A320894
Numbers with an even number of prime factors (counted with multiplicity) that cannot be factored into distinct squarefree semiprimes.
Original entry on oeis.org
4, 9, 16, 24, 25, 36, 40, 49, 54, 56, 64, 81, 88, 96, 100, 104, 121, 135, 136, 144, 152, 160, 169, 184, 189, 196, 216, 224, 225, 232, 240, 248, 250, 256, 289, 296, 297, 324, 328, 336, 344, 351, 352, 360, 361, 375, 376, 384, 400, 416, 424, 441, 459, 472, 484
Offset: 1
A complete list of all strict factorizations of 24 is: (2*3*4), (2*12), (3*8), (4*6), (24). All of these contain at least one number that is not a squarefree semiprime, so 24 belongs to the sequence.
Cf.
A001055,
A001358,
A005117,
A006881,
A007717,
A028260,
A318871,
A318953,
A320655,
A320656,
A320891,
A320892,
A320893.
-
strsqfsemfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strsqfsemfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
Select[Range[100],And[EvenQ[PrimeOmega[#]],strsqfsemfacs[#]=={}]&]
A278990
Number of loopless linear chord diagrams with n chords.
Original entry on oeis.org
1, 0, 1, 5, 36, 329, 3655, 47844, 721315, 12310199, 234615096, 4939227215, 113836841041, 2850860253240, 77087063678521, 2238375706930349, 69466733978519340, 2294640596998068569, 80381887628910919255, 2976424482866702081004, 116160936719430292078411
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..404 (terms 0..200 from Gheorghe Coserea)
- Dmitry Efimov, The hafnian of Toeplitz matrices of a special type, perfect matchings and Bessel polynomials, arXiv:1904.08651 [math.CO], 2019.
- H. Eriksson and A. Martin, Enumeration of Carlitz multipermutations, arXiv:1702.04177 [math.CO], 2017.
- E. Krasko, I. Labutin, and A. Omelchenko, Enumeration of labelled and unlabelled Hamiltonian Cycles in complete k-partite graphs, arXiv:1709.03218 [math.CO], 2017, Table 1.
- E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, arXiv:1601.05073 [math.CO], 2016.
- E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, The Electronic Journal of Combinatorics, 24(3) (2017), #P3.43.
- Gus Wiseman, The a(4) = 36 loopless linear chord diagrams.
- Donovan Young, Counting Bubbles in Linear Chord Diagrams, arXiv:2311.01569 [math.CO], 2023.
- Donovan Young, Bubbles in Linear Chord Diagrams: Bridges and Crystallized Diagrams, arXiv:2408.17232 [math.CO], 2024.
Cf.
A000110,
A000699 (topologically connected 2-uniform),
A000806,
A001147 (2-uniform),
A003436 (cyclical version),
A005493,
A170941,
A190823 (distance 3+ version),
A322402,
A324011,
A324172.
Other sequences involving the multiset {1,1,2,2,...,n,n}:
A001147,
A007717,
A020555,
A094574,
A316972.
-
[n le 2 select 2-n else (2*n-3)*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 26 2023
-
RecurrenceTable[{a[n]== (2n-1)a[n-1] +a[n-2], a[0]==1, a[1]==0}, a, {n,0,20}] (* Vaclav Kotesovec, Sep 15 2017 *)
FullSimplify[Table[-I*(BesselI[1/2+n,-1] BesselK[3/2,1] - BesselI[3/2,-1] BesselK[1/2+ n,1]), {n,0,20}]] (* Vaclav Kotesovec, Sep 15 2017 *)
Table[(2 n-1)!! Hypergeometric1F1[-n,-2 n,-2], {n,0,20}] (* Eric W. Weisstein, Nov 14 2018 *)
Table[Sqrt[2/Pi]/E ((-1)^n Pi BesselI[1/2+n,1] +BesselK[1/2+n,1]), {n,0,20}] // FunctionExpand // FullSimplify (* Eric W. Weisstein, Nov 14 2018 *)
twouniflin[{}]:={{}};twouniflin[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@twouniflin[Complement[set,s]]]/@Table[{i,j},{j,Select[set,#>i+1&]}];
Table[Length[twouniflin[Range[n]]],{n,0,14,2}] (* Gus Wiseman, Feb 27 2019 *)
-
seq(N) = {
my(a = vector(N)); a[1] = 0; a[2] = 1;
for (n = 3, N, a[n] = (2*n-1)*a[n-1] + a[n-2]);
concat(1, a);
};
seq(20) \\ Gheorghe Coserea, Dec 09 2016
-
def A278990_list(prec):
P. = PowerSeriesRing(QQ, prec)
return P( exp(-1+sqrt(1-2*x))/sqrt(1-2*x) ).egf_to_ogf().list()
A278990_list(30) # G. C. Greubel, Sep 26 2023
A004251
Number of graphical partitions (degree-vectors for simple graphs with n vertices, or possible ordered row-sum vectors for a symmetric 0-1 matrix with diagonal values 0).
