cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 2117 results. Next

A085880 Triangle T(n,k) read by rows: multiply row n of Pascal's triangle (A007318) by the n-th Catalan number (A000108).

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 5, 15, 15, 5, 14, 56, 84, 56, 14, 42, 210, 420, 420, 210, 42, 132, 792, 1980, 2640, 1980, 792, 132, 429, 3003, 9009, 15015, 15015, 9009, 3003, 429, 1430, 11440, 40040, 80080, 100100, 80080, 40040, 11440, 1430, 4862, 43758, 175032, 408408, 612612, 612612, 408408, 175032, 43758, 4862
Offset: 0

Views

Author

N. J. A. Sloane, Aug 17 2003

Keywords

Comments

Coefficients of terms in the series reversion of (1-k*x-(k+1)*x^2)/(1+x). - Paul Barry, May 21 2005
Equals A131427 * A007318 as infinite lower triangular matrices. [Philippe Deléham, Sep 15 2008]
Sum_{k=0..n} T(n,k)*x^k = A168491(n), A000007(n), A000108(n), A151374(n), A005159(n), A151403(n), A156058(n), A156128(n), A156266(n), A156270(n), A156273(n), A156275(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Nov 15 2013
Diagonal sums are A052709(n+1). - Philippe Deléham, Nov 15 2013

Examples

			Triangle starts:
[ 1]     1;
[ 2]     1,     1;
[ 3]     2,     4,      2;
[ 4]     5,    15,     15,      5;
[ 5]    14,    56,     84,     56,     14;
[ 6]    42,   210,    420,    420,    210,     42;
[ 7]   132,   792,   1980,   2640,   1980,    792,    132;
[ 8]   429,  3003,   9009,  15015,  15015,   9009,   3003,    429;
[ 9]  1430, 11440,  40040,  80080, 100100,  80080,  40040,  11440,  1430;
[10]  4862, 43758, 175032, 408408, 612612, 612612, 408408, 175032, 43758, 4862;
...
		

Programs

  • GAP
    Flat(List([0..10], n-> List([0..n], k-> Binomial(n,k)*Binomial(2*n,n)/( n+1) ))); # G. C. Greubel, Feb 07 2020
  • Magma
    [Binomial(n,k)*Catalan(n): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 07 2020
    
  • Maple
    seq(seq(binomial(n, k)*binomial(2*n, n)/(n+1), k = 0..n), n = 0..10); # G. C. Greubel, Feb 07 2020
  • Mathematica
    Table[Binomial[n, k]*CatalanNumber[n], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 07 2020 *)
  • PARI
    tabl(nn) = {for (n=0, nn, c =  binomial(2*n,n)/(n+1); for (k=0, n, print1(c*binomial(n, k), ", ");); print(););} \\ Michel Marcus, Apr 09 2015
    
  • Sage
    [[binomial(n,k)*catalan_number(n) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 07 2020
    

Formula

Triangle given by [1, 1, 1, 1, 1, 1, ...] DELTA [1, 1, 1, 1, 1, 1, ...] where DELTA is Deléham's operator defined in A084938.
Sum_{k>=0} T(n, k) = A151374(n) (row sums). - Philippe Deléham, Aug 11 2005
G.f.: (1-sqrt(1-4*(x+y)))/(2*(x+y)). - Vladimir Kruchinin, Apr 09 2015

A107430 Triangle read by rows: row n is row n of Pascal's triangle (A007318) sorted into increasing order.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 4, 6, 1, 1, 5, 5, 10, 10, 1, 1, 6, 6, 15, 15, 20, 1, 1, 7, 7, 21, 21, 35, 35, 1, 1, 8, 8, 28, 28, 56, 56, 70, 1, 1, 9, 9, 36, 36, 84, 84, 126, 126, 1, 1, 10, 10, 45, 45, 120, 120, 210, 210, 252, 1, 1, 11, 11, 55, 55, 165, 165, 330, 330, 462, 462, 1
Offset: 0

