cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 62 results. Next

A179269 Number of partitions of n into distinct parts such that the successive differences of consecutive parts are increasing, and first difference > first part.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 5, 5, 7, 7, 7, 10, 10, 10, 13, 14, 14, 18, 19, 19, 23, 25, 25, 30, 32, 33, 38, 41, 42, 48, 52, 54, 60, 65, 67, 75, 81, 84, 92, 99, 103, 113, 121, 126, 136, 147, 153, 165, 177, 184, 197, 213, 221, 236, 253, 264, 280, 301, 313, 331, 355, 371, 390, 418, 435, 458
Offset: 0

Views

Author

Joerg Arndt, Jan 05 2011

Keywords

Comments

Conditions as in A179254; additionally, if more than 1 part, first difference > first part.
Equivalently, number of partitions for which the sequence of part counts by decreasing part size is 1, 2, 3, ... - Olivier Gérard, Jul 28 2017

Examples

			a(10) = 5 as there are 5 such partitions of 10: 1 + 3 + 6 = 1 + 9 = 2 + 8 = 3 + 7 = 10.
a(10) = 5 as there are 5 such partitions of 10: 10, 8 + 1 + 1, 6 + 2 + 2, 4 + 3 + 3, 3 + 2 + 2 + 1 + 1 + 1 (second definition).
From _Gus Wiseman_, May 04 2019: (Start)
The a(3) = 1 through a(13) = 7 partitions whose differences are strictly increasing (with the last part taken to be 0) are the following (A = 10, B = 11, C = 12, D = 13). The Heinz numbers of these partitions are given by A325460.
  (3)  (4)   (5)   (6)   (7)   (8)   (9)   (A)    (B)    (C)    (D)
       (31)  (41)  (51)  (52)  (62)  (72)  (73)   (83)   (93)   (94)
                         (61)  (71)  (81)  (82)   (92)   (A2)   (A3)
                                           (91)   (A1)   (B1)   (B2)
                                           (631)  (731)  (831)  (C1)
                                                                (841)
                                                                (931)
The a(3) = 1 through a(11) = 5 partitions whose multiplicities form an initial interval of positive integers are the following (A = 10, B = 11). The Heinz numbers of these partitions are given by A307895.
  (3)  (4)    (5)    (6)    (7)    (8)    (9)    (A)       (B)
       (211)  (311)  (411)  (322)  (422)  (522)  (433)     (533)
                            (511)  (611)  (711)  (622)     (722)
                                                 (811)     (911)
                                                 (322111)  (422111)
(End)
		

Crossrefs

Cf. A179254 (condition only on differences), A007294 (nondecreasing instead of strictly increasing), A179255, A320382, A320385, A320387, A320388.

Programs

  • Mathematica
    Table[Length@
      Select[IntegerPartitions[n],
       And @@ Equal[Range[Length[Split[#]]], Length /@ Split[#]] &], {n,
    0, 40}]   (* Olivier Gérard, Jul 28 2017 *)
    Table[Length[Select[IntegerPartitions[n],Less@@Differences[Append[#,0]]&]],{n,0,30}] (* Gus Wiseman, May 04 2019 *)
  • PARI
    R(n)={my(L=List(), v=vectorv(n, i, 1), w=1, t=1); while(v, listput(L,v); w++; t+=w; v=vectorv(n, i, sum(k=1, (i-1)\t, L[w-1][i-k*t]))); Mat(L)}
    seq(n)={my(M=R(n)); concat([1], vector(n, i, vecsum(M[i,])))} \\ Andrew Howroyd, Aug 27 2019
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i - 1).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary << 0
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0.reverse && ary0.uniq == ary0
      }
      cnt
    end
    def A179269(n)
      (0..n).map{|i| f(i)}
    end
    p A179269(50) # Seiichi Manyama, Oct 12 2018
    
  • Sage
    def A179269(n):
        has_increasing_diffs = lambda x: min(differences(x,2)) >= 1
        special = lambda x: (x[1]-x[0]) > x[0]
        allowed = lambda x: (len(x) < 2 or special(x)) and (len(x) < 3 or has_increasing_diffs(x))
        return len([x for x in Partitions(n,max_slope=-1) if allowed(x[::-1])])
    # D. S. McNeil, Jan 06 2011
    

Formula

G.f.: Sum_{k>=0} x^(k*(k+1)*(k+2)/6) / Product_{j=1..k} (1 - x^(j*(j+1)/2)) (conjecture). - Ilya Gutkovskiy, Apr 25 2019

