A337001
a(n) = n! * Sum_{k=0..n} k^3 / k!.
Original entry on oeis.org
0, 1, 10, 57, 292, 1585, 9726, 68425, 547912, 4931937, 49320370, 542525401, 6510306540, 84633987217, 1184875823782, 17773137360105, 284370197765776, 4834293362023105, 87017280516421722, 1653328329812019577, 33066566596240399540, 694397898521048399601
Offset: 0
-
Table[n! Sum[k^3/k!, {k, 0, n}], {n, 0, 21}]
nmax = 21; CoefficientList[Series[x (1 + 3 x + x^2) Exp[x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 0; a[n_] := a[n] = n (n^2 + a[n - 1]); Table[a[n], {n, 0, 21}]
-
a(n) = n! * sum(k=0, n, k^3/k!); \\ Michel Marcus, Aug 12 2020
A093964
a(n) = Sum_{k=1..n} k*k!*C(n,k).
Original entry on oeis.org
0, 1, 6, 33, 196, 1305, 9786, 82201, 767208, 7891281, 88776910, 1085051121, 14322674796, 203121569833, 3080677142466, 49764784609065, 853110593298256, 15469738758475041, 295858753755835158, 5951981987323272001, 125652953065713520020, 2777591594084193600441
Offset: 0
G.f. = x + 6*x^2 + 33*x^3 + 196*x^4 + 1305*x^5 + 9786*x^6 + 82201*x^7 + ...
-
[0] cat [n le 2 select 6^(n-1) else n*((n+1)*Self(n-1) - (n-1)*Self(n-2))/(n-1): n in [1..30]]; // G. C. Greubel, Dec 29 2021
-
seq(add(k*n!/(n-k)!,k=1..n),n=0..20); # Emeric Deutsch, Aug 16 2006
# second Maple program:
a:= proc(n) a(n):=`if`(n<2, n, n*((n+1)/(n-1)*a(n-1)-a(n-2))) end:
seq(a(n), n=0..30); # Alois P. Heinz, Jan 21 2013
-
nn=21;Range[0,nn]!CoefficientList[Series[D[Exp[y x]/(1-x)^2,y]/.y->1,{x,0,nn}],x] (* Geoffrey Critzer, Feb 24 2014 *)
-
a(n)=sum(k=1,n,k*k!*binomial(n,k))
-
[factorial(n)*( x*exp(x)/(1-x)^2 ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Dec 29 2021
A038154
a(n) = n! * Sum_{k=0..n-2} 1/k!.
Original entry on oeis.org
0, 0, 2, 12, 60, 320, 1950, 13692, 109592, 986400, 9864090, 108505100, 1302061332, 16926797472, 236975164790, 3554627472060, 56874039553200, 966858672404672, 17403456103284402, 330665665962403980, 6613313319248079980, 138879579704209680000
Offset: 0
0=1*0+0, 2=2*0+2, 12=3*2+6, 60=4*12+12, 320 = 5*60+20, ... - _Gary Detlefs_, May 20 2010
-
Table[n!Sum[1/k!,{k,0,n-2}],{n,0,30}] (* Harvey P. Dale, Jun 04 2012 *)
-
main(size)=my(k); vector(size,n,(n-1)!*sum(k=0,n-3,1/k!)); \\ Anders Hellström, Jul 14 2015
A271705
Triangle read by rows, T(n,k) = Sum_{j=0..n} C(n,j)*L(j,k), L the unsigned Lah numbers A271703, for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 15, 9, 1, 1, 64, 66, 16, 1, 1, 325, 490, 190, 25, 1, 1, 1956, 3915, 2120, 435, 36, 1, 1, 13699, 34251, 23975, 6755, 861, 49, 1, 1, 109600, 328804, 283136, 101990, 17696, 1540, 64, 1, 1, 986409, 3452436, 3534636, 1554966, 342846, 40404, 2556, 81, 1
Offset: 0
Triangle starts:
1;
1, 1;
1, 4, 1;
1, 15, 9, 1;
1, 64, 66, 16, 1;
1, 325, 490, 190, 25, 1;
1, 1956, 3915, 2120, 435, 36, 1;
...
