cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 784 results. Next

A007094 Numbers in base 8.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 60, 61, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 74, 75, 76, 77, 100, 101, 102, 103, 104, 105, 106, 107, 110, 111
Offset: 0

Views

Author

Keywords

References

  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §2.8 Binary, Octal, Hexadecimal, p. 64.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A057104; A000042 (base 1), A007088 (base 2), A007089 (base 3), A007090 (base 4), A007091 (base 5), A007092 (base 6), A007093 (base 7), A007095 (base 9).

Programs

  • Haskell
    a007094 0 = 0
    a007094 n = 10 * a007094 n' + m where (n', m) = divMod n 8
    -- Reinhard Zumkeller, Aug 29 2013
    
  • Maple
    A007094 := proc(n) local l: if(n=0)then return 0: fi: l:=convert(n,base,8): return op(convert(l,base,10,10^nops(l))): end: seq(A007094(n), n=0..66); # Nathaniel Johnston, May 06 2011
  • Mathematica
    Table[FromDigits[IntegerDigits[n, 8]], {n, 0, 70}]
  • PARI
    a(n)=if(n<1,0,if(n%8,a(n-1)+1,10*a(n/8)))
    
  • PARI
    apply( A007094(n)=fromdigits(digits(n,8)), [0..77]) \\ M. F. Hasler, Nov 18 2019
    
  • Python
    def a(n): return int(oct(n)[2:])
    print([a(n) for n in range(74)]) # Michael S. Branicky, Jun 28 2021

Formula

a(0) = 0; a(n) = 10*a(n/8) if n == 0 (mod 8); a(n) = a(n-1) + 1 otherwise. - Benoit Cloitre, Dec 22 2002
G.f.: sum(d>=0, 10^d*(x^(8^d) +2*x^(2*8^d) +3*x^(3*8^d) +4*x^(4*8^d) +5*x^(5*8^d) +6*x^(6*8^d) +7*x^(7*8^d)) * (1-x^(8^d)) / ((1-x^(8^(d+1)))*(1-x))). - Robert Israel, Aug 03 2014

A007093 Numbers in base 7.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 30, 31, 32, 33, 34, 35, 36, 40, 41, 42, 43, 44, 45, 46, 50, 51, 52, 53, 54, 55, 56, 60, 61, 62, 63, 64, 65, 66, 100, 101, 102, 103, 104, 105, 106, 110, 111, 112, 113, 114, 115, 116, 120
Offset: 0

Views

Author

Keywords

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 67.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A007093 := proc(n) local l: if(n=0)then return 0: fi: l:=convert(n,base,7): return op(convert(l,base,10,10^nops(l))): end: seq(A007093(n),n=0..63); # Nathaniel Johnston, May 06 2011
  • Mathematica
    Table[ FromDigits[ IntegerDigits[n, 7]], {n, 0, 66}]
  • PARI
    a(n)=if(n<1,0,if(n%7,a(n-1)+1,10*a(n/7)))
    
  • PARI
    a(n) = fromdigits(digits(n, 7)); \\ Michel Marcus, Aug 12 2018

Formula

a(0) = 0, a(n) = 10*a(n/7) if n==0 (mod 7), a(n) = a(n-1)+1 otherwise. - Benoit Cloitre, Dec 22 2002

A007092 Numbers in base 6.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 30, 31, 32, 33, 34, 35, 40, 41, 42, 43, 44, 45, 50, 51, 52, 53, 54, 55, 100, 101, 102, 103, 104, 105, 110, 111, 112, 113, 114, 115, 120, 121, 122, 123, 124, 125, 130, 131, 132, 133, 134, 135, 140, 141, 142, 143, 144, 145
Offset: 0

Views

Author

Keywords

Comments

Nonnegative integers with no decimal digits > 5. - Karol Bacik, Sep 25 2012

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000042 (base 1), A007088 (base 2), A007089 (base 3), A007090 (base 4), A007091 (base 5), A007093 (base 7), A007094 (base 8), A007095 (base 9).

