5, 12, 0, 1, 7, 25, 55, 0, 1, 9, 42, 130, 273, 0, 1, 11, 63, 245, 700, 1428, 0, 1, 13, 88, 408, 1428, 3876, 7752, 0, 1, 15, 117, 627, 2565, 8379, 21945, 43263, 0, 1, 17, 150, 910, 4235, 15939, 49588, 126500, 246675
Offset: 0
Table T(n, k) begins:
[0] [1]
[1] [0, 1]
[2] [0, 1, 3]
[3] [0, 1, 5, 12]
[4] [0, 1, 7, 25, 55]
[5] [0, 1, 9, 42, 130, 273]
[6] [0, 1, 11, 63, 245, 700, 1428]
[7] [0, 1, 13, 88, 408, 1428, 3876, 7752]
Seen as an array reading the diagonals starting from the main diagonal:
[0] 1, 1, 3, 12, 55, 273, 1428, 7752, 43263, 246675, ... A001764
[1] 0, 1, 5, 25, 130, 700, 3876, 21945, 126500, 740025, ... A102893
[2] 0, 1, 7, 42, 245, 1428, 8379, 49588, 296010, 1781325, ... A102594
[3] 0, 1, 9, 63, 408, 2565, 15939, 98670, 610740, 3786588, ... A230547
[4] 0, 1, 11, 88, 627, 4235, 27830, 180180, 1157013, 7396972, ...
Comments