cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 83 results. Next

A014557 Multiplicity of K_3 in K_n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 4, 8, 12, 20, 28, 40, 52, 70, 88, 112, 136, 168, 200, 240, 280, 330, 380, 440, 500, 572, 644, 728, 812, 910, 1008, 1120, 1232, 1360, 1488, 1632, 1776, 1938, 2100, 2280, 2460, 2660, 2860, 3080, 3300, 3542, 3784, 4048, 4312, 4600, 4888, 5200
Offset: 0

Views

Author

Keywords

Comments

The multiplicity of triangles in K_n is defined to be the minimum number of monochromatic copies of K_3 that occur in any 2-coloring of the edges of K_n. - Allan Bickle, Mar 04 2023
Twice A008804 (up to offset).
From Alexander Adamchuk, Nov 29 2006: (Start)
n divides a(n) for n = {1,2,3,4,5,8,10,13,14,16,17,20,22,25,26,28,29,32,34,37,38,40,41,44,46,49,50,52,53,56,58,61,62,64,65,68,70,73,74,76,77,80,82,85,86,88,89,92,94,97,98,100,...}.
Prime p divides a(p) for p = {2,3,5,13,17,29,37,41,53,61,73,89,97,101,109,113,137,149,157,173,181,193,197,...} = (2,3) and all primes from A002144: Pythagorean primes: primes of form 4n+1.
(n+1) divides a(n) for n = {1,2,3,4,5,19,27,43,51,67,75,91,99,...}.
(p+1) divides a(p) for prime p = {2,3,5,19,43,67,139,163,211,283,307,331,379,499,523,547,571,619,643,691,739,787,811,859,883,907,...} = {2,5} and all primes from A141373: Primes of the form 3x^2+16y^2.
(n-1) divides a(n) for n = {2,3,4,5,21,29,45,53,69,77,93,101,...}.
(p-1) divides a(p) for prime p = {2,3,5,29,53,101,149,173,197,269,293,317,389,461,509,557,653,677,701,773,797,821,941,..} = {2,3} and all primes from A107003: Primes of the form 5x^2+2xy+5y^2, with x and y any integer.
(n-2) divides a(n) for n = {3,4,5,12,16,24,28,36,40,48,52,60,64,72,76,84,88,96,100,...} = {3,5} and 4*A032766: Numbers congruent to 0 or 1 mod 3.
(n+3) divides a(n) for n = {1,2,3,4,5,9,11,18,32,39}.
(n-3) divides a(n) for n = {4,5,7,9,23,31,47,55,71,79,95,103,119,127,143,151,167,175,...}.
(p+3) divides a(p) for prime p = {5,7,23,31,47,71,79,103,127,151,167,191,199,...} = {5} and all primes from A007522: Primes of form 8n+7.
(n-4) divides a(n) for n = {5,6,8,11,12,14,15,18,20,23,24,26,27,30,32,35,36,38,39,42,44,47,48,50,...}.
(p-4) divides a(p) for prime p = {5,11,23,47,59,71,83,107,131,167,179,191,...} = {5} and all primes from A068231: Primes congruent to 11 (mod 12).
(n+5) divides a(n) for n = {1,2,3,4,5,30,31,45,58,145}.
(n-5) divides a(n) for n = {6,7,9,10,20,25,33,49,57,73,81,97,105,...}.
(p-5) divides a(p) for prime p = {7,73,97,193,241,313,337,409,433,457,577,601,673,769,937,...} = {7} and all primes from A107008: Primes of the form x^2+24y^2. (End)

Examples

			Any 2-coloring of the edges of K_6 produces at least two monochromatic triangles.  Having colors induce K_3,3 and 2K_3 shows this is attained, so a(6) = 2.
		