Programs

  • Haskell
    a007092 0 = 0
    a007092 n = 10 * a007092 n' + m where (n', m) = divMod n 6
    -- Reinhard Zumkeller, Mar 06 2015
  • Maple
    A007092 := proc(n) local l: if(n=0)then return 0: fi: l:=convert(n,base,6): return op(convert(l,base,10,10^nops(l))): end: seq(A007092(n),n=0..59); # Nathaniel Johnston, May 06 2011
  • Mathematica
    Table[ FromDigits[ IntegerDigits[n, 6]], {n, 0, 65}]
  • PARI
    a(n)=if(n%6,a(n-1)+1,if(n,10*a(n/6),0))  \\ corrected by Charles R Greathouse IV, Sep 25 2012
    
  • PARI
    a(n)=n=digits(n,6);n[1]=Str(n[1]);eval(concat(n)) \\ Charles R Greathouse IV, Sep 25 2012
    
  • PARI
    apply( A007092(n)=fromdigits(digits(n, 6)), [0..66]) \\ M. F. Hasler, Nov 18 2019
    

Formula

a(0)=0, a(n) = 10*a(n/6) if n==0 (mod 6), and a(n) = a(n-1)+1 otherwise. - Benoit Cloitre, Dec 22 2002
a(n) = Sum{d(i)*10^i: i=0,1,...,m}, where Sum{d(i)*6^i: i=1,2,...,m} = n, and d(i) in {0,1,...,5}. - Karol Bacik, Sep 25 2012

A029447 Numbers k that divide the (right) concatenation of all numbers <= k written in base 2 (most significant digit on left).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 16, 26, 32, 38, 40, 46, 64, 96, 128, 138, 192, 228, 256, 512, 640, 1024, 2048, 4096, 4192, 4766, 4790, 5142, 5952, 6144, 6866, 8122, 8192, 8448, 10240, 11283, 11392, 12288, 14780, 15360, 15744, 16384, 17408, 20841, 20866, 32768, 58496, 59104
Offset: 1

Views

Author

Keywords

Comments

All powers of 2 are in the sequence. - Chai Wah Wu, Nov 10 2014
Numbers k that divide A047778(k). - Michel Marcus, Nov 11 2014

Examples

			3 is in the sequence because the concatenation is 1 10 11, binary expansion of 27, that is divisible by 3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2^13], Mod[FromDigits[Flatten[IntegerDigits[#, 2] & /@ Range@ #], 2], #] == 0 &] (* Michael De Vlieger, Aug 29 2015 *)
  • PARI
    lista(nn) = {vs = []; for (n=1, nn, vs = concat(vs, binary(n)); val = subst(Pol(vs), x, 2); if (val % n == 0, print1(n, ", ")););} \\ Michel Marcus, Nov 11 2014

Extensions

More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)
More terms from David W. Wilson
a(47)-a(49) from Chai Wah Wu, Nov 10 2014

A063171 Dyck language interpreted as binary numbers in ascending order.

Original entry on oeis.org

0, 10, 1010, 1100, 101010, 101100, 110010, 110100, 111000, 10101010, 10101100, 10110010, 10110100, 10111000, 11001010, 11001100, 11010010, 11010100, 11011000, 11100010, 11100100, 11101000, 11110000, 1010101010, 1010101100, 1010110010, 1010110100, 1010111000
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 09 2001

Keywords

Comments

a(n) is the binary expansion of A014486(n). - Joerg Arndt, Feb 27 2013
Replacing "1" by "(" and "0" by ")" yields well-formed bracket expressions (the first term being the empty string)
, (), ()(), (()), ()()(), ()(()), (())(), (()()), ((())), ()()()(), ()()(()), ()(())(), ()(()()), ()((())), (())()(), (())(()), (()())(), (()()()), (()(())), ((()))(), ((())()), ((()())), (((()))), ()()()()(), ()()()(()), ()()(())(), ()()(()()), ()()((())), ()(())()(), ()(())(()), ()(()())(), ()(()()()), ()(()(())), ()((()))(), ()((())()), ()((()())), ()(((()))), (())()()(), (())()(()), (())(())(), (())(()()), (())((())), (()())()(), (()())(()), (()()())(), (()()()()), (()()(())), (()(()))(), (()(())()), (()(()())), (()((()))), ((()))()(), ((()))(()), ((())())(), ((())()()), ((())(())), ((()()))(), ((()())()), ((()()())), ((()(()))), (((())))(), (((()))()), (((())())), (((()()))), ((((()))))
The term a(0)=0 stands for the empty string. - Joerg Arndt, Feb 27 2013

Examples

			s -> ss -> 1s0s -> 11s00s -> 111000s -> 11100010
		

References

  • Donald E. Knuth, The Art of Computer Programming, Vol. 4A: Combinatorial Algorithms, Part 1, Addison-Wesley, 2011, Section 7.2.1.6, pp. 443 (Algorithm P).