Views

Author

Philippe Deléham, May 21 2005

Keywords

Comments

By rows, equals partial sums of A053121 reversed rows. Example: Row 4 of A053121 = (2, 0, 3, 0, 1) -> (1, 0, 3, 0, 2) -> (1, 1, 4, 4, 6). - Gary W. Adamson, Dec 28 2008, edited by Michel Marcus, Sep 22 2015

Examples

			Triangle begins:
1;
1,1;
1,1,2;
1,1,3,3;
1,1,4,4,6;
		

Crossrefs

A061554 is similar but with rows sorted into decreasing order.
Cf. A034868.
Cf. A053121. - Gary W. Adamson, Dec 28 2008
Cf. A103284.

Programs

  • Haskell
    import Data.List (sort)
    a107430 n k = a107430_tabl !! n !! k
    a107430_row n = a107430_tabl !! n
    a107430_tabl = map sort a007318_tabl
    -- Reinhard Zumkeller, May 26 2013
    
  • Magma
    /* As triangle */ [[Binomial(n,Floor(k/2)) : k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 22 2015
    
  • Maple
    for n from 0 to 10 do sort([seq(binomial(n,k),k=0..n)]) od; # yields sequence in triangular form. - Emeric Deutsch, May 28 2005
  • Mathematica
    Flatten[ Table[ Sort[ Table[ Binomial[n, k], {k, 0, n}]], {n, 0, 12}]] (* Robert G. Wilson v, May 28 2005 *)
  • PARI
    for(n=0,20, for(k=0,n, print1(binomial(n,floor(k/2)), ", "))) \\ G. C. Greubel, May 22 2017

Formula

T(n,k) = C(n,floor(k/2)). - Paul Barry, Dec 15 2006; corrected by Philippe Deléham, Mar 15 2007
Sum_{k=0..n} T(n,k)*x^(n-k) = A127363(n), A127362(n), A127361(n), A126869(n), A001405(n), A000079(n), A127358(n), A127359(n), A127360(n) for x=-4,-3,-2,-1,0,1,2,3,4 respectively. - Philippe Deléham, Mar 29 2007

Extensions

More terms from Emeric Deutsch and Robert G. Wilson v, May 28 2005

A131060 3*A007318 - 2*A000012 as infinite lower triangular matrices.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 16, 10, 1, 1, 13, 28, 28, 13, 1, 1, 16, 43, 58, 43, 16, 1, 1, 19, 61, 103, 103, 61, 19, 1, 1, 22, 82, 166, 208, 166, 82, 22, 1, 1, 25, 106, 250, 376, 376, 250, 106, 25, 1, 1, 28, 133, 358, 628, 754, 628, 358, 133, 28, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 13 2007

Keywords

Comments

Row sums = A097813: (1, 2, 6, 16, 38, 84, 178, ...).

Examples

			First few rows of the triangle:
  1;
  1,  1;
  1,  4,  1;
  1,  7,  7,  1;
  1, 10, 16, 10,  1;
  1, 13, 28, 28, 13,  1;
  1, 16, 43, 58, 43, 16,  1;
  ...
		

Crossrefs

Programs

  • Magma
    [3*Binomial(n,k) -2: k in [0..n], n in [0..10]]; // G. C. Greubel, Mar 12 2020
    
  • Maple
    A131060:= (n,k) -> 3*binomial(n, k)-2; seq(seq(A131060(n, k), k = 0..n), n = 0.. 10); # G. C. Greubel, Mar 12 2020
  • Mathematica
    T[n_, k_] = 3*Binomial[n, k] -2; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* Roger L. Bagula, Aug 20 2008 *)
  • Sage
    [[3*binomial(n,k) -2 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 12 2020

Formula

T(n,k) = 3*binomial(n,k) - 2. - Roger L. Bagula, Aug 20 2008

Extensions

More terms from Roger L. Bagula, Aug 20 2008

A091043 Normalized triangle of odd numbered entries of even numbered rows of Pascal's triangle A007318.