Crossrefs

Programs

  • Magma
    [n*(n-1)*(n-2)/6 - Floor((n/2)*Floor(((n-1)/2)^2)): n in [1..20]]; // G. C. Greubel, Oct 06 2017
  • Maple
    A049322 := proc(n) local u; if n mod 2 = 0 then u := n/2; RETURN(u*(u-1)*(u-2)/3); elif n mod 4 = 1 then u := (n-1)/4; RETURN(u*(u-1)*(4*u+1)*2/3); else u := (n-3)/4; RETURN(u*(u+1)*(4*u-1)*2/3); fi; end;
  • Mathematica
    Table[Binomial[n,3] - Floor[n/2*Floor[((n-1)/2)^2]],{n,0,100}] (* Alexander Adamchuk, Nov 29 2006 *)
  • PARI
    x='x+O('x^99); concat(vector(6), Vec(2*x^6/((x-1)^4*(x+1)^2*(x^2+1)))) \\ Altug Alkan, Apr 08 2016
    

Formula

a(n) = binomial(n,3) - floor(n/2 * floor(((n-1)/2)^2)). - Alexander Adamchuk, Nov 29 2006
G.f.: 2*x^6/((x-1)^4*(x+1)^2*(x^2+1)). - Colin Barker, Nov 28 2012
E.g.f.: ((x - 3)*x^2*cosh(x) - 6*sin(x) + (6 + 3*x - 3*x^2 + x^3)*sinh(x))/24. - Stefano Spezia, May 15 2023

Extensions

Entry revised by N. J. A. Sloane, Mar 22 2004

A115257 Partial sums of binomial(2n,n)^2.

Original entry on oeis.org

1, 5, 41, 441, 5341, 68845, 922621, 12701245, 178338145, 2542242545, 36677022081, 534311328705, 7846771001041, 116019251361041, 1725360846921041, 25786805857871441, 387084441100423541, 5832802431123111941
Offset: 0

Views

Author

Paul Barry, Jan 18 2006

Keywords

Comments

Central coefficients of number triangle A115255.
p divides all a(n) from a((p-1)/2) to a(p-1) for Gaussian primes p=7,23,31,79,167,431,479,983, ... of the form 4n+3, A002145(n) and for primes of the form 8n+7, A007522(n). - Alexander Adamchuk, Jul 05 2006
Conjecture: For any positive integer n, the polynomials Sum_{k=0}^n binomial(2k,k)^2*x^k and Sum_{k=0}^n binomial(2k,k)^2*x^k/(k+1) are irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 23 2013

Crossrefs

Programs

  • Maple
    series( 2*EllipticK(4*x^(1/2))/(Pi*(1-x)) ,x=0,20); # Mark van Hoeij, Apr 06 2013
  • Mathematica
    Table[Sum[((2k)!/(k!)^2)^2,{k,0,n}], {n,0,40}] (* Alexander Adamchuk, Jul 05 2006 *)
    Accumulate[(Binomial[2#,#])^2&/@Range[0,20]]  (* Harvey P. Dale, Mar 04 2011 *)
  • Maxima
    makelist(sum(binomial(2*k,k)^2,k,0,n),n,0,12); /* Emanuele Munarini, Oct 28 2016 */
    
  • PARI
    a(n) = sum(k=0, n, binomial(2*k, k)^2); \\ Michel Marcus, Oct 30 2016

Formula

a(n) = Sum_{k=0..n} C(2k, k)^2. a(n) = A115255(2n, n).
a(n) = C(2n,n)^2 + C(2n-2,n-1)^2 + ... + C(2k,k)^2 + ... + C(2,1)^2 + C(0,0)^2, where C(2k,k) = (2k)!/(k!)^2 are the central binomial coefficients A000984(k). - Alexander Adamchuk, Jul 05 2006
a(n) = Sum_{k=0..n} ((2k)!/(k!)^2)^2. a(n) = Sum_{k=0..n} A000984[k]^2. - Alexander Adamchuk, Jul 05 2006
Recurrence: n^2*a(n) = (17*n^2-16*n+4)*a(n-1) - 4*(2*n-1)^2*a(n-2). - Vaclav Kotesovec, Oct 19 2012
a(n) ~ 16^(n+1)/(15*Pi*n). - Vaclav Kotesovec, Oct 19 2012
From Emanuele Munarini, Oct 28 2016: (Start)
Let K(x) be the complete elliptic integral of the first kind as defined in [DLMF, 19.2.4] for phi = Pi/2.
a(n) = (2/Pi)*K(16)-((16^(n+1)*Gamma(n+3/2)^2)/(Pi*Gamma(n+2)^2))*hypergeometric (1,n+3/2,n+3/2;n+2,n+2;16).
G.f.: A(t) = (2/Pi)*(K(16*t)/(1-t)).
Diff. eq. satisfied by the g.f. t*(1-17*t+16*t^2)*A''(t)+(1-35*t+64*t^2)*A'(t)-(5-36*t)*A(t)=0. (End)

A167860 Primes p dividing every A167859(m) from m=(p-1)/2 to m=(p-1).