Original entry on oeis.org
1, 1, 2, 4, 11, 31, 102, 342, 1213, 4361, 16016, 59348, 222117, 836315, 3166852, 12042620, 45967479, 176005709, 675759564, 2600672458, 10029832754, 38753710486, 149990133774, 581393603996, 2256710139346, 8770547818956, 34125389919850, 132919443189544, 518232001761434, 2022337118015338, 7898574056034636, 30873421455729728
Offset: 0
For n = 3, there are 4 different graphic sequences possible: 0 0 0; 1 1 0; 2 1 1; 2 2 2. - Daan van Berkel (daan.v.berkel.1980(AT)gmail.com), Jun 25 2010
From _Gus Wiseman_, Dec 31 2020: (Start)
The a(0) = 1 through a(4) = 11 sorted degree sequences:
() (0) (0,0) (0,0,0) (0,0,0,0)
(1,1) (0,1,1) (0,0,1,1)
(1,1,2) (0,1,1,2)
(2,2,2) (0,2,2,2)
(1,1,1,1)
(1,1,1,3)
(1,1,2,2)
(1,2,2,3)
(2,2,2,2)
(2,2,3,3)
(3,3,3,3)
For example, the graph {{2,3},{2,4}} has degrees (0,2,1,1), so (0,1,1,2) is counted under a(4).
(End)
- R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978).
- Paul Balister, Serte Donderwinkel, Carla Groenland, Tom Johnston, and Alex Scott, Table of n, a(n) for n = 0..1651 (Terms 1 through 31 were computed by various authors; terms 32 through 34 by Axel Kohnert and Wang Kai; terms 35 to 79 by Wang Kai)
- Paul Balister, Serte Donderwinkel, Carla Groenland, Tom Johnston, and Alex Scott, Counting graphic sequences via integrated random walks, arXiv:2301.07022 [math.CO], 2023.
- T. M. Barnes and C. D. Savage, A recurrence for counting graphical partitions, Electronic J. Combinatorics, 2 (1995), #R11.
- B. A. Chat, S. Pirzada, and A. Iványi, Recognition of split-graphic sequences, Acta Universitatis Sapientiae, Informatica, 6, 2 (2014) 252-286.
- D. Dimitrov, Efficient computation of trees with minimal atom-bond connectivity index, arXiv:1305.1155 [cs.DM], 2013.
- A. Iványi, L. Lucz, T. F. Móri and P. Sótér, On Erdős-Gallai and Havel-Hakimi algorithms, Acta Univ. Sapientiae, Inform. 3(2) (2011), 230-268.
- A. Ivanyi, L. Lucz, T. Matuszka, and S. Pirzada, Parallel enumeration of degree sequences of simple graphs, Acta Univ. Sapientiae, Informatica, 4, 2 (2012), 260-288. - From _N. J. A. Sloane_, Feb 15 2013
- A. Ivanyi and J. E. Schoenfield, Deciding football sequences, Acta Univ. Sapientiae, Informatica, 4, 1 (2012), 130-183. - From _N. J. A. Sloane_, Dec 22 2012 [Disclaimer: I am not one of the authors of this paper; I was unpleasantly surprised to find my name on it, as explained here. - _Jon E. Schoenfield_, Nov 26 2016]
- Wang Kai, Efficient Counting of Degree Sequences, arXiv:1604.04148 [math.CO], 2016. Gives 79 terms.
- P. W. Mills, R. P. Rundle, V. M. Dwyer, T. Tilma, and S. J. Devitt, A proposal for an efficient quantum algorithm solving the graph isomorphism problem, arXiv 1711.09842, 2017.
- P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978). [Annotated scanned copy]
- Eric Weisstein's World of Mathematics, Degree Sequence.
- Eric Weisstein's World of Mathematics, Graphic Sequence.
- Gus Wiseman, Counting and ranking factorizations, factorability, and vertex-degree partitions for groupings into pairs.
