cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 37 results. Next

A063522 a(n) = n*(5*n^2 - 3)/2.

Original entry on oeis.org

0, 1, 17, 63, 154, 305, 531, 847, 1268, 1809, 2485, 3311, 4302, 5473, 6839, 8415, 10216, 12257, 14553, 17119, 19970, 23121, 26587, 30383, 34524, 39025, 43901, 49167, 54838, 60929, 67455, 74431, 81872, 89793, 98209, 107135, 116586, 126577, 137123, 148239, 159940
Offset: 0

Views

Author

N. J. A. Sloane, Aug 02 2001

Keywords

Crossrefs

(1/12)*t*(n^3 - n) + n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
Bisections: A160674, A160699.

Programs

  • Magma
    [n*(5*n^2 -3)/2: n in [0..30]]; // G. C. Greubel, May 02 2018
  • Mathematica
    lst={};Do[AppendTo[lst, LegendreP[3, n]], {n, 10^2}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *)
    CoefficientList[Series[x*(1 + 13*x + x^2)/(1-x)^4, {x, 0, 50}], x] (* G. C. Greubel, Sep 01 2017 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,17,63},40] (* Harvey P. Dale, Sep 06 2023 *)
  • PARI
    a(n) = { n*(5*n^2 - 3)/2 } \\ Harry J. Smith, Aug 25 2009
    

Formula

G.f.: x*(1 + 13*x + x^2)/(1-x)^4. - Colin Barker, Jan 10 2012
E.g.f.: (x/2)*(2 + 15*x + 5*x^2)*exp(x). - G. C. Greubel, Sep 01 2017

A004467 a(n) = n*(11*n^2 - 5)/6.

Original entry on oeis.org

0, 1, 13, 47, 114, 225, 391, 623, 932, 1329, 1825, 2431, 3158, 4017, 5019, 6175, 7496, 8993, 10677, 12559, 14650, 16961, 19503, 22287, 25324, 28625, 32201, 36063, 40222, 44689, 49475, 54591, 60048
Offset: 0

Views

Author

Albert D. Rich (Albert_Rich(AT)msn.com)

Keywords

Comments

3-dimensional analog of centered polygonal numbers, that is: centered hendecagonal pyramidal numbers (see Deza paper in References).

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 140.

Crossrefs

1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.

Programs

Formula

G.f.: x*(1+9*x+x^2)/(1-x)^4. - Colin Barker, Jan 08 2012
a(0)=0, a(1)=1, a(2)=13, a(3)=47; for n>3, a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Harvey P. Dale, Sep 22 2013
E.g.f.: (x/6)*(6 + 33*x + 11*x^2)*exp(x). - G. C. Greubel, Sep 01 2017

A062025 a(n) = n*(13*n^2 - 7)/6.

Original entry on oeis.org

0, 1, 15, 55, 134, 265, 461, 735, 1100, 1569, 2155, 2871, 3730, 4745, 5929, 7295, 8856, 10625, 12615, 14839, 17310, 20041, 23045, 26335, 29924, 33825, 38051, 42615, 47530, 52809, 58465, 64511, 70960, 77825, 85119, 92855, 101046, 109705, 118845, 128479, 138620, 149281
Offset: 0

Views

Author

N. J. A. Sloane, Aug 02 2001

Keywords

Crossrefs

1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.

Programs

Formula

From G. C. Greubel, Sep 01 2017: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: (x + 11*x^2 + x^3)/(1 - x)^4.
E.g.f.: (x/6)*(6 + 39*x + 13*x^2)*exp(x). (End)

A063523 a(n) = n*(8*n^2 - 5)/3.

Original entry on oeis.org

0, 1, 18, 67, 164, 325, 566, 903, 1352, 1929, 2650, 3531, 4588, 5837, 7294, 8975, 10896, 13073, 15522, 18259, 21300, 24661, 28358, 32407, 36824, 41625, 46826, 52443, 58492, 64989, 71950, 79391, 87328, 95777, 104754, 114275, 124356, 135013, 146262, 158119, 170600
Offset: 0

Views

Author

N. J. A. Sloane, Aug 02 2001

Keywords

Comments

Also as a(n)=(1/6)*(16*n^3-10*n), n>0: structured octagonal anti-diamond numbers (vertex structure 17) (Cf. A100187 = alternate vertex; A100188 = structured anti-diamonds; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004

Crossrefs

1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.