Original entry on oeis.org

7, 47, 191, 383, 439, 1151, 1399, 2351, 2879, 3119, 3511, 3559, 4127, 5087, 5431, 6911, 8887, 9127, 9791, 9887, 12391, 13151, 14407, 15551, 16607, 19543, 20399, 21031, 21319, 21839, 23039, 25391, 26399, 28087, 28463, 28711, 29287, 33223, 39551, 43103, 44879, 46271
Offset: 1

Views

Author

Alexander Adamchuk, Nov 13 2009

Keywords

Comments

Apparently A167860 is a subset of primes of the form 8*k + 7 (A007522).
Every A167859(m) from m=(p-1)/2 to m=(p-1) is divisible by prime p belonging to A167860.
7^3 divides A167859(13) and 7^2 divides A167859(10)-A167859(13).
Every A167859(m) from m=(kp-1 - (p-1)/2) to m=(kp-1) is divisible by prime p from A167860.
Every A167859(m) from m=((p^2-1)/2) to m=(p^2-1) is divisible by prime p from A167860. For p=7 every A167859(m) from m=((p^3-1)/2) to m=(p^3-1) and from m=((p^4-1)/2) to m(p^4-1)is divisible by p^2.

Crossrefs

Programs

  • Maple
    A167859 := proc(n)
        option remember;
        if n <= 1 then
            add( (binomial(2*k, k)/2^k)^2, k=0..n) ;
            4^n*% ;
        else
            4*(5*n^2 - 4*n + 1)*procname(n-1) - 16*(2*n - 1)^2*procname(n-2) ;
            %/n^2 ;
        end if;
    end proc:
    isA167860 := proc(p)
        local m ;
        for m from (p-1)/2 to p-1 do
            if modp(A167859(m),p) > 0 then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A167860 := proc(n)
        option remember ;
        if n = 0 then
            2;
        else
            p := nextprime(procname(n-1)) ;
            while not isA167860(p) do
                p := nextprime(p) ;
            end do ;
            return p;
        end if;
    end proc:
    seq(A167860(n),n=1..10) ; # R. J. Mathar, Jan 22 2025
  • PARI
    is(p) = if(isprime(p)&&p%2, my(m=Mod(1, p), s=m); for(k=1, p\2, s+=(m*=(2*k-1)/k)^2); !s, 0); \\ Jinyuan Wang, Jul 24 2022

Extensions

More terms from Jinyuan Wang, Jul 24 2022

A269454 Safe primes that are not congruent to -1 mod 8.

Original entry on oeis.org

5, 11, 59, 83, 107, 179, 227, 347, 467, 563, 587, 1019, 1187, 1283, 1307, 1523, 1619, 1907, 2027, 2099, 2459, 2579, 2819, 2963, 3203, 3467, 3779, 3803, 3947, 4139, 4259, 4283, 4547, 4787, 5099, 5387, 5483, 5507, 5939, 6659, 6779, 6827, 6899, 7187, 7523
Offset: 1

Views

Author

Marina Ibrishimova, Feb 27 2016

Keywords

Comments

For safe primes see A005385.
Conjecture: If p and q are two distinct safe primes not congruent to -1 mod 8 then the order of 2 mod p*q is phi(p*q)/2. For phi see A000010.
Note: The order of 2 mod p*q is the smallest positive integer k such that 2^k = 1 mod p*q. See Rosen's definition of the order of an integer on p.334. Also, k is smaller than or equal to phi(p*q)/2 for all products of distinct odd primes p and q. See Cohen's Prop. 1.4.2 on p. 25.
2^(phi(p*q)/2) == 1 (mod p*q) for all distinct odd primes p and q. See Nagell's corollary to Theorem 64, p. 106, with a = 2 and n = p*q. - Wolfdieter Lang, Mar 31 2016

References

  • Henri Cohen, Graduate Texts In Mathematics: A Course in Computational Algebraic Number Theory, Springer, 2000, p. 25
  • Trygve Nagell, Introduction to Number Theory, Chelsea, 1964, p. 106.
  • Kenneth H. Rosen, Elementary Number Theory And Its Applications, AT&T Laboratories, 2005, p. 334