Crossrefs

A014486 gives these terms as converted from decimal to binary system.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, union, fromList)
    newtype Word = Word String deriving (Eq, Show, Read)
    instance Ord Word where
       Word us <= Word vs | length us == length vs = us <= vs
                          | otherwise              = length us <= length vs
    a063171 n = a063171_list !! (n-1)
    a063171_list = dyck $ singleton (Word "S") where
       dyck s | null ws   = (read w :: Integer) : dyck s'
              | otherwise = dyck $ union s' (fromList $ concatMap gen ws)
              where ws = filter ((== 'S') . head . snd) $
                                map (`splitAt` w) [0..length w - 1]
                    (Word w, s') = deleteFindMin s
       gen (us,vs) = map (Word . (us ++) . (++ tail vs)) ["10", "1S0", "SS"]
    -- Reinhard Zumkeller, Mar 09 2011
    
  • Maple
    seq(convert(d, binary), d in select(isA014486, [seq(0..640)]));  # Peter Luschny, Mar 13 2024
  • Mathematica
    balancedQ[0] = True; balancedQ[n_] := (s = 0; Do[s += If[b == 1, 1, -1]; If[s < 0, Return[False]], {b, IntegerDigits[n, 2]}]; Return[s == 0]); FromDigits /@ IntegerDigits[ Select[Range[0, 684], balancedQ], 2] (* Jean-François Alcover, Jul 24 2013 *)
    (* Uses Algorithm P from Knuth's TAOCP section 7.2.1.6 - see References and Links. *)
    alist[n_] := Block[{a = Flatten[Table[{1, 0}, n]], m = 2*n - 1, j, k},
        FromDigits /@ Reap[
        While[True,
            Sow[a]; a[[m]] = 0;
            If[a[[m - 1]] == 0,
                a[[--m]] = 1, j = m - 1; k = 2*n - 1;
                While[j > 1 && a[[j]] == 1, a[[j--]] = 0; a[[k]] = 1; k -= 2];
                If[j == 1, Break[]];
                a[[j]] = 1; m = 2*n - 1]
        ]][[2, 1]]];
    Join[{{0}, {10}}, Array[alist, 4, 2]] (* Paolo Xausa, Mar 15 2024 *)
  • PARI
    a_rows(N) = my(a=Vec([[0]], N)); for(r=1, N-1, my(b=a[r], c=List()); foreach(b, t, for(i=1, if(t, valuation(t, 10), 0)+1, listput(~c, t*100+10^i))); a[r+1]=Vec(c)); a; \\ Ruud H.G. van Tol, Jun 02 2024
  • Python
    def A063171_list(limit):
        return [0] + [int(bin(k)[2::]) for k in range(1, limit) if is_A014486(k)]
    print(A063171_list(700))  # Peter Luschny, Jul 30 2022
    
  • Python
    from itertools import count, islice
    from sympy.utilities.iterables import multiset_permutations
    def A063171_gen(): # generator of terms
        yield 0
        for l in count(1):
            for s in multiset_permutations('0'*l+'1'*(l-1)):
                c, m = 0, (l<<1)-1
                for i in range(m):
                    if s[i] == '1':
                        c += 2
                    if cA063171_list = list(islice(A063171_gen(),30)) # Chai Wah Wu, Nov 28 2023
    

Formula

Chomsky-2 grammar with axiom s, terminal alphabet {0, 1} and three rules s -> ss, s -> 1s0, s -> 10.
a(n) = A071152(n)/2.
a(n) = A007088(A014486(n)).

Extensions

a(0)=0 prepended by Joerg Arndt, Feb 27 2013

A029471 Numbers k that divide the (left) concatenation of all numbers <= k written in base 2 (most significant digit on left).

Original entry on oeis.org

1, 85, 145, 245, 1189, 356717, 19590671, 35741759, 791822369, 25313027035
Offset: 1

Views

Author

Keywords

Comments

No other terms below 3*10^10.

Crossrefs

Programs

  • Mathematica
    b = 2; c = {}; Select[Range[10^4], Divisible[FromDigits[c = Join[IntegerDigits[#, b], c], b], #] &] (* Robert Price, Mar 12 2020 *)
  • Python
    from itertools import count
    def a029471():
        total = 0
        power_of_two = 1
        index_of_two = 0
        length_of_string = 0
        for n in count(1):
            total += (n<Christian Perfect, Feb 07 2014
    
  • Python
    def concat_mod(base, k, mod): ...  # See A029479
    for k in range(1, 3*10**10):
      if concat_mod(2, k, k) == 0: print(k) # Jason Yuen, Mar 24 2024

Extensions

One more term from Larry Reeves (larryr(AT)acm.org), Dec 03 2001
Edited and updated by Larry Reeves (larryr(AT)acm.org), Apr 12 2002
a(7)-a(8) from Max Alekseyev, May 12 2011
a(9)-a(10) from Jason Yuen, Mar 24 2024

A020449 Primes whose greatest digit is 1.