- Index entries for sequences related to graphical partitions
Counting the positive partitions by sum gives
A000569, ranked by
A320922.
The covering case (no zeros) is
A095268.
Non-graphical partitions are counted by
A339617 and ranked by
A339618.
A320921 counts connected graphical partitions.
A322353 counts factorizations into distinct semiprimes.
A339659 counts graphical partitions of 2n into k parts.
A339661 counts factorizations into distinct squarefree semiprimes.
-
Table[Length[Union[Sort[Table[Count[Join@@#,i],{i,n}]]&/@Subsets[Subsets[Range[n],{2}]]]],{n,0,5}] (* Gus Wiseman, Dec 31 2020 *)
More terms from Torsten Sillke, torsten.sillke(AT)lhsystems.com, using Cor. 6.3.3, Th. 6.3.6, Cor. 6.2.5 of Brualdi-Ryser.
a(19) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 19 2007
a(30) and a(31) corrected by
Wang Kai, Jun 05 2016
A339560
Number of integer partitions of n that can be partitioned into distinct pairs of distinct parts, i.e., into a set of edges.
Original entry on oeis.org
1, 0, 0, 1, 1, 2, 2, 4, 5, 8, 8, 13, 17, 22, 28, 39, 48, 62, 81, 101, 127, 167, 202, 253, 318, 395, 486, 608, 736, 906, 1113, 1353, 1637, 2011, 2409, 2922, 3510, 4227, 5060, 6089, 7242, 8661, 10306, 12251, 14503, 17236, 20345, 24045, 28334, 33374, 39223, 46076
Offset: 0
The a(3) = 1 through a(11) = 13 partitions (A = 10):
(21) (31) (32) (42) (43) (53) (54) (64) (65)
(41) (51) (52) (62) (63) (73) (74)
(61) (71) (72) (82) (83)
(3211) (3221) (81) (91) (92)
(4211) (3321) (4321) (A1)
(4221) (5221) (4322)
(4311) (5311) (4331)
(5211) (6211) (4421)
(5321)
(5411)
(6221)
(6311)
(7211)
For example, the partition y = (4,3,3,2,1,1) can be partitioned into a set of edges in two ways:
{{1,2},{1,3},{3,4}}
{{1,3},{1,4},{2,3}},
so y is counted under a(14).
A339559 counts the complement in even-length partitions.
A339561 gives the Heinz numbers of these partitions.
A339619 counts factorizations of the same type.
A000070 counts non-multigraphical partitions of 2n, ranked by
A339620.
A002100 counts partitions into squarefree semiprimes.
A320655 counts factorizations into semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339655 counts non-loop-graphical partitions of 2n, ranked by
A339657.
A339659 counts graphical partitions of 2n into k parts.
The following count partitions of even length and give their Heinz numbers:
-
strs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
Table[Length[Select[IntegerPartitions[n],strs[Times@@Prime/@#]!={}&]],{n,0,15}]
A339561
Products of distinct squarefree semiprimes.
Original entry on oeis.org
1, 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 60, 62, 65, 69, 74, 77, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 126, 129, 132, 133, 134, 140, 141, 142, 143, 145, 146, 150, 155, 156, 158, 159, 161, 166
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 55: {3,5} 91: {4,6}
6: {1,2} 57: {2,8} 93: {2,11}
10: {1,3} 58: {1,10} 94: {1,15}
14: {1,4} 60: {1,1,2,3} 95: {3,8}
15: {2,3} 62: {1,11} 106: {1,16}
21: {2,4} 65: {3,6} 111: {2,12}
22: {1,5} 69: {2,9} 115: {3,9}
26: {1,6} 74: {1,12} 118: {1,17}
33: {2,5} 77: {4,5} 119: {4,7}
34: {1,7} 82: {1,13} 122: {1,18}
35: {3,4} 84: {1,1,2,4} 123: {2,13}
38: {1,8} 85: {3,7} 126: {1,2,2,4}
39: {2,6} 86: {1,14} 129: {2,14}
46: {1,9} 87: {2,10} 132: {1,1,2,5}
51: {2,7} 90: {1,2,2,3} 133: {4,8}
For example, the number 1260 can be factored into distinct squarefree semiprimes in two ways, (6*10*21) or (6*14*15), so 1260 is in the sequence. The number 69300 can be factored into distinct squarefree semiprimes in seven ways:
(6*10*15*77)
(6*10*21*55)
(6*10*33*35)
(6*14*15*55)
(6*15*22*35)
(10*14*15*33)
(10*15*21*22),
so 69300 is in the sequence. A complete list of all strict factorizations of 24 is: (2*3*4), (2*12), (3*8), (4*6), (24), all of which contain at least one number that is not a squarefree semiprime, so 24 is not in the sequence.