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(8000) | IsPrime((p-1) div 2) and not p mod 8 eq 7]; // Vincenzo Librandi, Feb 28 2016
    
  • Mathematica
    Select[Prime@ Range@ 1000, And[PrimeQ[(# - 1)/2], MemberQ[Range[0, 6], Mod[#, 8]]] &] (* Michael De Vlieger, Feb 28 2016 *)
  • PARI
    lista(nn) = {forprime(p=3, nn, if (((p % 8) != 7) && isprime((p-1)/2), print1(p, ", ")););} \\ Michel Marcus, Mar 24 2016

Formula

A005385 without its intersection with A007522.

Extensions

More terms from Vincenzo Librandi, Feb 28 2016

A343104 Smallest number having exactly n divisors of the form 8*k + 1.

Original entry on oeis.org

1, 9, 81, 153, 891, 1377, 8019, 3825, 11025, 15147, 88209, 31977, 354375, 99225, 121275, 95931, 7144929, 187425, 893025, 287793, 1403325, 1499553, 1715175, 675675, 1091475, 6024375, 1576575, 1686825, 72335025, 2027025, 2264802453041139, 2297295, 11609325, 121463793, 9823275
Offset: 1

Views

Author

Jianing Song, Apr 05 2021

Keywords

Comments

Smallest index of n in A188169.
a(n) exists for all n, since 3^(2n-2) has exactly n divisors of the form 8*k + 1, namely 3^0, 3^2, ..., 3^(2n-2). This actually gives an upper bound for a(n).
From David A. Corneth, Apr 05 2021: (Start)
All terms are odd since if a term is even then the odd part has the same number of such divisors.
No a(2*k + 1) is divisible by a prime congruent to 1 (mod 8).
If for some k, A188169(k) > m then A188169(k*t) > m for all t > 0. This can be used to trim searches when looking for some a(m).
If gcd(k, m) = 1 then A188169(k) * A188169(m) <= A188169(k*m) (End)

Examples

			a(4) = 153 since it is the smallest number with exactly 4 divisors congruent to 1 modulo 8, namely 1, 9, 17 and 153.
		

Crossrefs

Smallest number having exactly n divisors of the form 8*k + i: this sequence (i=1), A343105 (i=3), A343106 (i=5), A188226 (i=7).
Cf. A188169.

Programs

  • PARI
    res(n,a,b) = sumdiv(n, d, (d%a) == b)
    a(n) = if(n>0, for(k=1, oo, if(res(k,8,1)==n, return(k))))

Formula

a(2n-1) <= 3^(2n-2) * 11, since 3^(2n-2) * 11 has exactly 2n-1 divisors congruent to 1 modulo 8: 3^0, 3^2, ..., 3^(2n-2), 3^1 * 11, 3^3 * 11, ..., 3^(2n-3) * 11.
a(2n) <= 3^(n-1) * 187, since 3^(n-1) * 187 has exactly 2n divisors congruent to 1 modulo 8: 3^0, 3^2, ..., 3^b, 3^0 * 17, 3^2 * 17, ..., 3^b * 17, 3^1 * 11, 3^3 * 11, ..., 3^a * 11, 3^1 * 187, 3^3 * 187, ... 3^a * 187, where a is the largest odd number <= n-1 and b is the largest even number <= n-1.

Extensions

More terms from David A. Corneth, Apr 06 2021

A065907 First solution mod p of x^4 = 2 for primes p such that only two solutions exist.

Original entry on oeis.org

2, 8, 15, 17, 15, 3, 48, 4, 16, 34, 33, 47, 98, 92, 68, 63, 114, 78, 153, 157, 107, 36, 156, 115, 86, 58, 222, 297, 57, 6, 18, 235, 66, 142, 221, 395, 227, 33, 120, 408, 368, 131, 301, 408, 253, 149, 318, 405, 459, 121, 30, 206, 122, 28, 543, 472, 88, 283, 696, 246
Offset: 1

Views

Author

Klaus Brockhaus, Nov 29 2001

Keywords

Comments

Conjecture: no integer occurs more than three times in this sequence. Confirmed for the first 2399 terms of A007522 (primes < 100000). There are integers which do occur thrice, e.g. 221, 1159.

Examples

			a(8) = 4, since 127 is the eighth term of A007522 and 4 is the first solution mod 127 of x^4 = 2.
		