Programs

  • Mathematica
    Table[n(8n^2-5)/3,{n,0,80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *)
    LinearRecurrence[{4,-6,4,-1},{0,1,18,67},81] (* or *) CoefficientList[ Series[ (x+14 x^2+x^3)/(x-1)^4,{x,0,80}],x] (* Harvey P. Dale, Jul 11 2011 *)
  • PARI
    a(n) = n*(8*n^2 - 5)/3 \\ Harry J. Smith, Aug 25 2009

Formula

a(0)=0, a(1)=1, a(2)=18, a(3)=67, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)- a(n-4). - Harvey P. Dale, Jul 11 2011
G.f.: (x+14*x^2+x^3)/(x-1)^4. - Harvey P. Dale, Jul 11 2011
E.g.f.: (x/3)*(3 + 24*x + 8*x^2)*exp(x). - G. C. Greubel, Sep 01 2017

A005915 Hexagonal prism numbers: a(n) = (n + 1)*(3*n^2 + 3*n + 1).

Original entry on oeis.org

1, 14, 57, 148, 305, 546, 889, 1352, 1953, 2710, 3641, 4764, 6097, 7658, 9465, 11536, 13889, 16542, 19513, 22820, 26481, 30514, 34937, 39768, 45025, 50726, 56889, 63532, 70673, 78330, 86521, 95264, 104577, 114478, 124985, 136116, 147889, 160322, 173433, 187240
Offset: 0

Views

Author

Keywords

Comments

Also as a(n) = (1/6)*(18*n^3 - 18*n^2 + 6*n), n>0: structured rhombic dodecahedral numbers (vertex structure 7) (A100157 = alternate vertex); structured tetrakis hexahedral numbers (vertex structure 7) (Cf. A100174 = alternate vertex); and structured hexagonal anti-diamond numbers (vertex structure 7) (Cf. A007588 = alternate vertex) (Cf. A100188 = structured anti-diamonds). Cf. A100145 for more on structured polyhedral numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
a(n) is the number of 4-tuples (w,x,y,z) with all terms in {0,...,n} and w=x or x=y or y=z. - Clark Kimberling, May 31 2012

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), pp. 4545-4558.

Crossrefs

Cf. A143804.
Cf. A260260 (comment). - Bruno Berselli, Jul 22 2015

Programs

  • Magma
    [(n + 1)*(3*n^2 + 3*n + 1): n in [0..50]]; // Vincenzo Librandi, May 16 2011
    
  • Maple
    A005915:=(1+10*z+7*z**2)/(z-1)**4; # Conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[(n+1)(3n^2+3n+1),{n,0,50}]  (* Harvey P. Dale, Mar 31 2011 *)
    LinearRecurrence[{4,-6,4,-1},{1,14,57,148},50] (* Harvey P. Dale, Jun 25 2011 *)
  • PARI
    a(n) = (n + 1)*(3*n^2 + 3*n + 1);

Formula

a(n) = (n+1)^3 + 6*(n*(n+1)*(2*n+1)/6). - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=14, a(2)=57, a(3)=148. - Harvey P. Dale, Jun 25 2011
G.f.: (1+10*x+7*x^2)/(1-x)^4. - Harvey P. Dale, Jun 25 2011
Equals row sums of triangle A143804 and binomial transform of [1, 13, 30, 18, 0, 0, 0, ...]. - Gary W. Adamson, Sep 01 2008
2*a(n+1) = A213829(n). - Clark Kimberling, Jul 04 2012
E.g.f.: exp(x)*(1 + x)*(1 + 12*x + 3*x^2). - Elmo R. Oliveira, Aug 04 2025

Extensions

More terms from James Sellers, Dec 24 1999

A100188 Polar structured meta-anti-diamond numbers, the n-th number from a polar structured n-gonal anti-diamond number sequence.

Original entry on oeis.org

1, 6, 27, 84, 205, 426, 791, 1352, 2169, 3310, 4851, 6876, 9477, 12754, 16815, 21776, 27761, 34902, 43339, 53220, 64701, 77946, 93127, 110424, 130025, 152126, 176931, 204652, 235509, 269730, 307551, 349216
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Examples

			There are no 1- or 2-gonal anti-diamonds, so 1 and (2n+2) are the first and second terms since all the sequences begin as such.
		