A309356 is a kind of universal embedding.
A320911 lists all (not just distinct) products of squarefree semiprimes.
A339560 counts the partitions with these Heinz numbers.
A339661 has nonzero terms at these positions.
A320656 counts factorizations into squarefree semiprimes.
The following count vertex-degree partitions and give their Heinz numbers:
The following count partitions of even length and give their Heinz numbers:
-
A339560 can be partitioned into distinct strict pairs (
A339561 [this sequence]).
Cf.
A001055,
A001221,
A002100,
A007717,
A030229,
A112798,
A320655,
A320893,
A338899,
A338903,
A339563,
A339659.
-
sqs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqs[n/d],Min@@#>d&]],{d,Select[Divisors[n],SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
Select[Range[100],sqs[#]!={}&]
A114938
Number of permutations of the multiset {1,1,2,2,...,n,n} with no two consecutive terms equal.
Original entry on oeis.org
1, 0, 2, 30, 864, 39480, 2631600, 241133760, 29083420800, 4467125013120, 851371260364800, 197158144895712000, 54528028997584665600, 17752366094818747392000, 6720318485119046923315200, 2927066537906697348594432000, 1453437879238150456164433920000
Offset: 0
a(2) = 2 because there are two permutations of {1,1,2,2} avoiding equal consecutive terms: 1212 and 2121.
- R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997. Chapter 2, Sieve Methods, Example 2.2.3, page 68.
Cf.
A114939 = preferred seating arrangements of n couples.
Cf.
A007060 = arrangements of n couples with no adjacent spouses;
A007060(n) = 2^n *
A114938(n) (this sequence).
Cf.
A278990 = number of loopless linear chord diagrams with n chords.
Cf.
A000806 = Bessel polynomial y_n(-1).
The version for multisets with prescribed multiplicities is
A335125.
The version for prime indices is
A335452.
Anti-run compositions are counted by
A003242.
Anti-run compositions are ranked by
A333489.
Inseparable partitions are counted by
A325535.
Inseparable partitions are ranked by
A335448.
Separable partitions are counted by
A325534.
Separable partitions are ranked by
A335433.
Other sequences involving the multiset {1,1,2,2,...,n,n}:
A001147,
A007717,
A020555,
A094574,
A316972.
-
[1] cat [n le 2 select 2*(n-1) else n*(2*n-1)*Self(n-1) + (n-1)*n*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Aug 10 2015
-
Table[Sum[Binomial[n,i](2n-i)!/2^(n-i) (-1)^i,{i,0,n}],{n,0,20}] (* Geoffrey Critzer, Jan 02 2013, and adapted to the extension by Stefano Spezia, Nov 15 2018 *)
Table[Length[Select[Permutations[Join[Range[n],Range[n]]],!MatchQ[#,{_,x_,x_,_}]&]],{n,0,5}] (* Gus Wiseman, Jul 04 2020 *)
A114938[n_] := ((2 n)! Hypergeometric1F1[-n, -2 n, -2]) / 2^n;
Array[A114938, 17, 0] (* Peter Luschny, Sep 04 2025 *)
-
A114938(n)=sum(k=0, n, binomial(n, k)*(-1)^(n-k)*(n+k)!/2^k);
vector(20, n, A114938(n-1)) \\ Michel Marcus, Aug 10 2015
-
def A114938(n): return (-1)^n*sum(binomial(n,k)*factorial(n+k)//(-2)^k for k in range(n+1))
[A114938(n) for n in range(31)] # G. C. Greubel, Sep 26 2023
A320893
Numbers with an even number of prime factors (counted with multiplicity) that can be factored into squarefree semiprimes (A320911) but cannot be factored into distinct semiprimes (A320892).
Original entry on oeis.org
1296, 7776, 10000, 12960, 18144, 19440, 21600, 27216, 28512, 33696, 36000, 38416, 42336, 42768, 44064, 46656, 48600, 49248, 50544, 50625, 59616, 60000, 66096, 73872, 75168, 77760, 80352, 89424, 95256, 95904, 98784, 100000
Offset: 1
Cf.