Crossrefs

Programs

  • PARI
    a065907(m) = local(s); forprime(p = 2,m,s = []; for(x = 0,p-1, if(x^4%p == 2%p,s = concat(s,[x]))); if(matsize(s)[2] == 2,print1(s[1],",")))
    a065907(1600)

Formula

a(n) = first (least) solution mod p of x^4 = 2, where p is the n-th prime such that x^4 = 2 has only two solutions mod p, i.e. p is the n-th term of A007522.

A065908 Second solution mod p of x^4 = 2 for primes p such that only two solutions exist.

Original entry on oeis.org

5, 15, 16, 30, 56, 76, 55, 123, 135, 133, 158, 152, 125, 147, 195, 208, 197, 281, 214, 226, 324, 403, 307, 364, 401, 445, 377, 310, 574, 641, 701, 492, 677, 609, 602, 444, 636, 854, 791, 511, 599, 852, 690, 623, 786, 914, 769, 698, 692, 1102, 1201, 1073
Offset: 1

Views

Author

Klaus Brockhaus, Nov 29 2001

Keywords

Comments

Conjecture: no integer occurs more than three times in this sequence. Confirmed for the first 2399 terms of A007522 (primes < 100000). In this section, there are no integers which do occur thrice.

Examples

			a(3) = 16, since 31 is the third term of A007522 and 16 is the second solution mod 31 of x^4 = 2.
		

Crossrefs

Programs

  • PARI
    a065908(m) = local(s); forprime(p = 2,m,s = []; for(x = 0,p-1, if(x^4%p == 2%p,s = concat(s,[x]))); if(matsize(s)[2] == 2,print1(s[2],",")))
    a065908(1400)

Formula

a(n) = second (largest) solution mod p of x^4 = 2, where p is the n-th prime such that x^4 = 2 has only two solutions mod p, i.e. p is the n-th term of A007522.

A127582 a(n) = the smallest prime number of the form k*2^n - 1, for k >= 1.

Original entry on oeis.org

2, 3, 3, 7, 31, 31, 127, 127, 1279, 3583, 5119, 6143, 8191, 8191, 81919, 131071, 131071, 131071, 524287, 524287, 14680063, 14680063, 109051903, 109051903, 654311423, 738197503, 738197503, 2147483647, 2147483647, 2147483647
Offset: 0

Views

Author

Artur Jasinski, Jan 19 2007

Keywords

Examples

			a(0)=2 because 2 = 3*2^0 - 1 is prime.
a(1)=3 because 3 = 2*2^1 - 1 is prime.
a(2)=3 because 3 = 1*2^2 - 1 is prime.
a(3)=7 because 7 = 1*2^3 - 1 is prime.
a(4)=31 because 31 = 2*2^4 - 1 is prime.
		

Crossrefs

A087522 is identical except for a(1).

Programs

  • Maple
    p:= 2: A[0]:= 2:
    for n from 1 to 100 do
      if p+1 mod 2^n = 0 then A[n]:= p
      else
        p:=p+2^(n-1);
        while not isprime(p) do p:= p+2^n od:
        A[n]:= p;
      fi
    od:
    seq(A[i],i=0..100); # Robert Israel, Jan 13 2017
  • Mathematica
    a = {}; Do[k = 0; While[ !PrimeQ[k 2^n + 2^n - 1], k++ ]; AppendTo[a, k 2^n + 2^n - 1], {n, 0, 50}]; a (* Artur Jasinski, Jan 19 2007 *)

Formula

a(n) << 37^n by Xylouris's improvement to Linnik's theorem. - Charles R Greathouse IV, Dec 10 2013

Extensions

Edited by Don Reble, Jun 11 2007
Further edited by N. J. A. Sloane, Jul 03 2008

A254930 Fundamental positive solution x = x2(n) of the second class of the Pell equation x^2 - 2*y^2 = A001132(n), n >= 1 (primes congruent to 1 or 7 mod 8).

