A061537 Product of unitary divisors of n.
1, 2, 3, 4, 5, 36, 7, 8, 9, 100, 11, 144, 13, 196, 225, 16, 17, 324, 19, 400, 441, 484, 23, 576, 25, 676, 27, 784, 29, 810000, 31, 32, 1089, 1156, 1225, 1296, 37, 1444, 1521, 1600, 41, 3111696, 43, 1936, 2025, 2116, 47, 2304, 49, 2500, 2601, 2704, 53, 2916
Offset: 1
Keywords
Examples
For n = 288, unitary divisors = {1, 9, 32, 288}, a(288) = 1 * 9 * 32 * 288 = 82944.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000 (terms n=1..1000 from Harry J. Smith)
Programs
-
Maple
a:= n-> mul(`if`(igcd(d, n/d)=1, d, 1), d=numtheory[divisors](n)): seq(a(n), n=1..30); # Alois P. Heinz, Aug 01 2017
-
Mathematica
Table[Times@@ Select[Divisors[n], GCD[#, n/#]==1 &], {n, 1, 100}] (* Indranil Ghosh, Aug 04 2017 *) a[n_] := n^(2^(PrimeNu[n]-1)); Array[a, 60] (* Amiram Eldar, Jul 22 2024 *)
-
PARI
{ for (n=1, 1000, s=divisors(n); a=1; for (i=2, length(s), d=s[i]; if (gcd(d, n/d)==1, a*=d)); write("b061537.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 24 2009
-
PARI
a(n) = n^(2^(omega(n)-1)); \\ Amiram Eldar, Jul 22 2024
-
Python
from sympy import divisors, gcd, prod def a(n): return prod(d for d in divisors(n) if gcd(d, n//d)==1) print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Aug 04 2017
Extensions
Corrected and edited by Jaroslav Krizek, Mar 05 2009
Comments