Recurrence: T(3, 2) = (3/2)*4 + 3*1 = 9. - _Wolfdieter Lang_, Jun 20 2017
-
B:=Binomial;
A271705:= func< n,k | k eq 0 select 1 else (&+[B(n, j+k)*B(j+k, k)*B(j+k-1, k-1)*Factorial(j): j in [0..n-k]]) >;
[A271705(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 09 2022
-
L := (n,k) -> `if`(k<0 or k>n,0,(n-k)!*binomial(n,n-k)*binomial(n-1,n-k)):
T := (n,k) -> add(L(j,k)*binomial(-j-1,-n-1)*(-1)^(n-j), j=0..n):
seq(seq(T(n,k), k=0..n), n=0..9);
-
T[n_, k_]:= If[k==0, 1, Sum[((k*j!)/(j+k))*Binomial[n, j+k]*Binomial[j+k, k]^2, {j,0,n-k}]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 09 2022 *)
-
b=binomial
def A271705(n,k): return 1 if (k==0) else sum(factorial(j-k)*b(n, j)*b(j, k)*b(j-1, k-1) for j in (k..n))
flatten([[A271705(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jan 09 2022
A103519
a(1) = 1, a(n) = Sum_{k=1..n} a(n-1) + k.
Original entry on oeis.org
1, 5, 21, 94, 485, 2931, 20545, 164396, 1479609, 14796145, 162757661, 1953092010, 25390196221, 355462747199, 5331941208105, 85311059329816, 1450288008607025, 26105184154926621, 495998498943605989, 9919969978872119990
Offset: 1
a(2) = 2 + 3 = 5, a(3) = 6 + 7 + 8 = 21, a(4) = 22 + 23 + 24 + 25.
-
a[1]:=1: for n from 2 to 20 do a[n]:=n*a[n-1]+(1/2)*n*(n+1) end do: seq(a[n], n=1..20); # Emeric Deutsch, Mar 16 2008
-
RecurrenceTable[{a[1]==1,a[n]==n*a[n-1]+(n(n+1))/2},a,{n,20}] (* Harvey P. Dale, Nov 05 2013 *)
-
{ t(n) = n*(n+1)/2 }
{ a(n) = sum(i=0,n,n!/(n-i)!*t(n-i)) } \\ Max Alekseyev, Feb 14 2005
-
{ t(n) = n*(n+1)/2 }
{ a(n) = 3*t(n-1)*floor((n-2)!*exp(1))+n } \\ Max Alekseyev, Feb 14 2005
A337002
a(n) = n! * Sum_{k=0..n} k^4 / k!.
Original entry on oeis.org
0, 1, 18, 135, 796, 4605, 28926, 204883, 1643160, 14795001, 147960010, 1627574751, 19530917748, 253901959285, 3554627468406, 53319412076715, 853110593292976, 14502880086064113, 261051841549259010, 4959984989436051511, 99199699788721190220
Offset: 0
-
Table[n! Sum[k^4/k!, {k, 0, n}], {n, 0, 20}]
nmax = 20; CoefficientList[Series[x (1 + 7 x + 6 x^2 + x^3) Exp[x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 0; a[n_] := a[n] = n (n^3 + a[n - 1]); Table[a[n], {n, 0, 20}]
-
a(n) = n! * sum(k=0, n, k^4/k!); \\ Michel Marcus, Aug 12 2020
A111063
a(0) = 1; a(n) = (n-1)*a(n-1) + n.
Original entry on oeis.org
1, 1, 3, 9, 31, 129, 651, 3913, 27399, 219201, 1972819, 19728201, 217010223, 2604122689, 33853594971, 473950329609, 7109254944151, 113748079106433, 1933717344809379, 34806912206568841, 661331331924807999, 13226626638496160001, 277759159408419360043
Offset: 0
- F. Drewes et al., Tight Bounds for Cut-Operations on Deterministic Finite Automata, in Lecture Notes in Computer Science, Volume 9288 2015, Machines, Computations, and Universality, 7th International Conference, MCU 2015, Famagusta, North Cyprus, September 9-11, 2015, Editors: Jerome Durand-Lose, Benedek Nagy, ISBN: 978-3-319-23110-5 (Print) 978-3-319-23111-2 (Online). ["In the On-Line Encyclopedia of Integer Sequences (OEIS) this matches the sequence A111063."]