Crossrefs

Cf. A000578, A000447, A004466, A007588, A063521, A062523 - "polar" structured anti-diamonds; A100189 - "equatorial" structured meta-anti-diamond numbers; A006484 for other structured meta numbers; and A100145 for more on structured numbers.

Programs

  • Magma
    [(1/6)*(2*n^4-2*n^2+6*n): n in [1..40]]; // Vincenzo Librandi, Aug 18 2011
    
  • Mathematica
    Table[(2n^4-2n^2+6n)/6,{n,40}] (* or *) LinearRecurrence[{5,-10,10,-5,1}, {1,6,27,84,205},40] (* Harvey P. Dale, May 11 2016 *)
  • PARI
    vector(40, n, (n^4 -n^2 +3*n)/3) \\ G. C. Greubel, Nov 08 2018

Formula

a(n) = (1/6)*(2*n^4 - 2*n^2 + 6*n).
G.f.: x*(1 + x + 7*x^2 - x^3)/(1-x)^5. - Colin Barker, Apr 16 2012
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(1)=1, a(2)=6, a(3)=27, a(4)=84, a(5)=205. - Harvey P. Dale, May 11 2016
E.g.f.: (3*x + 6*x^2 + 6*x^3 + x^4)*exp(x)/3. - G. C. Greubel, Nov 08 2018

A135503 a(n) = n*(n^2 - 1)/2.

Original entry on oeis.org

0, 0, 3, 12, 30, 60, 105, 168, 252, 360, 495, 660, 858, 1092, 1365, 1680, 2040, 2448, 2907, 3420, 3990, 4620, 5313, 6072, 6900, 7800, 8775, 9828, 10962, 12180, 13485, 14880, 16368, 17952, 19635, 21420, 23310, 25308, 27417, 29640, 31980, 34440
Offset: 0

Views

Author

Cino Hilliard, Feb 09 2008

Keywords

Comments

Previous name was: Integer values of sqrt(b) solving sqrt(d) + sqrt(b) = sqrt(c) with d^2 + b = c.
Squaring the first equation and setting the result equal to the second, we need d + b + 2*sqrt(d*b) = d^2+b -> d + 2*sqrt(d*b) = d^2 -> d^2 - d = 2*sqrt(d*b)
-> d^2*(d-1)^2 = 4*d*b -> b = d*(d-1)^2/4 -> sqrt(b) = (d-1)*sqrt(d)/2. Setting d = (n+1)^2 yields sqrt(b) = A027480(n).
This is the case k = 2 for FLTR, Fermat's Last Theorem with rational exponents 1/k: Consider x + y = x + y. Then (x^k)^(1/k) + (y^k)^(1/k) = ((x+y)^k)^(1/k).
For k > 2, there are infinitely many solutions to d^(1/k) + b^(1/k) = c^(1/k). E.g., 8^(1/3) + 27^(1/3) = 125^(1/3) at k = 3. However, in conjunction with d^2 + b = c, I could not find any nontrivial solutions.
A shifted version of A027480. - R. J. Mathar, Apr 07 2009
For n > 2, a(n) is the maximum value of the magic constant in a perimeter-magic n-gon of order n (see A342758). - Stefano Spezia, Mar 21 2021
a(n) is equal to the total number of P_3 edge-disjoint subgraphs of the complete graph on n vertices. - Samuel J. Bevins, May 09 2023

Examples

			For d = 9, b = 144, c = 225, 9^(1/2) + 144^(1/2) = 225^(1/2) and 9^2 + 144 = 225. So b^(1/2) = 12 is the 4th entry in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Array[# (#^2 - 1)/2 &, 42, 0] (* Michael De Vlieger, Feb 20 2018 *)
  • PARI
    flt2(n,p) = { local(a,b); for(a=0,n, b = (a^3-a)/2; print1(b", ") ) }