Original entry on oeis.org

1, 1, 1, 3, 10, 3, 1, 7, 7, 1, 5, 60, 126, 60, 5, 3, 55, 198, 198, 55, 3, 7, 182, 1001, 1716, 1001, 182, 7, 1, 35, 273, 715, 715, 273, 35, 1, 9, 408, 4284, 15912, 24310, 15912, 4284, 408, 9, 5, 285, 3876, 19380, 41990, 41990, 19380, 3876, 285, 5, 11, 770, 13167, 85272
Offset: 1

Views

Author

Wolfdieter Lang, Jan 23 2004

Keywords

Comments

b(n)= A006519(n), with b(n) defined in the formula. For every odd n b(n)=1.
The row polynomials Po(n,x) := 2*b(n)*sum(a(n,m)*x^m,m=0..n-1), n>=1, appear as numerators of the generating functions for the odd numbered column sequences of array A034870. b(n) is defined in the formula below.

Examples

			[1];[1,1];[3,10,3];[1,7,7,1];[5,60,126,60,5];...
n=3: GCD(3,10,3)=GCD(3,10)=1=b(3)=A006519(3); n=4: GCD(4,28,28,4)=GCD(4,28)=4=b(4)=A006519(4).
		

Formula

a(n, m)= binomial(2*n, 2*m+1)/(2*b(n)), n>=m+1>=1, else 0, with b(n) := GCD(seq(binomial(2*n, 2*m+1)/2, m=0..n-1)), where GCD denotes the greatest common divisor of a set of numbers (here one half of the odd numbered entries in the even numbered rows of Pascal's triangle). It suffices to consider m=0..floor((n-1)/2) due to symmetry.

A131047 (1/2) * (A007318 - A007318^(-1)).

Original entry on oeis.org

1, 0, 2, 1, 0, 3, 0, 4, 0, 4, 1, 0, 10, 0, 5, 0, 6, 0, 20, 0, 6, 1, 0, 21, 0, 35, 0, 7, 0, 8, 0, 56, 0, 56, 0, 8, 1, 0, 36, 0, 126, 0, 84, 0, 9
Offset: 1

Views

Author

Gary W. Adamson, Jun 12 2007

Keywords

Comments

Row sums = (1, 2, 4, 8, ...). A131047 * (1,2,3, ...) = A087447 starting (1, 4, 10, 24, 56, ...). A generalized set of analogous triangles: (1/(Q+1)) * (P^Q - 1/P), Q an integer, generates triangles with row sums = powers of (Q+1). Cf. A131048, A131049, A131050, A131051 for triangles having Q = 2,3,4 and 5, respectively.
A007318, Pascal's triangle, = this triangle + A119467, since one triangle = the zeros or masks of the other. - Gary W. Adamson, Jun 12 2007

Examples

			First few rows of the triangle:
  1;
  0, 2;
  1, 0,  3;
  0, 4,  0,  4;
  1, 0, 10,  0,  5;
  0, 6,  0, 20,  0, 6;
  1, 0, 21,  0, 35, 0, 7;
  ...
		

Crossrefs

Formula

Let A007318 (Pascal's triangle) = P, then A131047 = (1/2) * (P - 1/P); deleting the right border of zeros.

A142175 Triangle read by rows: T(n,k) = (1/4)*(A007318(n,k) - 6*A008292(n+1,k+1) + 9*A060187(n+1,k+1)).

Original entry on oeis.org

1, 1, 1, 1, 8, 1, 1, 36, 36, 1, 1, 133, 420, 133, 1, 1, 449, 3334, 3334, 449, 1, 1, 1446, 21939, 49364, 21939, 1446, 1, 1, 4534, 130044, 560957, 560957, 130044, 4534, 1, 1, 13991, 724222, 5459561, 10284514, 5459561, 724222, 13991, 1, 1, 42747, 3880014, 48160170, 154214412, 154214412, 48160170, 3880014, 42747, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 16 2008

Keywords

Comments

Row n gives the coefficients in the expansion of (1/4)*(1 + x)^n + (9/4)*2^n*(1 - x)^(1 + n)*Phi(x, -n, 1/2) - (3/2)*(1 - x)^(n + 2)*Phi(x, -1 - n, 1), where Phi is the Lerch transcendant.