A325334 Number of integer partitions of n with adjusted frequency depth 3 whose parts cover an initial interval of positive integers.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 0, 0, 2, 0, 0, 2, 0, 1, 2, 0, 0, 2, 0, 0, 1, 1, 0, 4, 0, 0, 1, 0, 0, 3, 0, 0, 1, 1, 0, 3, 0, 0, 3, 0, 0, 2, 0, 1, 1, 0, 0, 2, 1, 1, 1, 0, 0, 4, 0, 0, 2, 0, 0, 3, 0, 0, 1, 1, 0, 3, 0, 0, 2, 0, 0, 3, 0, 1, 1, 0, 0, 4, 0, 0, 1, 0, 0, 5, 1, 0, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 0, 0, 4
Offset: 0

Views

Author

Gus Wiseman, May 01 2019

Keywords

Comments

The adjusted frequency depth of an integer partition (A325280) is 0 if the partition is empty, and otherwise it is 1 plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).
The Heinz numbers of these partitions are given by A325374.

Examples

			The first 30 terms count the following partitions:
   3: (21)
   6: (321)
   6: (2211)
   9: (222111)
  10: (4321)
  12: (332211)
  12: (22221111)
  15: (54321)
  15: (2222211111)
  18: (333222111)
  18: (222222111111)
  20: (44332211)
  21: (654321)
  21: (22222221111111)
  24: (333322221111)
  24: (2222222211111111)
  27: (222222222111111111)
  28: (7654321)
  30: (5544332211)
  30: (444333222111)
  30: (333332222211111)
  30: (22222222221111111111)
		

Crossrefs

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    unifQ[m_]:=SameQ@@Length/@Split[m];
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&!SameQ@@#&&unifQ[#]&]],{n,0,30}]
  • PARI
    A007862(n) = sumdiv(n, d, ispolygonal(d, 3));
    A325334(n) = if(!n,n,A007862(n)-1); \\ Antti Karttunen, Jan 17 2025

Formula

a(n) = A007862(n) - 1.

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 17 2025

A325407 Nonprime Heinz numbers of multiples of triangular partitions, or of finite arithmetic progressions with offset 0.

Original entry on oeis.org

1, 6, 21, 30, 65, 133, 210, 273, 319, 481, 731, 1007, 1403, 1495, 2059, 2310, 2449, 3293, 4141, 4601, 4921, 5187, 5311, 6943, 8201, 9211, 10921, 12283, 13213, 14993, 15247, 16517, 19847, 22213, 24139, 25853, 28141, 29341, 29539, 30030, 31753, 37211, 40741
Offset: 1

Views

Author

Gus Wiseman, May 03 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers of the form Product_{k = 1...b} prime(k * c) for some b > 1 and c > 0.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}
      6: {1,2}
     21: {2,4}
     30: {1,2,3}
     65: {3,6}
    133: {4,8}
    210: {1,2,3,4}
    273: {2,4,6}
    319: {5,10}
    481: {6,12}
    731: {7,14}
   1007: {8,16}
   1403: {9,18}
   1495: {3,6,9}
   2059: {10,20}
   2310: {1,2,3,4,5}
   2449: {11,22}
   3293: {12,24}
   4141: {13,26}
   4601: {14,28}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[10000],!PrimeQ[#]&&SameQ@@Differences[Prepend[primeMS[#],0]]&]

A130317 Smallest number having exactly n triangular divisors.

Original entry on oeis.org

1, 3, 6, 36, 30, 90, 180, 210, 420, 630, 1890, 1260, 2520, 6930, 18480, 20790, 13860, 27720, 41580, 83160, 138600, 245700, 235620, 180180, 556920, 360360, 540540, 1670760, 1081080, 1413720, 2702700, 2162160, 6486480, 3063060, 8288280
Offset: 1

Views

Author

Reinhard Zumkeller, May 23 2007

Keywords

Comments

2*a(n) is smallest number having exactly n oblong divisors.
A007862(a(n)) = n and A007862(m) <> n for m < a(n).