Formula

a(n) = 3*A000292(n-1).
From R. J. Mathar Feb 20 2008: (Start)
O.g.f.: 3*x^2/(-1+x)^4.
a(n) = n*(n^2 - 1)/2 = A007531(n+1)/2. (End)
G.f.: 3*x^2*G(0)/2, where G(k) = 1 + 1/(1 - x/(x + (k+1)/(k+4)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
a(n) = A006003(n+1) - A000326(n+1). - J. M. Bergot, Dec 04 2014
E.g.f.: (1/2)* x^2 *(3 + x)*exp(x). - G. C. Greubel, Oct 15 2016
From Miquel Cerda, Dec 25 2016: (Start)
a(n) = A000578(n) - A006003(n).
a(n) = A004188(n) - A000578(n).
a(n) = A007588(n) - A004188(n). (End)
a(n) = A002411(n) - A000217(n). - Justin Gaetano, Feb 20 2018
From Amiram Eldar, Jan 09 2021: (Start)
Sum_{n>=2} 1/a(n) = 1/2.
Sum_{n>=2} (-1)^n/a(n) = 4*log(2) - 5/2. (End)

Extensions

Edited by R. J. Mathar, Apr 21 2009
New name using R. J. Mathar's formula, Joerg Arndt, Dec 05 2014

A166341 Triangle T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+10*x+x^2)/(1-x)^4, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 23, 23, 1, 1, 50, 138, 50, 1, 1, 105, 614, 614, 105, 1, 1, 216, 2367, 4912, 2367, 216, 1, 1, 439, 8397, 31483, 31483, 8397, 439, 1, 1, 886, 28264, 176314, 314830, 176314, 28264, 886, 1, 1, 1781, 91880, 903104, 2632034, 2632034, 903104, 91880, 1781, 1
Offset: 1

Views

Author

Roger L. Bagula, Oct 12 2009

Keywords

Examples

			Triangle begins as:
  1;
  1,    1;
  1,   10,     1;
  1,   23,    23,      1;
  1,   50,   138,     50,       1;
  1,  105,   614,    614,     105,       1;
  1,  216,  2367,   4912,    2367,     216,      1;
  1,  439,  8397,  31483,   31483,    8397,    439,     1;
  1,  886, 28264, 176314,  314830,  176314,  28264,   886,    1;
  1, 1781, 91880, 903104, 2632034, 2632034, 903104, 91880, 1781, 1;
		

References

  • Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91

Crossrefs

Programs

  • Mathematica
    (* First program *)
    p[x_, 1]:= x/(1-x)^2;
    p[x_, 2]:= x*(1+x)/(1-x)^3;
    p[x_, 3]:= x*(1+10*x+x^2)/(1-x)^4;
    p[x_, n_]:= p[x, n]= x*D[p[x, n-1], x]
    Table[CoefficientList[(1-x)^(n+1)*p[x, n]/x, x], {n,12}]//Flatten
    (* Second program *)
    b[n_, k_, m_]:= If[n<2, 1, If[k==0, 0, k^(n-1)*((m+3)*k^2 - m)/3]];
    t[n_, k_, m_]:= t[n,k,m]= Sum[(-1)^(k-j)*Binomial[n+1, k-j]*b[n,j,m], {j,0,k}];
    T[n_, k_, m_]:= T[n,k,m]= If[k==1, 1, t[n-1,k,m] - t[n-1,k-1,m]];
    Table[T[n,k,3], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Mar 11 2022 *)
  • Sage
    def b(n,k,m):
        if (n<2): return 1
        elif (k==0): return 0
        else: return k^(n-1)*((m+3)*k^2 - m)/3
    @CachedFunction
    def t(n,k,m): return sum( (-1)^(k-j)*binomial(n+1, k-j)*b(n,j,m) for j in (0..k) )
    def A166341(n,k): return 1 if (k==1) else t(n-1,k,3) - t(n-1,k-1,3)
    flatten([[A166341(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 11 2022

Formula

T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+10*x+x^2)/(1-x)^4.
From G. C. Greubel, Mar 11 2022: (Start)
T(n, k) = t(n-1, k) - t(n-1, k-1), T(n,1) = 1, where t(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n+1, k-j)*b(n, j), b(n, k) = k^(n-2)*A007588(k), b(n, 0) = 1, and b(1, k) = 1.
T(n, n-k) = T(n, k). (End)

Extensions

Edited by G. C. Greubel, Mar 11 2022

A267017 Digital roots of the stella octangula numbers.