Original entry on oeis.org

5, 7, 11, 9, 13, 17, 13, 19, 23, 17, 15, 21, 25, 17, 23, 27, 35, 23, 29, 21, 41, 25, 31, 23, 35, 29, 39, 43, 37, 31, 27, 49, 53, 33, 31, 37, 47, 41, 55, 59, 31, 45, 39, 49, 37, 35, 61, 37, 35
Offset: 1

Views

Author

Wolfdieter Lang, Feb 12 2015

Keywords

Comments

The corresponding terms y = y2(n) are given in A254931(n).
There is only one fundamental solution for prime 2 (no second class exists), and this solution (x, y) has been included in (A002334(1), A002335(1)) = (2, 1).
The second class x sequence for the primes 1 (mod 8), which are given in A007519, is A254762, and for the primes 7 (mod 8), given in A007522, it is A254766.
The second class solutions give the second smallest positive integer solutions of this Pell equation.
For comments and the Nagell reference see A254760.

Examples

			n = 3: 11^2 - 2*7^2 = 23 = A001132(3) = A007522(2).
The first pairs of these second class solutions [x2(n), y2(n)] are (a star indicates primes congruent to 1 (mod 8)):
n  A001132(n)   a(n)  A254931(n)
1     7           5        3
2    17 *         7        4
3    23          11        7
4    31           9        5
5    41 *        13        8
6    47          17       11
7    71          13        7
8    73 *        19       12
9    89 *        17       10
10   97 *        15        8
11  103          21       13
12  113 *        25       16
13  127          17        9
14  137 *        23       14
15  151          27       17
16  167          35       23
17  191          23       13
18  193 *        29       18
19  199          21       11
20  223          41       27
...
		

Crossrefs

Programs

  • Mathematica
    Reap[For[p = 2, p < 1000, p = NextPrime[p], If[MatchQ[Mod[p, 8], 1|7], rp = Reduce[x > 0 && y > 0 && x^2 - 2 y^2 == p, {x, y}, Integers]; If[rp =!= False, xy = {x, y} /. {ToRules[rp /. C[1] -> 1]}; x2 = xy[[-1, 1]] // Simplify; Print[x2]; Sow[x2]]]]][[2, 1]] (* Jean-François Alcover, Oct 28 2019 *)

Formula

a(n)^2 - 2*A254931(n)^2 = A001132(n), and a(n) is the second largest (proper) positive integer solving this (generalized) Pell equation.
a(n) = 3*A002334(n+1) - 4*A002335(n+1), n >= 1.

A254931 Fundamental positive solution y = y2(n) of the second class of the Pell equation x^2 - 2*y^2 = A001132(n), n >= 1, (primes congruent to 1 or 7 mod 8).

Original entry on oeis.org

3, 4, 7, 5, 8, 11, 7, 12, 15, 10, 8, 13, 16, 9, 14, 17, 23, 13, 18, 11, 27, 14, 19, 12, 22, 17, 25, 28, 23, 18, 14, 32, 35, 19, 17, 22, 30, 25, 36, 39, 16, 28, 23, 31, 21, 19, 40, 20, 18, 38
Offset: 1

Views

Author

Wolfdieter Lang, Feb 12 2015

Keywords

Comments

The corresponding terms x = x2(n) are given in A254930(n).
The y2-sequence for the second class for the primes congruent to 1 (mod 8), which are given in A007519, is 2*A254763. For the primes congruent to 7 (mod 8), given in A007522, the y2-sequence is A254929.
For comments and the Nagell reference see A254760.

Examples

			a(4) = 2*7 - 3*3 = 5.
A254930(4)^2 - 2*a(4)^2 = 9^2 - 2*5^2 = 31 = A001132(4) = A007522(3).
See A254930 for the first pairs (x2(n), y2(n)).
		

Crossrefs

Programs

  • Mathematica
    Reap[For[p = 2, p < 1000, p = NextPrime[p], If[MatchQ[Mod[p, 8], 1|7], rp = Reduce[x > 0 && y > 0 && x^2 - 2 y^2 == p, {x, y}, Integers]; If[rp =!= False, xy = {x, y} /. {ToRules[rp /. C[1] -> 1]}; y2 = xy[[-1, 2]] // Simplify; Print[y2]; Sow[y2]]]]][[2, 1]] (* Jean-François Alcover, Oct 28 2019 *)

Formula

A254930(n)^2 - 2*a(n)^2 = A001132(n), and a(n) is the second largest (proper) positive integer satisfying this (generalized) Pell equation.
a(n) = 2*A002334(n+1) - 3*A002335(n+1), n >= 1.
Previous Showing 51-60 of 83 results. Next