Examples

			a(3)=6: A007862(6)=#{1,2*(2+1)/2,3*(3+1)/2}=3;
a(4)=36: A007862(36)=#{1,2*(2+1)/2,3*(3+1)/2,8*(8+1)/2}=4;
		

Crossrefs

Programs

  • PARI
    a(n) = my(k=1); while (sumdiv(k, d, ispolygonal(d,3)) != n, k++); k; \\ Michel Marcus, Jan 14 2022

Formula

a(n) = A088726(n-1)/2 for n>1. - Ray Chandler, Jun 24 2008

Extensions

Extended by Ray Chandler, Jun 24 2008

A325849 Number of strict compositions of n with no three consecutive parts in arithmetic progression.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 9, 13, 19, 23, 51, 57, 91, 117, 179, 283, 381, 531, 737, 1017, 1335, 2259, 2745, 3983, 5289, 7367, 9413, 13155, 19461, 25129, 33997, 45633, 61225, 80481, 107091, 137475, 205243, 253997, 345527, 447003, 604919, 768331, 1026167, 1299227
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers with sum n. a(n) is the number of strict compositions of n with no two of their adjacent first-differences equal, or with no 0's in their second-differences.

Examples

			The a(1) = 1 through a(8) = 19 compositions:
  (1)  (2)  (3)   (4)   (5)   (6)    (7)    (8)
            (12)  (13)  (14)  (15)   (16)   (17)
            (21)  (31)  (23)  (24)   (25)   (26)
                        (32)  (42)   (34)   (35)
                        (41)  (51)   (43)   (53)
                              (132)  (52)   (62)
                              (213)  (61)   (71)
                              (231)  (124)  (125)
                              (312)  (142)  (134)
                                     (214)  (143)
                                     (241)  (152)
                                     (412)  (215)
                                     (421)  (251)
                                            (314)
                                            (341)
                                            (413)
                                            (431)
                                            (512)
                                            (521)
		

Crossrefs

The non-strict case is A238423.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&],!MemberQ[Differences[#,2],0]&]],{n,0,30}]

A364673 Number of (necessarily strict) integer partitions of n containing all of their own first differences.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 2, 1, 2, 2, 2, 5, 2, 2, 4, 2, 3, 6, 4, 4, 8, 4, 4, 10, 8, 7, 8, 13, 9, 15, 12, 13, 17, 20, 15, 31, 24, 27, 32, 33, 32, 50, 42, 45, 53, 61, 61, 85, 76, 86, 101, 108, 118, 137, 141, 147, 179, 184, 196, 222, 244, 257, 295, 324, 348, 380, 433
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2023

Keywords

Examples

			The partition y = (12,6,3,2,1) has differences (6,3,1,1), and {1,3,6} is a subset of {1,2,3,6,12}, so y is counted under a(24).
The a(n) partitions for n = 1, 3, 6, 12, 15, 18, 21:
  (1)  (3)    (6)      (12)       (15)         (18)         (21)
       (2,1)  (4,2)    (8,4)      (10,5)       (12,6)       (14,7)
              (3,2,1)  (6,4,2)    (8,4,2,1)    (9,6,3)      (12,6,3)
                       (5,4,2,1)  (5,4,3,2,1)  (6,5,4,2,1)  (8,6,4,2,1)
                       (6,3,2,1)               (7,5,3,2,1)  (9,5,4,2,1)
                                               (8,4,3,2,1)  (9,6,3,2,1)
                                                            (10,5,3,2,1)
                                                            (6,5,4,3,2,1)
		

Crossrefs

Containing all differences: A007862.
Containing no differences: A364464, strict complement A364536.
Containing at least one difference: A364467, complement A363260.
For subsets of {1..n} we have A364671, complement A364672.
A non-strict version is A364674.
For submultisets instead of subsets we have A364675.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A236912 counts sum-free partitions w/o re-used parts, complement A237113.
A325325 counts partitions with distinct first differences.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&SubsetQ[#,-Differences[#]]&]],{n,0,30}]
  • Python
    from collections import Counter
    def A364673_list(maxn):
        count = Counter()
        for i in range(maxn//3):
            A,f,i = [[(i+1, )]],0,0
            while f == 0:
                A.append([])
                for j in A[i]:
                    for k in j:
                        x = j + (j[-1] + k, )
                        y = sum(x)
                        if y <= maxn:
                            A[i+1].append(x)
                            count.update({y})
                if len(A[i+1]) < 1: f += 1
                i += 1
        return [count[z]+1 for z in range(maxn+1)] # John Tyler Rascoe, Mar 09 2024

A076982 Number of triangular numbers that divide the n-th triangular number.

