cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A110616 A convolution triangle of numbers based on A001764.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 12, 7, 3, 1, 55, 30, 12, 4, 1, 273, 143, 55, 18, 5, 1, 1428, 728, 273, 88, 25, 6, 1, 7752, 3876, 1428, 455, 130, 33, 7, 1, 43263, 21318, 7752, 2448, 700, 182, 42, 8, 1, 246675, 120175, 43263, 13566, 3876, 1020, 245, 52, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 14 2005, Jun 15 2007

Keywords

Comments

Reflected version of A069269. - Vladeta Jovovic, Sep 27 2006
With offset 1 for n and k, T(n,k) = number of Dyck paths of semilength n for which all descents are of even length (counted by A001764) with no valley vertices at height 1 and with k returns to ground level. For example, T(3,2)=2 counts U^4 D^4 U^2 D^2, U^2 D^2 U^4 D^4 where U=upstep, D=downstep and exponents denote repetition. - David Callan, Aug 27 2009
Riordan array (f(x), x*f(x)) with f(x) = (2/sqrt(3*x))*sin((1/3)*arcsin(sqrt(27*x/4))). - Philippe Deléham, Jan 27 2014
Antidiagonals of convolution matrix of Table 1.4, p. 397, of Hoggatt and Bicknell. - Tom Copeland, Dec 25 2019

Examples

			Triangle begins:
       1;
       1,      1;
       3,      2,     1;
      12,      7,     3,     1;
      55,     30,    12,     4,    1;
     273,    143,    55,    18,    5,    1;
    1428,    728,   273,    88,   25,    6,   1;
    7752,   3876,  1428,   455,  130,   33,   7,  1;
   43263,  21318,  7752,  2448,  700,  182,  42,  8, 1;
  246675, 120175, 43263, 13566, 3876, 1020, 245, 52, 9, 1;
  ...
From _Peter Bala_, Feb 04 2025: (Start)
The transposed array factorizes as an infinite product of upper triangular arrays:
  / 1               \^T   /1             \^T /1             \^T / 1            \^T
  | 1    1           |   | 1   1          | | 0  1           |  | 0  1          |
  | 3    2   1       | = | 2   1   1      | | 0  1   1       |  | 0  0  1       | ...
  |12    7   3   1   |   | 5   2   1  1   | | 0  2   1  1    |  | 0  0  1  1    |
  |55   30  12   4  1|   |14   5   2  1  1| | 0  5   2  1  1 |  | 0  0  2  1  1 |
  |...               |   |...             | |...             |  |...            |
where T denotes transposition and [1, 1, 2, 5, 14,...] is the sequence of Catalan numbers A000108. (End)
		

Crossrefs

Successive columns: A001764, A006013, A001764, A006629, A102893, A006630, A102594, A006631; row sums: A098746; see also A092276.

Programs

  • Mathematica
    Table[(k + 1) Binomial[3 n - 2 k, 2 n - k]/(2 n - k + 1), {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jun 28 2017 *)
  • Maxima
    T(n,k):=((k+1)*binomial(3*n-2*k,2*n-k))/(2*n-k+1); /* Vladimir Kruchinin, Nov 01 2011 */

Formula

T(n, k) = Sum_{j>=0} T(n-1, k-1+j)*A000108(j); T(0, 0) = 1; T(n, k) = 0 if k < 0 or if k > n.
G.f.: 1/(1 - x*y*TernaryGF) = 1 + (y)x + (y+y^2)x^2 + (3y+2y^2+y^3)x^3 +... where TernaryGF = 1 + x + 3x^2 + 12x^3 + ... is the GF for A001764. - David Callan, Aug 27 2009
T(n, k) = ((k+1)*binomial(3*n-2*k,2*n-k))/(2*n-k+1). - Vladimir Kruchinin, Nov 01 2011