Examples

			Triangle begins:
     1;
     1,    1;
     1,    8,      1;
     1,   36,     36,      1;
     1,  133,    420,    133,      1;
     1,  449,   3334,   3334,    449,      1;
     1, 1446,  21939,  49364,  21939,   1446,    1;
     1, 4534, 130044, 560957, 560957, 130044, 4534, 1;
      ... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018
		

Crossrefs

Triangles related to Eulerian numbers: A008292, A046802, A060187, A123125.

Programs

  • Magma
    A060187:= func< n,k | (&+[(-1)^(k-j)*Binomial(n, k-j)*(2*j-1)^(n-1): j in [1..k]]) >;
    A142175:= func< n,k | (Binomial(n,k) - 6*EulerianNumber(n+1,k) + 9*A060187(n+1,k+1))/4 >;
    [A142175(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 30 2024
    
  • Mathematica
    p[x_, n_] = 1/4*(1 + x)^n + 9/4*2^n*(1 - x)^(1 + n)*LerchPhi[x, -n, 1/2] - 3/2*(1 - x)^(2 + n)*PolyLog[-1 - n, x]/x;
    Table[CoefficientList[FullSimplify[p[x, n]], x], {n, 0, 10}]// Flatten
  • Maxima
    A008292(n, k) := sum((-1)^j*(k - j)^n*binomial(n + 1, j), j, 0, k)$
    A060187(n, k) := sum((-1)^(k - j)*binomial(n, k - j)*(2*j - 1)^(n - 1), j, 1, k)$
    T(n, k) := (binomial(n, k) - 6*A008292(n + 1, k + 1) + 9*A060187(n + 1, k + 1))/4$
    create_list(T(n, k), n, 0, 10, k, 0, n);
    /* Franck Maminirina Ramaharo, Oct 20 2018 */
    
  • SageMath
    # from sage.all import * # (use for Python)
    from sage.combinat.combinat import eulerian_number
    def A060187(n,k): return sum(pow(-1, k-j)*binomial(n, k-j)*pow(2*j-1, n-1) for j in range(1,k+1))
    def A142175(n,k): return (binomial(n,k) - 6*eulerian_number(n+1,k) +9*A060187(n+1,k+1))//4
    print(flatten([[A142175(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Dec 30 2024

Formula

E.g.f.: (exp((1 + x)*y) - 6*(1 - x)^2*exp(y*(1 - x))/(1 - x*exp(y*(1 - x)))^2 + 9*(1 - x)*exp((1 - x)*y)/(1 - x*exp(2*(1 - x)*y)))/4. - Franck Maminirina Ramaharo, Oct 20 2018

Extensions

Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 19 2018

A218272 Infinitesimal generator for transpose of the Pascal matrix A007318 (as upper triangular matrices).