Original entry on oeis.org

1, 2, 3, 2, 3, 3, 2, 4, 4, 2, 4, 4, 2, 5, 6, 2, 3, 3, 3, 8, 4, 2, 4, 6, 2, 3, 5, 2, 4, 4, 2, 5, 3, 2, 10, 4, 2, 3, 7, 3, 4, 4, 2, 9, 5, 2, 4, 6, 2, 4, 5, 2, 3, 6, 5, 6, 3, 2, 6, 6, 2, 4, 7, 3, 5, 3, 2, 4, 6, 2, 5, 5, 2, 4, 7, 2, 6, 3, 3, 9, 3, 2, 5, 10, 2, 3, 5, 2, 5, 8, 3, 4, 3, 2, 8, 4, 2, 5, 10, 3, 3, 3
Offset: 1

Views

Author

Amarnath Murthy, Oct 25 2002

Keywords

Comments

Also number of oblong numbers that divide the n-th oblong number.
Sequence A137281 contains the indices of primitive triangular numbers; those that have no triangular divisors other than 1 and itself. - T. D. Noe, Apr 12 2011

Crossrefs

Programs

  • Maple
    a[1] := 1:for i from 1 to 200 do s := 0:for j from 1 to i do if((i*(i+1)/2 mod j*(j+1)/2)=0) then s := s+1:fi:od:a[i] := s:od:seq(a[l],l=1..200);
  • Mathematica
    nn = 100; tri = Table[n*(n+1)/2, {n, nn}]; Table[Count[Mod[tri[[n]], Take[tri, n]], 0], {n, nn}] (* T. D. Noe, Apr 12 2011 *)
  • PARI
    a(n) = sumdiv(n*(n+1)/2, d, ispolygonal(d, 3)); \\ Michel Marcus, Mar 21 2023
  • Python
    def aupton(nn):
        tri = [i*(i+1)//2 for i in range(1, nn+1)]
        return [sum(t%t2 == 0 for t2 in tri[:j+1]) for j, t in enumerate(tri)]
    print(aupton(102)) # Michael S. Branicky, Dec 10 2021
    

Formula

a(n) = A007862(A000217(n)) = A129308(A002378(n)). - Ray Chandler, Jun 21 2008

Extensions

More terms from Lior Manor, Nov 06 2002
More terms from Sascha Kurz, Jan 26 2003

A279495 Number of tetrahedral numbers dividing n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 13 2016

Keywords

Comments

Inverse Möbius transform of A023533. - Antti Karttunen, Oct 01 2018
Records are a(1) = 1, a(4) = 2, a(20) = 4, a(120) = 5, a(280) = 6, a(560) = 7, a(840) = 8, a(1680) = 9, a(9240) = 11, a(18480) = 12, a(55440) = 13, a(120120) = 14, a(240240) = 15, a(314160) = 16, a(628320) = 17, a(1441440) = 18, a(2282280) = 19, a(4564560) = 21, a(9129120) = 22, a(13693680) = 23, a(27387360) = 24, a(54774720) = 25, a(68468400) = 26, a(77597520) = 27, a(136936800) = 28, a(155195040) = 29, a(310390080) = 30, a(465585120) = 31, a(775975200) = 32, a(1163962800) = 33, a(2327925600) = 36, a(4655851200) = 37, a(13967553600) = 38, a(16295479200) = 40. - Charles R Greathouse IV, Dec 19 2016

Examples

			a(10) = 2 because 10 has 4 divisors {1,2,5,10} among which 2 divisors {1,10} are tetrahedral numbers.
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Sum[x^(k (k + 1) (k + 2)/6)/(1 - x^(k (k + 1) (k + 2)/6)), {k, 1, n}], {x, 0, n}], {n, 1, 120}]
  • PARI
    a(n)=sum(k=1,sqrtnint(6*n,3),n%(k*(k+1)*(k+2)/6)==0) \\ Charles R Greathouse IV, Dec 13 2016
    
  • PARI
    isA000292(n)=my(k=sqrtnint(6*n,3)); k*(k+1)*(k+2)==6*n
    a(n)=sumdiv(n,d,isA000292(d)) \\ Charles R Greathouse IV, Dec 13 2016

Formula

G.f.: Sum_{k>=1} x^(k*(k+1)*(k+2)/6)/(1 - x^(k*(k+1)*(k+2)/6)).
a(n) = Sum_{d|n} A023533(d). - Antti Karttunen, Oct 01 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3/2. - Amiram Eldar, Jan 02 2024