A167763 Pendular triangle (p=0), read by rows, where row n is formed from row n-1 by the recurrence: if n > 2k, T(n,k) = T(n,n-k) + T(n-1,k), otherwise T(n,k) = T(n,n-1-k) + p*T(n-1,k), for n >= k <= 0, with T(n,0) = 1 and T(n,n) = 0^n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 7, 4, 1, 0, 1, 5, 12, 12, 5, 1, 0, 1, 6, 18, 30, 18, 6, 1, 0, 1, 7, 25, 55, 55, 25, 7, 1, 0, 1, 8, 33, 88, 143, 88, 33, 8, 1, 0, 1, 9, 42, 130, 273, 273, 130, 42, 9, 1, 0, 1, 10, 52, 182, 455, 728, 455, 182, 52, 10, 1, 0
Offset: 0

Views

Author

Philippe Deléham, Nov 11 2009

Keywords

Comments

See A118340 for definition of pendular triangles and pendular sums.
The last five rows in the example section appear in the table on p. 8 of Getzler. Cf. also A173075. - Tom Copeland, Jan 22 2020

Examples

			Triangle begins:
  1;
  1,  0;
  1,  1,  0;
  1,  2,  1,  0;
  1,  3,  3,  1,  0;
  1,  4,  7,  4,  1,  0;
  1,  5, 12, 12,  5,  1,  0; ...
		

Crossrefs

Cf. this sequence (p=0), A118340 (p=1), A118345 (p=2), A118350 (p=3).

Programs

  • Magma
    function T(n,k,p)
      if k lt 0 or n lt k then return 0;
      elif k eq 0 then return 1;
      elif k eq n then return 0;
      elif n gt 2*k then return T(n,n-k,p) + T(n-1,k,p);
      else return T(n,n-k-1,p) + p*T(n-1,k,p);
      end if;
      return T;
    end function;
    [T(n,k,0): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2021
  • Mathematica
    T[n_, k_, p_]:= T[n,k,p] = If[nG. C. Greubel, Feb 17 2021 *)
  • PARI
    {T(n,k)=if(k==0,1,if(n==k,0,if(n>2*k,binomial(n+k+1,k)*(n-2*k+1)/(n+k+1),T(n,n-1-k))))} \\ Paul D. Hanna, Nov 12 2009
    
  • Sage
    @CachedFunction
    def T(n, k, p):
        if (k<0 or n2*k): return T(n,n-k,p) + T(n-1,k,p)
        else: return T(n, n-k-1, p) + p*T(n-1, k, p)
    flatten([[T(n, k, 0) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 17 2021
    

Formula

T(2n+m) = [A001764^(m+1)](n), i.e., the m-th lower semi-diagonal forms the self-convolution (m+1)-power of A001764.
If n > 2k, T(n,k) = binomial(n+k+1,k)*(n-2k+1)/(n+k+1), else T(n,k) = T(n,n-1-k), with conditions: T(n,0)=1 for n>=0 and T(n,n)=0 for n > 0. - Paul D. Hanna, Nov 12 2009
Sum_{k=0..n} T(n, k, p=0) = A093951(n). - G. C. Greubel, Feb 17 2021

A109971 Inverse of Riordan array (1,x(1-x)^2), A109970.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 7, 4, 1, 0, 30, 18, 6, 1, 0, 143, 88, 33, 8, 1, 0, 728, 455, 182, 52, 10, 1, 0, 3876, 2448, 1020, 320, 75, 12, 1, 0, 21318, 13566, 5814, 1938, 510, 102, 14, 1, 0, 120175, 76912, 33649, 11704, 3325, 760, 133, 16, 1, 0, 690690, 444015, 197340
Offset: 0

Views

Author

Paul Barry, Jul 06 2005

Keywords

Comments

Row sums are A001764. Diagonal sums are A109972. Second column is A006013. Third column is A006629.