Original entry on oeis.org

11, 101, 10111, 101111, 1011001, 1100101, 10010101, 10011101, 10100011, 10101101, 10110011, 10111001, 11000111, 11100101, 11110111, 11111101, 100100111, 100111001, 101001001, 101001011, 101100011, 101101111, 101111011, 101111111
Offset: 1

Views

Author

Keywords

Comments

Primes which are the sums of distinct powers of 10. - Amarnath Murthy, Nov 19 2002
Subsequence of A007088. - Michel Marcus, Dec 18 2015
These numbers are called Anti-Yarborough prime numbers in the Prime Glossary. - Randy L. Ekl, Jan 19 2019

Crossrefs

Subsequence of A036953.

Programs

  • Magma
    [p: p in PrimesUpTo(101111111) | Set(Intseq(p)) subset [0,1]]; // Vincenzo Librandi, Jul 27 2012
    
  • Maple
    N:= 10: # to get all entries with <= N digits
    S:= {}:
    for d from 1 to N-1 do
      S:= S union select(isprime,map(`+`,map(convert,combinat[powerset]({seq(10^i,i=0..d-1)}),`+`),10^d));
    od:
    S; # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(%,list)); # Robert Israel, May 04 2015
  • Mathematica
    Select[FromDigits/@Tuples[{0,1},16],PrimeQ] (* Hans Havermann, May 12 2025 *)
  • PARI
    is(n)=isprime(n)&&vecmax(digits(n))==1 \\ Charles R Greathouse IV, Jul 01 2013
    
  • Python
    from sympy import isprime
    A020449_list = [n for n in (int(format(m,'b')) for m in range(1,2**10)) if isprime(n)] # Chai Wah Wu, Dec 17 2015

A054055 Largest digit of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 2, 2, 3, 4, 5, 6, 7, 8, 9, 3, 3, 3, 3, 4, 5, 6, 7, 8, 9, 4, 4, 4, 4, 4, 5, 6, 7, 8, 9, 5, 5, 5, 5, 5, 5, 6, 7, 8, 9, 6, 6, 6, 6, 6, 6, 6, 7, 8, 9, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 2, 3, 4
Offset: 0

Views

Author

Henry Bottomley, Apr 29 2000

Keywords

Comments

A095815(n) = n + a(n). - Reinhard Zumkeller, Aug 23 2011
a(A007088(n)) = 1, n > 0; a(A136399(n)) > 1. - Reinhard Zumkeller, Apr 25 2012
a(n) = 9 for almost all n. Sum_{n < x} a(n) = 9x + O(.956^x). - Charles R Greathouse IV, Oct 02 2013

Examples

			a(12)=2 because 1 < 2.
		

Crossrefs

Cf. A054054.

Programs

  • Haskell
    a054055 = f 0 where
       f m x | x <= 9 = max m x
             | otherwise = f (max m d) x' where (x',d) = divMod x 10
    -- Reinhard Zumkeller, Jun 20 2012, May 14 2011
    
  • Magma
    [n eq 0 select 0 else Maximum(Intseq(n)): n in [0..104]]; // Bruno Berselli, Aug 24 2011
    
  • Maple
    [seq(max(convert(n,base,10)),n=0..120)];
  • Mathematica
    f[n_] := Sort[IntegerDigits[n]][[-1]]; Array[f, 105, 0] (* Alonso del Arte, May 14 2011 *) (* and revised by Robert G. Wilson v, Aug 24 2011 *)
    Max/@IntegerDigits[Range[0,110]] (* Harvey P. Dale, Apr 17 2016 *)
  • PARI
    a(n)=vecmax(eval(Vec(Str(n)))) \\ Charles R Greathouse IV, Jun 16 2011
    
  • PARI
    a(n)=vecmax(digits(n)) \\ Charles R Greathouse IV, Oct 02 2013
    
  • Python
    def A054055(n): return max(int(d) for d in str(n)) # Chai Wah Wu, Jun 06 2022

A000042 Unary representation of natural numbers.