Original entry on oeis.org

0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0
Offset: 0

Views

Author

Tom Copeland, Oct 24 2012

Keywords

Comments

T is the transpose of A132440.
Let M(t) = exp(t*T) = limit [1 + t*T/n]^n as n tends to infinity.
Then M(1) = the transpose of the lower triangular Pascal matrix A007318, with inverse M(-1).
Given a polynomial sequence p_n(x) with p_0(x)=1 and the lowering and raising operators L and R defined by L P_n(x) = n * P_(n-1)(x) and
R P_n(x) = P_(n+1)(x), the matrix T represents the action of L in the p_n(x) basis. For p_n(x) = x^n, L = D = d/dx and R = x. For p_n(x) = x^n/n!, L = DxD and R = D^(-1).
See A132440 as an analog and more general discussion.
Sum_{n>=0} c_n T^n / n! = e^(c.T) gives the Maurer-Cartan form matrix for the one-dimensional Leibniz group defined by multiplication of a Taylor series by the formal Taylor series e^(c.x) (cf. Olver). - Tom Copeland, Nov 05 2015
From Tom Copeland, Jul 02 2018: (Start)
The transpose Psc^Trn of the lower triangular Pascal matrix Psc = A007318 gives the numerical coefficients of the Maurer-Cartan form matrix M of the Leibniz group Leibniz(n)(1,1) presented on p. 9 of the Olver paper. M = exp[c. * T] with (c.)^n = c_n and T the Lie infinitesimal generator of this entry. The columns e^T are the rows of the Pascal matrix A007318.
M can be obtained by multiplying each n-th column vector of Psc by c_n and then transposing the result; i.e., with the diagonal matrix H = Diag(c_0, c_1, c_2, ...), M = (Psc * H)^Trn = H * Psc^Trn.
M is a matrix representation of the differential operator S = e^{c.*D} with D = d/dx, which acting on x^m gives the Appell polynomial p_m(x) = (c. + x)^m, with (c.)^k = c_k an arbitrary indeterminate except for c_0 = 1. For example, S x^2 = (c. + x)^2 = c_0*x^2 + 2*c_1*x + c_2, and M * (0,0,1,0,0,...)^Trn = (c_2,2*c_1,c_0,0,0,...)^Trn = V, so V^Trn = (0,0,1,0,...) * M^Trn = (0,0,1,0,...) * Psc * H = (c_2,2*c_1,c_0,0,...).
The differential lowering and raising operators for the Appell sequence are given by L = D and R = x + dlog(S)/dD, with L p_n(x = n * p_(n-1)(x) and R p_n(x) = p_(n+1)(x).
(End)

Examples

			Matrix T begins
  0,1;
  0,0,2;
  0,0,0,3;
  0,0,0,0,4;
  0,0,0,0,0,5;
  0,0,0,0,0,0,6;
  ...
		

Crossrefs

Essentially the same as A134402, A132440 and A130460.

Programs

Formula

The matrix operation b = T*a can be characterized in several ways in terms of the coefficients a(n) and b(n), their o.g.f.s A(x) and B(x), or e.g.f.s EA(x) and EB(x):
1) b(n) = (n+1) * a(n+1),
2) B(x) = D A(x), or
3) EB(x) = DxD EA(x),
where D is the derivative w.r.t. x.
So the exponentiated operator can be characterized as
4) exp(t*T) A(x) = exp(t*D) A(x) = A(x+t),
5) exp(t*T) EA(x) = exp(t*DxD) EA(x) = exp[x*a/(1+t*a)]/(1+t*a),
= Sum_{n>=0} (1+t*a)^(-n-1) (x*a)^n/n!, where umbrally
a^n *(1+t*a)^(-n-1) = Sum_{j>0} binomial(n+j,j)a(n+j)t^j,
6) exp(t*T) EA(x) = Sum_{n>=0} a(n) t^n Lag(n,-x/t),
where Lag(n,x) are the Laguerre polynomials (A021009), or
7) [exp(t*T) * a]_n = [M(t) * a]_n
= Sum_{j>=0} binomial(n+j,j)a(n+j)t^j.
For more on the operator DxD, see A021009 and references in A132440.

A055587 Triangle with columns built from row sums of the partial row sums triangles obtained from Pascal's triangle A007318. Essentially A049600 formatted differently.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 8, 4, 1, 1, 16, 20, 13, 5, 1, 1, 32, 48, 38, 19, 6, 1, 1, 64, 112, 104, 63, 26, 7, 1, 1, 128, 256, 272, 192, 96, 34, 8, 1, 1, 256, 576, 688, 552, 321, 138, 43, 9, 1, 1, 512, 1280, 1696, 1520, 1002, 501, 190, 53, 10, 1, 1, 1024, 2816, 4096
Offset: 0

Views

Author

Wolfdieter Lang, May 30 2000

Keywords

Comments

In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is 1/((1-z)*(1-x*z*(1-z)/(1-2*z))).
Column m (without leading zeros) is obtained from convolution of A000012 (powers of 1) with m-fold convoluted A011782.