Examples

			Rows begin
1;
0,1;
0,2,1;
0,7,4,1;
0,30,18,6,1;
0,143,88,33,8,1;
Production array begins
0, 1
0, 2, 1
0, 3, 2, 1
0, 4, 3, 2, 1
0, 5, 4, 3, 2, 1
0, 6, 5, 4, 3, 2, 1,
0, 7, 6, 5, 4, 3, 2, 1
0, 8, 7, 6, 5, 4, 3, 2, 1
0, 9, 8, 7, 6, 5, 4, 3, 2, 1
... - _Philippe Deléham_, Mar 05 2013
		

Crossrefs

Essentially the same as A092276.

Formula

Number triangle T(0, 0)=1, T(0, k)=0, k>0, T(n, k)=(k/n)*binomial(3n-k-1, n-k) otherwise; Riordan array (1, f) where f(1-f)^2=x.
T(n, k)=sum{j=0..n, ((3j+1)/(2n+j+1))(-1)^(j-k)*C(3n, 2n+j)C(j, k)}; - Paul Barry, Oct 07 2005
T(n,k)=binomial(3n-k,n-k)*2k/(3n-k). (Paul Barry, May 18 2006)

A230547 a(n) = 3*binomial(3*n+9, n)/(n+3).

Original entry on oeis.org

1, 9, 63, 408, 2565, 15939, 98670, 610740, 3786588, 23535820, 146710476, 917263152, 5752004349, 36174046743, 228124619100, 1442387942520, 9142452842985, 58083251802345, 369816259792035, 2359448984037600
Offset: 0

Views

Author

Tim Fulford, Oct 23 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=3, r=9.

Crossrefs

Programs

  • Magma
    [9*Binomial(3*n+9, n)/(3*n+9): n in [0..30]];
  • Mathematica
    Table[9 Binomial[3 n + 9, n]/(3 n + 9), {n, 0, 30}]
  • PARI
    a(n) = 9*binomial(3*n+9,n)/(3*n+9);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(3/9))^9+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, here p=3, r=9.
D-finite with recurrence 2*n*(2*n+9)*(n+4)*a(n) -3*(3*n+7)*(n+2)*(3*n+8)*a(n-1)=0. - R. J. Mathar, Nov 22 2024

A233657 a(n) = 10 * binomial(3*n+10,n)/(3*n+10).

Original entry on oeis.org

1, 10, 75, 510, 3325, 21252, 134550, 848250, 5340060, 33622600, 211915132, 1337675430, 8458829925, 53591180360, 340185835500, 2163581913780, 13786238414025, 88004926973250, 562763873596575, 3604713725613000, 23126371951808268, 148594788106641360
Offset: 0

Views

Author

Tim Fulford, Dec 14 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=3, r=10.

Crossrefs

Programs

  • Magma
    [10*Binomial(3*n+10, n)/(3*n+10): n in [0..30]];
  • Maple
    A233657:=n->10*binomial(3*n+10,n)/(3*n+10): seq(A233657(n), n=0..20); # Wesley Ivan Hurt, Oct 10 2014
  • Mathematica
    Table[10 Binomial[3 n + 10, n]/(3 n + 10), {n, 0, 30}]
  • PARI
    a(n) = 10*binomial(3*n+10,n)/(3*n+10);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(3/10))^10+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, here p=3, r=10.
+2*n*(n+5)*(2*n+9)*a(n) -3*(3*n+7)*(n+3)*(3*n+8)*a(n-1)=0. - R. J. Mathar, Feb 16 2018
E.g.f.: F([10/3, 11/3, 4], [1, 11/2, 6], 27*x/4), where F is the generalized hypergeometric function. - Stefano Spezia, Oct 08 2019

A069269 Second level generalization of Catalan triangle (0th level is Pascal's triangle A007318; first level is Catalan triangle A009766; 3rd level is A069270).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 7, 12, 1, 4, 12, 30, 55, 1, 5, 18, 55, 143, 273, 1, 6, 25, 88, 273, 728, 1428, 1, 7, 33, 130, 455, 1428, 3876, 7752, 1, 8, 42, 182, 700, 2448, 7752, 21318, 43263, 1, 9, 52, 245, 1020, 3876, 13566, 43263, 120175, 246675
Offset: 0