Original entry on oeis.org

1, 11, 111, 1111, 11111, 111111, 1111111, 11111111, 111111111, 1111111111, 11111111111, 111111111111, 1111111111111, 11111111111111, 111111111111111, 1111111111111111, 11111111111111111, 111111111111111111, 1111111111111111111, 11111111111111111111
Offset: 1

Views

Author

Keywords

Comments

Or, numbers written in base 1.
If p is a prime > 5 then d_{a(p)} == 1 (mod p) where d_{a(p)} is a divisor of a(p). This also gives an alternate elementary proof of the infinitude of prime numbers by the fact that for every prime p there exists at least one prime of the form k*p + 1. - Amarnath Murthy, Oct 05 2002
11 = 1*9 + 2; 111 = 12*9 + 3; 1111 = 123*9 + 4; 11111 = 1234*9 + 5; 111111 = 12345*9 + 6; 1111111 = 123456*9 + 7; 11111111 = 1234567*9 + 8; 111111111 = 12345678*9 + 9. - Vincenzo Librandi, Jul 18 2010

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See pp. 57-58.
  • K. G. Kroeber, Mathematik der Palindrome; p. 348; 2003; ISBN 3 499 615762; Rowohlt Verlag; Germany.
  • D. Olivastro, Ancient Puzzles. Bantam Books, NY, 1993, p. 276.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 32.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    A000042 n = (10^n-1) `div` 9 -- James Spahlinger, Oct 08 2012
    (Common Lisp) (defun a000042 (n) (truncate (expt 10 n) 9)) ; James Spahlinger, Oct 12 2012
    
  • Magma
    [(10^n - 1)/9: n in [1..20]]; // G. C. Greubel, Nov 04 2018
    
  • Maple
    a:= n-> parse(cat(1$n)):
    seq(a(n), n=1..25);  # Alois P. Heinz, Mar 23 2018
  • Mathematica
    Table[(10^n - 1)/9, {n, 1, 18}]
    FromDigits/@Table[PadLeft[{},n,1],{n,20}] (* Harvey P. Dale, Aug 21 2011 *)
  • PARI
    a(n)=if(n<0,0,(10^n-1)/9)
    
  • Python
    def a(n): return int("1"*n) # Michael S. Branicky, Jan 01 2021
  • Sage
    [gaussian_binomial(n, 1, 10) for n in range(1, 19)]  # Zerinvary Lajos, May 28 2009
    

Formula

a(n) = (10^n - 1)/9.
G.f.: 1/((1-x)*(1-10*x)).
Binomial transform of A003952. - Paul Barry, Jan 29 2004
From Paul Barry, Aug 24 2004: (Start)
a(n) = 10*a(n-1) + 1, n > 1, a(1)=1. [Offset 1.]
a(n) = Sum_{k=0..n} binomial(n+1, k+1)*9^k. [Offset 0.] (End)
a(2n) - 2*a(n) = (3*a(n))^2. - Amarnath Murthy, Jul 21 2003
a(n) is the binary representation of the n-th Mersenne number (A000225). - Ross La Haye, Sep 13 2003
The Hankel transform of this sequence is [1,-10,0,0,0,0,0,0,0,0,...]. - Philippe Deléham, Nov 21 2007
E.g.f.: (exp(10*x) - exp(x))/9. - G. C. Greubel, Nov 04 2018
a(n) = 11*a(n-1) - 10*a(n-2). - Wesley Ivan Hurt, May 28 2021
a(n+m-2) = a(m)*a(n-1) - (a(m)-1)*a(n-2), n>1, m>0. - Matej Veselovac, Jun 07 2021
Sum_{n>=1} 1/a(n) = A065444. - Stefano Spezia, Jul 30 2024

Extensions

More terms from Paul Barry, Jan 29 2004

A004676 Primes written in base 2.

Original entry on oeis.org

10, 11, 101, 111, 1011, 1101, 10001, 10011, 10111, 11101, 11111, 100101, 101001, 101011, 101111, 110101, 111011, 111101, 1000011, 1000111, 1001001, 1001111, 1010011, 1011001, 1100001, 1100101, 1100111, 1101011, 1101101, 1110001, 1111111, 10000011, 10001001
Offset: 1

Views

Author

Keywords

Comments

The only primes of binary weight 2 are the Fermat primes (only five are known: 11, 101, 10001, 100000001, 10000000000000001); the repunits base 2 are the Mersenne primes. - Daniel Forgues, Nov 07 2011

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 3.

Crossrefs

Cf. A019434 Fermat primes (base 10), A000668 Mersenne primes (base 10).

Programs

Formula

a(n) = A007088(A000040(n)). - R. J. Mathar, Jun 03 2011
Previous Showing 41-50 of 784 results. Next