Examples

			{1}; {1, 1}; {1, 2, 1}; {1, 4, 3, 1}; {1, 8, 8, 4, 1}; ...
Fourth row polynomial (n=3): p(3,x)= 1+4*x+3*x^2+x^3
		

Crossrefs

Cf. A049600, column sequences are A000012 (powers of 1), A000079 (powers of 2), A001792, A049611, A049612, A055589, A055852-5 for m=0..9, row sums: A055588.

Programs

  • Mathematica
    t[n_, k_] := Hypergeometric2F1[k, k-n, 1, -1]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 05 2014, after Paul D. Hanna *)
  • PARI
    {T(n,k) = if( n<0 || k<0, 0, polcoeff( polcoeff( 1 / ((1 - z) * (1 - x*z * (1 - z) / (1 - 2*z) + z * O(z^n) + x * O(x^k))), k), n))}; /* Michael Somos, Sep 30 2003 */
    
  • PARI
    {T(n,k)=if(k>n||n<0||k<0,0,if(k==0||k==n,1, sum(j=0,n-k,binomial(n-k,j)*binomial(k+j-1,k-1)););)} (Hanna)

Formula

a(n, m)= Am(n, 0) if n >= m >= 0 and a(n, m) := 0 if nA007318) with the lower triangular matrix A007318 (Pascal triangle) and prs^(m) is the partial row sums (prs) mapping for triangular matrices applied m times. See e.g. A055584 for m=4.
G.f. for column m: (1/(1-x))*(x*(1-x)/(1-2*x))^m, m >= 0.
T(n, k) = sum_{j=0..n-k} C(n-k, j)*C(k+j-1, k-1). - Paul D. Hanna, Jan 14 2004

A059233 Number of rows in which n appears in Pascal's triangle A007318.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 2

Views

Author

Fabian Rothelius, Jan 20 2001

Keywords

Comments

Central binomial coefficients c = A000984(n) > 1 appear once in the middle column C(2n, n), and thereafter in one or more later rows to the left as C(r,k) and to the right as C(r, r-k), k < r/2; the last time in row r = c = C(c,1) = C(c,c-1). For these, a(n) = (A003016(n)+1)/2. For all other numbers n > 1, a(n) = A003016(n)/2. - M. F. Hasler, Mar 01 2023

Examples

			6 appears in both row 4 and row 6 in Pascal's triangle, therefore a(6) = 2.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 93, #47.
  • C. S. Ogilvy, Tomorrow's Math. 2nd ed., Oxford Univ. Press, 1972, p. 96.

Crossrefs

Programs

  • Haskell
    a059233 n = length $ filter (n `elem`) $
                                take (fromInteger n) $ tail a007318_tabl
    a059233_list = map a059233 [2..]
    -- Reinhard Zumkeller, Dec 24 2012
    
  • Mathematica
    nmax = 101; A007318 = Table[Binomial[n, k], {n, 0, nmax}, {k, 0, n}]; a[n_] := Position[A007318, n][[All, 1]] // Union // Length; Table[a[n], {n, 2, nmax}] (* Jean-François Alcover, Sep 09 2013 *)
  • PARI
    A059233(n)=A003016(n)\/2 \\ M. F. Hasler, Mar 01 2023

Formula

a(A180058(n)) = n and a(m) < n for m < A180058(n); a(A182237(n)) = 2; a(A098565(n)) = 3. - Reinhard Zumkeller, Dec 24 2012
a(n) = ceiling(A003016(n)/2). - M. F. Hasler, Mar 01 2023

A108044 Triangle read by rows: right half of Pascal's triangle (A007318) interspersed with 0's.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 3, 0, 1, 6, 0, 4, 0, 1, 0, 10, 0, 5, 0, 1, 20, 0, 15, 0, 6, 0, 1, 0, 35, 0, 21, 0, 7, 0, 1, 70, 0, 56, 0, 28, 0, 8, 0, 1, 0, 126, 0, 84, 0, 36, 0, 9, 0, 1, 252, 0, 210, 0, 120, 0, 45, 0, 10, 0, 1, 0, 462, 0, 330, 0, 165, 0, 55, 0, 11, 0, 1, 924, 0, 792, 0, 495, 0, 220, 0, 66
Offset: 0