Views

Author

Henry Bottomley, Mar 12 2002

Keywords

Comments

For the m-th level generalization of Catalan triangle T(n,k) = C(n+mk,k)*(n-k+1)/(n+(m-1)k+1); for n >= k+m: T(n,k) = T(n-m+1,k+1) - T(n-m,k+1); and T(n,n) = T(n+m-1,n-1) = C((m+1)n,n)/(mn+1).
Reflected version of A110616. - Philippe Deléham, Jun 15 2007
With offset 1 for n and k, T(n,k) is (conjecturally) the number of permutations of [n] that avoid the patterns 4-2-3-1 and 4-2-5-1-3 and for which the last ascent ends at position k (k=1 if there are no ascents). For example, T(4,1) = 1 counts 4321; T(4,2) = 3 counts 1432, 2431, 3421; T(4,3) = 7 counts 1243, 1342, 2143, 2341, 3142, 3241, 4132. - David Callan, Jul 22 2008
Row sums appear to be in A098746. - R. J. Mathar, May 30 2014

Examples

			Rows start
  1;
  1,  1;
  1,  2,  3;
  1,  3,  7, 12;
  1,  4, 12, 30, 55;
		

Crossrefs

Columns include A000012, A000027, A055998.
Right-hand diagonals include A001764, A006013, A006629, A006630, A006631.
Cf. triangles A007318, A009766, A069270.

Formula

T(n, k) = C(n+2k, k)*(n-k+1)/(n+k+1).
For n >= k+2: T(n, k) = T(n-1, k+1) - T(n-2, k+1).
T(n, n) = T(n+1, n-1) = C(3n, n)/(2n+1).

A093951 Sum of integers generated by n-1 substitutions, starting with 1, k -> k+1, k-1, .., 1.

Original entry on oeis.org

1, 2, 4, 8, 17, 36, 80, 176, 403, 910, 2128, 4896, 11628, 27132, 65208, 153824, 373175, 888030, 2170740, 5202600, 12797265, 30853680, 76292736, 184863168, 459162452, 1117370696, 2786017120, 6804995008, 17024247304, 41717833740, 104673837384
Offset: 1

Views

Author

Wouter Meeussen, Apr 18 2004

Keywords

Comments

Substitutions 1 -> {2}, 2 -> {3,1}, 3 -> {4,2}, 4 -> {5,3,1}, 5 -> {6,4,2}, 6 -> {7,5,3,1}, 7 -> {8,6,4,2}, etc. The function f(n) gives determinant of (I_{n} - x * A(n)) where I_{n} is the identity matrix and A(n) = 0 if j > i + 1 otherwise (i+j) mod 2, for i = 1, ..., n and j = 1, ..., n, and can be written in terms of Dickson polynomials as g(w) = x*D_(w-1)(1+x, x*(1+x)) + (1-2*x)*E_(w-1)(1+x, x*(1+x)). - Francisco Salinas (franciscodesalinas(AT)hotmail.com), Apr 13 2004
Count of integers is A047749.
Sum of integers with substitution starting from 0 is A084081.

Examples

			GF(12) = (1 + 2*x - 7*x^2 - 14*x^3 + 9*x^4 + 20*x^5 + 2*x^6 - 2*x^7 + 2*x^11)/(1 - 11*x^2 + 36*x^4 - 35*x^6 + 5*x^8) produces a(1) to a(12).
a(4)=8 since 4-1 = 3 substitutions on 1 produce 1 -> 2 -> 3+1 -> 4 + 2 + 2 = 8.
		