A001055,
A001358,
A005117,
A006881,
A007717,
A028260,
A318871,
A318953,
A320655,
A320656,
A320891,
A320892,
A320894,
A320911,
A320912,
A320913.
-
sqfsemfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfsemfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
strsemfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strsemfacs[n/d],Min@@#>d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]];
Select[Range[10000],And[EvenQ[PrimeOmega[#]],strsemfacs[#]=={},sqfsemfacs[#]!={}]&]
A320921
Number of connected graphical partitions of 2n.
Original entry on oeis.org
1, 1, 1, 3, 5, 10, 19, 35, 60
Offset: 0
The a(1) = 1 through a(6) = 19 connected graphical partitions:
(11) (211) (222) (2222) (3322) (3333)
(2211) (3221) (22222) (33222)
(3111) (22211) (32221) (33321)
(32111) (33211) (42222)
(41111) (42211) (43221)
(222211) (222222)
(322111) (322221)
(331111) (332211)
(421111) (333111)
(511111) (422211)
(432111)
(522111)
(2222211)
(3222111)
(3321111)
(4221111)
(4311111)
(5211111)
(6111111)
-
prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
Table[Length[Select[strnorm[2*n],Select[prptns[#],And[UnsameQ@@#,Length[csm[#]]==1]&]!={}&]],{n,5}]
A338914
Number of integer partitions of n of even length whose greatest multiplicity is at most half their length.
Original entry on oeis.org
1, 0, 0, 1, 1, 2, 3, 4, 6, 9, 11, 16, 23, 29, 39, 53, 69, 90, 118, 150, 195, 249, 315, 398, 506, 629, 789, 982, 1219, 1504, 1860, 2277, 2798, 3413, 4161, 5051, 6137, 7406, 8948, 10765, 12943, 15503, 18571, 22153, 26432, 31432, 37352, 44268, 52444, 61944, 73141
Offset: 0
The a(3) = 1 through a(10) = 11 partitions:
(21) (31) (32) (42) (43) (53) (54) (64)
(41) (51) (52) (62) (63) (73)
(2211) (61) (71) (72) (82)
(3211) (3221) (81) (91)
(3311) (3321) (3322)
(4211) (4221) (4321)
(4311) (4411)
(5211) (5221)
(222111) (5311)
(6211)
(322111)
A096373 counts the complement in even-length partitions.
A320911 gives the Heinz numbers of these partitions.
A339562 counts factorizations of the same type.
A000070 counts non-multigraphical partitions of 2n, ranked by
A339620.
A002100 counts partitions into squarefree semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339655 counts non-loop-graphical partitions of 2n, ranked by
A339657.
The following count partitions of even length and give their Heinz numbers:
-
Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&Max@@Length/@Split[#]<=Length[#]/2&]],{n,0,30}]
A339617
Number of non-graphical integer partitions of 2n.
Original entry on oeis.org
0, 1, 3, 6, 13, 25, 46, 81, 141, 234, 383, 615, 968, 1503, 2298, 3468, 5176, 7653, 11178, 16212, 23290, 33218, 46996, 66091, 92277, 128122, 176787, 242674, 331338, 450279, 608832, 819748, 1098907, 1467122, 1951020, 2584796, 3411998
Offset: 0
The a(1) = 1 through a(4) = 13 partitions:
(2) (4) (6) (8)
(2,2) (3,3) (4,4)
(3,1) (4,2) (5,3)
(5,1) (6,2)
(3,2,1) (7,1)
(4,1,1) (3,3,2)
(4,2,2)
(4,3,1)
(5,2,1)
(6,1,1)
(3,3,1,1)
(4,2,1,1)
(5,1,1,1)
For example, the partition (2,2,2,2) is not counted under a(4) because there are three possible graphs with the prescribed degrees:
{{1,2},{1,3},{2,4},{3,4}}
{{1,2},{1,4},{2,3},{3,4}}
{{1,3},{1,4},{2,3},{2,4}}
A006881 lists squarefree semiprimes.
A320656 counts factorizations into squarefree semiprimes.
A339659 counts graphical partitions of 2n into k parts.
The following count vertex-degree partitions and give their Heinz numbers:
-
A339617 [this sequence] counts non-graphical partitions of 2n (
A339618).
The following count partitions of even length and give their Heinz numbers:
-
prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
Table[Length[Select[strnorm[2*n],Select[prptns[#],UnsameQ@@#&]=={}&]],{n,0,5}]
Comments