Views

Author

N. J. A. Sloane, Jun 02 2005

Keywords

Comments

Column k has e.g.f. Bessel_I(k,2x). - Paul Barry, Mar 10 2010
T(n,k) is the number of binary sequences of length n in which the number of ones minus the number of zeros is k. If 2 divides(n+k), such a sequence will have (n+k)/2 ones and (n-k)/2 zeros. Since there are C(n,(n+k)/2) ways to choose the sequence entries that get a one, T(n,k)=binomial(n,(n+k)/2) whenever (n+k) is even and T(n,k)= 0 otherwise. See the example below in the example section. - Dennis P. Walsh, Apr 11 2012
T(n,k) is the number of walks on the semi-infinite integer line with n steps that end at k. The walks start at 0, move at each step either one to the left or one to the right, and never enter the region of negative k. [Walks with impenetrable wall at -1/2. Dyck excursions of n steps that end at level k.] The variant without the restriction of negative positions is A053121. - R. J. Mathar, Nov 02 2023

Examples

			Triangle begins:
  1
  0 1
  2 0 1
  0 3 0 1
  6 0 4 0 1
  0 10 0 5 0 1
  20 0 15 0 6 0 1
From _Paul Barry_, Mar 10 2010: (Start)
Production matrix is
  0, 1,
  2, 0, 1,
  0, 1, 0, 1,
  0, 0, 1, 0, 1,
  0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 0, 0, 1, 0, 1,
  0, 0, 0, 0, 0, 0, 0, 1, 0, 1 (End)
T(5,1)=10 since there are 10 binary sequences of length 5 in which the number of ones exceed the number of zeros by exactly 1, namely, 00111, 01011, 01101, 01110, 10011, 10101, 10110, 11001, 11010, and 11100. Also, T(5,2)=0 since there are no binary sequences in which the number of ones exceed the number of zeros by exactly 2. - _Dennis P. Walsh_, Apr 11 2012
		

Crossrefs

Cf. A007318, A108045 (matrix inverse),
Cf. A204293, A357136, A000984 (column 0), A001700 (column 1), A001791 (column 2), A002054 (column 3)

Programs

  • Haskell
    import Data.List (intersperse)
    a108044 n k = a108044_tabl !! n !! k
    a108044_row n = a108044_tabl !! n
    a108044_tabl = zipWith drop [0..] $ map (intersperse 0) a007318_tabl
    -- Reinhard Zumkeller, May 18 2013
  • Maple
    T:=proc(n,k) if n+k mod 2 = 0 then binomial(n,(n+k)/2) else 0 fi end: for n from 0 to 13 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form; Emeric Deutsch, Jun 05 2005
  • Mathematica
    b[n_,k_]:=If[EvenQ[n+k],Binomial[n,(n+k)/2],0]; Flatten[Table[b[n,k],{n,0,20},{k,0,n}]] (* Harvey P. Dale, May 05 2013 *)

Formula

Each entry is the sum of those in the previous row that are to its left and to its right.
Riordan array (1/sqrt(1-4*x^2), (1-sqrt(1-4*x^2))/(2*x)).
T(n, k) = binomial(n, (n+k)/2) if n+k is even, T(n, k)=0 if n+k is odd. G.f.=f/(1-tg), where f=1/sqrt(1-4x^2) and g=(1-sqrt(1-4x^2))/(2x). - Emeric Deutsch, Jun 05 2005
From Peter Bala, Jun 29 2015: (Start)
Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = ( 1 - sqrt(1 - 4*x) )/(2*x) and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan).
T(n,k) = [x^(n-k)] f(x)^n with f(x) = 1 + x^2. In general the (n,k)th entry of the hitting time array ( x*h'(x)/h(x), h(x) ) has the form [x^(n-k)] f(x)^n, where f(x) = x/( series reversion of h(x) ).
The inverse array is A108045 (a hitting time array with h(x) = x/(1 + x^2)). (End)

Extensions

More terms from Emeric Deutsch and Christian G. Bower, Jun 05 2005
Previous Showing 31-40 of 2117 results. Next