Crossrefs

Programs

  • Magma
    function A093951(n)
      if (n mod 2) eq 0 then return 8*Binomial(Floor(3*n/2), Floor((n-2)/2))/(n+2);
      else return 6*Binomial(Floor((3*n+1)/2), Floor((n-1)/2))/(n+2) - 2*Binomial(Floor((3*n-1)/2), Floor((n-1)/2))/(n+1);
      end if; return A093951;
    end function;
    [A093951(n): n in [1..40]]; // G. C. Greubel, Oct 17 2022
    
  • Mathematica
    Plus@@@Flatten/@NestList[ #/.k_Integer:>Range[k+1, 1, -2]&, {1}, 8];(*or for n>16 *); f[1]=1; f[2]=1-x^2; f[3]=1-2x^2; f[n_]:=f[n]=Expand[f[n-1]-x^2 f[n-3]]; g[1]=1; g[2]=1+2x; g[3]=1+2x+2x^2; g[n_]:=g[n]=Expand[g[n-1] -x^2 g[n-3]+2 x^(n-1)]; GF[n_]:=g[n]/f[n]; CoefficientList[Series[GF[36], {x, 0, 36}], x]
  • PARI
    {a(n)=if(n%2==0,4*binomial(3*n/2,n/2-1)/(n/2+1), 6*binomial(3*(n\2)+2, n\2)/(2*(n\2)+3) - binomial(3*(n\2)+1,n\2)/(n\2+1))} \\ Paul D. Hanna, Apr 24 2006
    
  • SageMath
    def A093951(n):
        if (n%2==0): return 8*binomial(3*n/2, (n-2)/2)/(n+2)
        else: return 6*binomial((3*n+1)/2, (n-1)/2)/(n+2) - 2*binomial((3*n-1)/2, (n-1)/2)/(n+1)
    [A093951(n) for n in range(1,40)] # G. C. Greubel, Oct 17 2022

Formula

a(n) = [x^n] GF(n) with GF(n) = g(n)/f(n) and f(1)=1, f(2)=1-x^2, f(3)=1-2*x^2, f(n) = f(n-1) - x^2*f(n-3) and g(1)=1, g(2)=1+2*x, g(3)=1+2*x+2*x^2, g(n) = g(n-1) - x^2*g(n-3) + 2*x^(n-1).
From Paul D. Hanna, Apr 24 2006: (Start)
a(2*n) = 4*binomial(3*n, n-1)/(n+1) = 2*A006629(n-1).
a(2*n+1) = 6*binomial(3*n+2, n)/(2*n+3) - binomial(3*n+1, n)/(n+1) = A056096(n+3). (End)

A102593 Triangle read by rows: T(n,k) is the number of noncrossing trees with n edges in which the maximum number of contiguous border edges starting from the root in counterclockwise direction is equal to k.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 5, 4, 2, 1, 25, 18, 8, 3, 1, 130, 88, 37, 13, 4, 1, 700, 455, 185, 63, 19, 5, 1, 3876, 2448, 973, 325, 97, 26, 6, 1, 21945, 13566, 5304, 1748, 518, 140, 34, 7, 1, 126500, 76912, 29697, 9690, 2856, 775, 193, 43, 8, 1, 740025, 444015, 169763, 54967
Offset: 0

Views

Author

Emeric Deutsch, Jan 22 2005

Keywords

Comments

Row n has n+1 terms. Row sums yield the ternary numbers (A001764). T(n,0)=A102893(n).