Original entry on oeis.org

0, 1, 5, 6, 7, 2, 3, 4, 8, 9, 1, 5, 6, 7, 2, 3, 4, 8, 9, 1, 5, 6, 7, 2, 3, 4, 8, 9, 1, 5, 6, 7, 2, 3, 4, 8, 9, 1, 5, 6, 7, 2, 3, 4, 8, 9, 1, 5, 6, 7, 2, 3, 4, 8, 9, 1, 5, 6, 7, 2, 3, 4, 8, 9, 1, 5, 6, 7, 2, 3, 4, 8, 9, 1, 5, 6, 7, 2, 3, 4, 8, 9, 1, 5, 6, 7, 2
Offset: 0

Views

Author

Peter M. Chema, Jan 08 2016

Keywords

Comments

This is the digital root sequence for A007588 and for A006003, two nice sequences relating to structured numbers (hexagonal anti-diamond numbers (vertex structure 13) and trigonal diamond numbers (vertex structure 4) respectively).
It is composed of all 9 of the nonzero digits, period 9. Root digits increase by 1 in sets of 3 [i.e., "5, 6, 7", "2, 3, 4" and "8, 9, 1"]. - Peter M. Chema, Aug 21 2016

Crossrefs

Programs

  • Mathematica
    FixedPoint[Total@ IntegerDigits@ # &, #] & /@ Table[n (2 n^2 - 1), {n, 0, 108}] (* Michael De Vlieger, Jan 09 2016 *)
  • PARI
    A010888(n)=if(n, (n-1)%9+1);
    a(n) = A010888(n*(2*n^2 - 1)); \\ Michel Marcus, Jan 10 2016
    
  • PARI
    concat(0, Vec(x*(1+5*x+6*x^2+7*x^3+2*x^4+3*x^5+4*x^6+8*x^7+9*x^8) / ((1-x)*(1+x+x^2)*(1+x^3+x^6)) + O(x^100))) \\ Colin Barker, Jan 10 2016

Formula

a(n) = A010888(A007588(n)).
From Colin Barker, Jan 10 2016: (Start)
a(n) = a(n-9) for n>9.
G.f.: x*(1+5*x+6*x^2+7*x^3+2*x^4+3*x^5+4*x^6+8*x^7+9*x^8) / ((1-x)*(1+x+x^2)*(1+x^3+x^6)).
(End)
a(n) = A010888(A006003(n)). - Peter M. Chema, Aug 17 2016

A181475 a(n) = 3*n^4 + 6*n^3 - 3*n + 1.

Original entry on oeis.org

1, 7, 91, 397, 1141, 2611, 5167, 9241, 15337, 24031, 35971, 51877, 72541, 98827, 131671, 172081, 221137, 279991, 349867, 432061, 527941, 638947, 766591, 912457, 1078201, 1265551, 1476307, 1712341, 1975597, 2268091, 2591911, 2949217, 3342241, 3773287, 4244731
Offset: 0

Views

Author

Bruno Berselli, Oct 25 2010 - Oct 29 2010

Keywords

Comments

If gcd(n,7) = gcd(n+1,7) = gcd(2*n+1,7) = 1 then a(n) == 0 (mod 7) (E. Picutti, see References).

References

  • Ettore Picutti, Sul numero e la sua storia, Feltrinelli Economica, 1977, p. 208.

Crossrefs

Subsequence of A003215.

Programs

  • Magma
    [3*n^4+6*n^3-3*n+1: n in [0..31]];
  • Mathematica
    Table[3 n^4 + 6 n^3 - 3 n + 1, {n, 0, 40}] (* Vincenzo Librandi, Mar 26 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{1,7,91,397,1141},40] (* Harvey P. Dale, Jul 12 2022 *)

Formula

G.f.: (1 + 2*x + 66*x^2 + 2*x^3 + x^4)/(1-x)^5.
a(n) = a(-n-1) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 6*12.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 6*A008594(n-1).
a(n) = 2*a(n-1) - a(n-2) + 6*A003154(n).
a(n) = a(n-1) + 6*A007588(n).
a(n) = 1 + 6*A062392(n).
a(n) = 7*A000540(n)/A000330(n) = A154105(A000096(n-1)) for n > 0.
Sum_{i=0..n} a(i) = (3*n^5 + 15*n^4 + 20*n^3 - 3*n + 5)/5.
a(n) = 7*(3*n^2 + 3*n - 1)*(Sum_{k=1..n} k^6)/(5*Sum_{k=1..n} k^4), n > 0. - Gary Detlefs, Oct 18 2011

Extensions

Formula, program and crossref added by Bruno Berselli, Aug 22 2011
Previous Showing 21-30 of 37 results. Next