-
a111063 n = a111063_list !! n
a111063_list = 1 : zipWith (+) [1..] (zipWith (*) [0..] a111063_list)
-- Reinhard Zumkeller, Aug 30 2014
-
a:=proc(n) option remember; if n=0 then RETURN(1); fi; (n-1)*a(n-1)+n; end;
# Alternatively:
a := n -> `if`(n=0, 1, 2*exp(1)*GAMMA(n, 1) - 1):
seq(simplify(a(n)), n=0..22); # Peter Luschny, Nov 21 2017
-
FoldList[#1*#2 + #2 + 1 &, 1, Range[21]] (* Robert G. Wilson v, Jul 07 2012 *)
A134597
a(n) gives the maximal value of A075053(m) for any n-digit number m.
Original entry on oeis.org
1, 4, 11, 31, 106, 402, 1953
Offset: 1
From _M. F. Hasler_, Oct 14 2019: (Start)
a(2) = 4 = A075053(37), because from 37 one can obtain the primes {3, 7, 37, 73}, and there is obviously no 2-digit number which could give more primes.
a(3) = 11 = A075053(137), because from 137 one can obtain the primes {3, 7, 13, 17, 31, 37, 71, 73, 137, 173, 317}, and no 3-digit number yields more.
a(4) = 31 = A075053(1379), because from 1379 one can obtain the 31 primes {3, 7, 13, 17, 19, 31, 37, 71, 73, 79, 97, 137, 139, 173, 179, 193, 197, 317, 379, 397, 719, 739, 937, 971, 1973, 3719, 3917, 7193, 9137, 9173, 9371}, and no 4-digit number yields more.
a(5) = 106 = A075053(13679). a(6) = 402 = A075053(123479).
a(7) = 1953 = A075053(1234679). (End)
-
A134597(n)={my(m=0);forvec(D=vector(n,i,[0,9]), vecsum(D)%3||next;m=max(A075053(fromdigits(D),D),m),1);m} \\ M. F. Hasler, Oct 14 2019
A128195
a(n) = (2*n + 1)*(a(n - 1) + 2^n) for n >= 1, a(0) = 1.
Original entry on oeis.org
1, 9, 65, 511, 4743, 52525, 683657, 10256775, 174369527, 3313030741, 69573667065, 1600194389599, 40004859842375, 1080131215965309, 31323805263469097, 971037963168557815, 32044252784564570583, 1121548847459764557925, 41497307356011298342553, 1618394986884440655806799
Offset: 0
-
a := n -> `if`(n=0,1,(2*n+1)*(a(n-1)+2^n));
-
a[0] = 1; a[n_] := a[n] = (2*n+1)*(a[n-1] + 2^n); Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Jul 29 2013 *)
A326659
T(n,k) = [0=0]; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 4, 2, 1, 15, 18, 6, 1, 64, 132, 96, 24, 1, 325, 980, 1140, 600, 120, 1, 1956, 7830, 12720, 10440, 4320, 720, 1, 13699, 68502, 143850, 162120, 103320, 35280, 5040, 1, 109600, 657608, 1698816, 2447760, 2123520, 1108800, 322560, 40320
Offset: 0
Triangle T(n,k) begins:
1;
1, 1;
1, 4, 2;
1, 15, 18, 6;
1, 64, 132, 96, 24;
1, 325, 980, 1140, 600, 120;
1, 1956, 7830, 12720, 10440, 4320, 720;
1, 13699, 68502, 143850, 162120, 103320, 35280, 5040;
...
-
T:= proc(n, k) option remember;
`if`(0=0, 1, 0)
end:
seq(seq(T(n, k), k=0..n), n=0..10);
-
T[n_ /; n >= 0, k_ /; k >= 0] := T[n, k] = Boole[0 < k <= n]*n*(T[n-1, k-1] + T[n-1, k]) + Boole[k == 0 && n >= 0];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 09 2021 *)
Comments