Examples

			T(2,0) = T(2,1) = T(2,2) = 1 because in _\, /\ and /_ the maximum number of contiguous border edges starting from the root in counterclockwise direction is 0,1 and 2, respectively.
Triangle starts:
    1;
    0,   1;
    1,   1,   1;
    5,   4,   2,  1;
   25,  18,   8,  3,  1;
  130,  88,  37, 13,  4, 1;
  700, 455, 185, 63, 19, 5, 1;
  ...
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if n=0 and k=0 then 1 elif n=1 and k=1 then 1 elif k<=n then (k+1)*binomial(3*n-2*k,n-k)/(2*n-k+1)-(k+2)*binomial(3*n-2*k-2,n-k-1)/(2*n-k) else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_ /; n>1, k_] /; 0 <= k <= n := (k + 1) Binomial[3n - 2k, n - k]/(2n - k + 1) - (k + 2) Binomial[3n - 2k - 2, n - k - 1]/(2n - k); T[1, 1] = T[0, 0] = 1; T[, ] = 0;
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 06 2018 *)
  • PARI
    T(n,k) = {if(n==0, k==0, if(k<=n, (k+1)*binomial(3*n-2*k, n-k)/(2*n-k+1)-(k+2)*binomial(3*n-2*k-2, n-k-1)/(2*n-k)))} \\ Andrew Howroyd, Nov 06 2017

Formula

T(n, k) = (k+1)binomial(3n-2k, n-k)/(2n-k+1) - (k+2)binomial(3n-2k-2, n-k-1)/(2n-k) if n > 1, 0 <= k <= n; T(1, 1)=1; T(0, 0)=1; T(n, k)=0 if k > n.
G.f.: G(t, z) = g(1-zg)/(1-tzg), where g = 1+zg^3 is the g.f. for the ternary numbers (A001764).

A109956 Inverse of Riordan array (1/(1-x), x/(1-x)^3), A109955.

Original entry on oeis.org

1, -1, 1, 3, -4, 1, -12, 18, -7, 1, 55, -88, 42, -10, 1, -273, 455, -245, 75, -13, 1, 1428, -2448, 1428, -510, 117, -16, 1, -7752, 13566, -8379, 3325, -910, 168, -19, 1, 43263, -76912, 49588, -21252, 6578, -1472, 228, -22, 1, -246675, 444015, -296010, 134550, -45630, 11700, -2223, 297, -25, 1
Offset: 0

Views

Author

Paul Barry, Jul 06 2005

Keywords

Comments

Riordan array (g,f) where f/(1-f)^3=x and g=1-f.
First column is (-1)^n*binomial(3n,n)/(2n+1), a signed version of A001764.
Second column is a signed version of A006629.
Diagonal sums are A109957.

Examples

			Triangle begins:
      1;
     -1,   1;
      3,  -4,    1;
    -12,  18,   -7,   1;
     55, -88,   42, -10,   1;
   -273, 455, -245,  75, -13, 1;
   ...
		

Crossrefs

Programs

  • Maple
    # Function RiordanSquare defined in A321620.
    tt := sin(arcsin(3*sqrt(x*3/4))/3)/sqrt(x*3/4): R := RiordanSquare(tt, 11):
    seq(seq(LinearAlgebra:-Row(R,n)[k]*(-1)^(n+k), k=1..n), n=1..11); # Peter Luschny, Nov 27 2018
  • Mathematica
    T[n_, k_] := (-1)^(n - k)((3k + 1)/(2n + k + 1)) Binomial[3n, n - k];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 13 2019 *)
  • PARI
    tabl(nn) = {my(m = matrix(nn, nn, n, k, if (nMichel Marcus, Nov 20 2015

Formula

Number triangle T(n, k) = (-1)^(n-k)*((3k+1)/(2n+k+1))*binomial(3n, n-k).
From Werner Schulte, Oct 27 2015: (Start)
If u(m,n) = (-1)^n*(Sum_{k=0..n} T(n,k)*((m+1)*k+1)) and v(m,n) = (-1)^n*(Sum_{k=0..n} (-1)^k*T(n,k)*m^k) and D(x) is the g.f. of A001764 then P(m,x) = Sum_{n>=0} u(m,n)*x^n = 1-(m+1)*x*D(x)^2 and Q(m,x) = Sum_{n>=0} v(m,n)*x^n = 1/P(m,x).
If G(k,x) is the g.f. of column k (k>=0) then G(k,x) = G(0,x)^(3*k+1). (End)