A320510 Number of partitions of n such that the successive differences of consecutive parts are decreasing, and first difference < first part.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 2, 4, 2, 3, 4, 3, 4, 6, 3, 5, 6, 5, 6, 9, 5, 7, 9, 8, 8, 11, 8, 11, 13, 10, 12, 15, 11, 15, 16, 14, 16, 21, 15, 20, 22, 18, 21, 26, 21, 24, 28, 25, 28, 33, 26, 32, 34, 33, 36, 40, 34, 40, 45, 40, 43, 49, 43, 52, 54, 49, 54, 62, 56, 62, 64, 61, 67, 75, 66
Offset: 0

Views

Author

Seiichi Manyama, Oct 14 2018

Keywords

Comments

Partitions are usually written with parts in descending order, but the conditions are easier to check visually if written in ascending order.
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1). Then a(n) is the number of integer partitions of n whose differences (with the last part taken to be 0) are strictly decreasing. The Heinz numbers of these partitions are given by A325461. Of course, the number of such integer partitions of n is also the number of reversed integer partitions of n whose differences are strictly decreasing, which is the author's interpretation. - Gus Wiseman, May 04 2019

Examples

			There are a(29) = 13 such partitions of 29:
01: [29]
02: [10, 19]
03: [11, 18]
04: [12, 17]
05: [13, 16]
06: [14, 15]
07: [6, 10, 13]
08: [6, 11, 12]
09: [7, 10, 12]
10: [7, 11, 11]
11: [8, 10, 11]
12: [9, 10, 10]
13: [4, 7, 9, 9]
There are a(30) = 10 such partitions of 30:
01: [30]
02: [11, 19]
03: [12, 18]
04: [13, 17]
05: [14, 16]
06: [15, 15]
07: [6, 11, 13]
08: [7, 11, 12]
09: [8, 11, 11]
10: [4, 7, 9, 10]
		

Crossrefs

Cf. A320385 (distinct parts, decreasing, and first difference < first part).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Greater@@Differences[Append[#,0]]&]],{n,0,30}] (* Gus Wiseman, May 04 2019 *)
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def f(n)
      return 1 if n == 0
      cnt = 0
      partition(n, 1, n).each{|ary|
        ary << 0
        ary0 = (1..ary.size - 1).map{|i| ary[i - 1] - ary[i]}
        cnt += 1 if ary0.sort == ary0 && ary0.uniq == ary0
      }
      cnt
    end
    def A320510(n)
      (0..n).map{|i| f(i)}
    end
    p A320510(50)

A364671 Number of subsets of {1..n} containing all of their own first differences.

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 23, 34, 58, 96, 171, 302, 565, 1041, 1969, 3719, 7105, 13544, 25999, 49852, 95949, 184658, 356129, 687068, 1327540, 2566295, 4966449, 9617306, 18640098, 36150918, 70166056, 136272548, 264844111, 515036040, 1002211421, 1951345157, 3801569113
Offset: 0

Views

Author

Gus Wiseman, Aug 04 2023

Keywords

Examples

			The subset {1,2,4,5,10,14} has differences (1,2,1,5,4) so is counted under a(14).
The a(0) = 1 through a(5) = 14 subsets:
  {}  {}   {}     {}       {}         {}
      {1}  {1}    {1}      {1}        {1}
           {2}    {2}      {2}        {2}
           {1,2}  {3}      {3}        {3}
                  {1,2}    {4}        {4}
                  {1,2,3}  {1,2}      {5}
                           {2,4}      {1,2}
                           {1,2,3}    {2,4}
                           {1,2,4}    {1,2,3}
                           {1,2,3,4}  {1,2,4}
                                      {1,2,3,4}
                                      {1,2,3,5}
                                      {1,2,4,5}
                                      {1,2,3,4,5}
		

Crossrefs

For differences of all strict pairs we have A054519, for partitions A007862.
For "disjoint" instead of "subset" we have A364463, partitions A363260.
For "non-disjoint" we have A364466, partitions A364467 (strict A364536).
The complement is counted by A364672, partitions A364673, A364674, A364675.
First differences of terms are A364752, complement A364753.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], SubsetQ[#,Differences[#]]&]], {n,0,10}]

Extensions

More terms from Rémy Sigrist, Aug 06 2023
Previous Showing 21-30 of 62 results. Next