A355172 The Fuss-Catalan triangle of order 2, read by rows. Related to ternary trees.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 5, 12, 0, 1, 7, 25, 55, 0, 1, 9, 42, 130, 273, 0, 1, 11, 63, 245, 700, 1428, 0, 1, 13, 88, 408, 1428, 3876, 7752, 0, 1, 15, 117, 627, 2565, 8379, 21945, 43263, 0, 1, 17, 150, 910, 4235, 15939, 49588, 126500, 246675
Offset: 0

Views

Author

Peter Luschny, Jun 25 2022

Keywords

Comments

The Fuss-Catalan triangle of order m is a regular, (0, 0)-based table recursively defined as follows: Set row(0) = [1] and row(1) = [0, 1]. Now assume row(n-1) already constructed and duplicate the last element of row(n-1). Next apply the cumulative sum m times to this list to get row(n). Here m = 2. (See the Python program for a reference implementation.)
This definition also includes the Fuss-Catalan numbers A001764(n) = T(n, n), or row 3 in A355262. For m = 1 see A355173 and for m = 3 A355174. More generally, for n >= 1 all Fuss-Catalan sequences (A355262(n, k), k >= 0) are the main diagonals of the Fuss-Catalan triangles of order n - 1.

Examples

			Table T(n, k) begins:
  [0] [1]
  [1] [0, 1]
  [2] [0, 1,  3]
  [3] [0, 1,  5, 12]
  [4] [0, 1,  7, 25,  55]
  [5] [0, 1,  9, 42, 130,  273]
  [6] [0, 1, 11, 63, 245,  700, 1428]
  [7] [0, 1, 13, 88, 408, 1428, 3876, 7752]
Seen as an array reading the diagonals starting from the main diagonal:
  [0] 1, 1,  3, 12,  55,  273,  1428,   7752,   43263,  246675, ...  A001764
  [1] 0, 1,  5, 25, 130,  700,  3876,  21945,  126500,  740025, ...  A102893
  [2] 0, 1,  7, 42, 245, 1428,  8379,  49588,  296010, 1781325, ...  A102594
  [3] 0, 1,  9, 63, 408, 2565, 15939,  98670,  610740, 3786588, ...  A230547
  [4] 0, 1, 11, 88, 627, 4235, 27830, 180180, 1157013, 7396972, ...
		

Crossrefs

A001764 (main diagonal), A102893 (subdiagonal), A102594 (diagonal 2), A230547 (diagonal 3), A005408 (column 2), A071355 (column 3), A006629 (row sums), A143603 (variant).
Cf. A123110 (triangle of order 0), A355173 (triangle of order 1), A355174 (triangle of order 3), A355262 (Fuss-Catalan array).

Programs

  • Python
    from functools import cache
    from itertools import accumulate
    @cache
    def Trow(n: int) -> list[int]:
        if n == 0: return [1]
        if n == 1: return [0, 1]
        row = Trow(n - 1) + [Trow(n - 1)[n - 1]]
        return list(accumulate(accumulate(row)))
    for n in range(9): print(Trow(n))

Formula

The general formula for the Fuss-Catalan triangles is, for m >= 0 and 0 <= k <= n:
FCT(n, k, m) = (m*(n - k) + m + 1)*(m*n + k - 1)!/((m*n + 1)!*(k - 1)!) for k > 0 and FCT(n, 0, m) = 0^n. The case considered here is T(n, k) = FCT(n, k, 2).
T(n, k) = (2*n - 2*k + 3)*(2*n + k - 1)!/((2*n + 1)!*(k - 1)!) for k > 0; T(n, 0) = 0^n.
The g.f. of row n of the FC-triangle of order m is 0^n + (x - (m + 1)*x^2) / (1 - x)^(m*n + 2), thus:
T(n, k) = [x^k] (0^n + (x - 3*x^2)/(1 - x)^(2*n + 2)).
Previous Showing 11-20 of 22 results. Next