cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 579 results. Next

A325280 Triangle read by rows where T(n,k) is the number of integer partitions of n with adjusted frequency depth k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 1, 2, 3, 0, 0, 1, 3, 4, 3, 0, 0, 0, 1, 1, 4, 8, 1, 0, 0, 0, 1, 3, 6, 9, 3, 0, 0, 0, 0, 1, 2, 8, 12, 7, 0, 0, 0, 0, 0, 1, 3, 11, 17, 10, 0, 0, 0, 0, 0, 0, 1, 1, 11, 26, 17, 0, 0, 0, 0, 0, 0, 0, 1, 5, 19, 25, 27
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

The adjusted frequency depth of an integer partition is 0 if the partition is empty, and otherwise it is one plus the number of times one must take the multiset of multiplicities to reach a singleton. For example, the partition (32211) has adjusted frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2).
The term "frequency depth" appears to have been coined by Clark Kimberling in A225485 and A225486, and can be applied to both integers (A323014) and integer partitions (this sequence).

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  1  1
  0  1  2  1  1
  0  1  1  2  3  0
  0  1  3  4  3  0  0
  0  1  1  4  8  1  0  0
  0  1  3  6  9  3  0  0  0
  0  1  2  8 12  7  0  0  0  0
  0  1  3 11 17 10  0  0  0  0  0
  0  1  1 11 26 17  0  0  0  0  0  0
  0  1  5 19 25 27  0  0  0  0  0  0  0
  0  1  1 17 44 38  0  0  0  0  0  0  0  0
  0  1  3 25 53 52  1  0  0  0  0  0  0  0  0
  0  1  3 29 63 76  4  0  0  0  0  0  0  0  0  0
  0  1  4 37 83 98  8  0  0  0  0  0  0  0  0  0  0
Row n = 9 counts the following partitions:
  (9)  (333)        (54)      (441)       (3321)
       (111111111)  (63)      (522)       (4221)
                    (72)      (711)       (4311)
                    (81)      (3222)      (5211)
                    (432)     (6111)      (32211)
                    (531)     (22221)     (42111)
                    (621)     (33111)     (321111)
                    (222111)  (51111)
                              (411111)
                              (2211111)
                              (3111111)
                              (21111111)
		

Crossrefs

Row sums are A000041. Column k = 2 is A032741. Column k = 3 is A325245.
Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or this sequence (length/frequency depth).

Programs

  • Mathematica
    fdadj[ptn_List]:=If[ptn=={},0,Length[NestWhileList[Sort[Length/@Split[#]]&,ptn,Length[#]>1&]]];
    Table[Length[Select[IntegerPartitions[n],fdadj[#]==k&]],{n,0,16},{k,0,n}]
  • PARI
    \\ depth(p) gives adjusted frequency depth of partition.
    depth(p)={if(!#p, 0, my(r=1); while(#p > 1, my(L=List(), k=0); for(i=1, #p, if(i==#p||p[i]<>p[i+1], listput(L,i-k); k=i)); listsort(L); p=L; r++); r)}
    row(n)={my(v=vector(1+n)); forpart(p=n, v[1+depth(Vec(p))]++); v}
    { for(n=0, 10, print(row(n))) } \\ Andrew Howroyd, Jan 18 2023

A237668 Number of partitions of n such that some part is a sum of two or more other parts.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 4, 4, 10, 13, 23, 27, 49, 60, 93, 115, 170, 210, 300, 370, 510, 632, 846, 1031, 1359, 1670, 2159, 2630, 3355, 4082, 5130, 6220, 7739, 9360, 11555, 13889, 16991, 20402, 24824, 29636, 35855, 42707, 51309, 60955, 72896, 86328, 102826, 121348
Offset: 0

Views

Author

Clark Kimberling, Feb 11 2014

Keywords

Comments

These are partitions containing the sum of some non-singleton submultiset of the parts, a variation of non-binary sum-full partitions where parts cannot be re-used, ranked by A364532. The complement is counted by A237667. The binary version is A237113, or A363225 with re-usable parts. This sequence is weakly increasing. - Gus Wiseman, Aug 12 2023

Examples

			a(6) = 4 counts these partitions: 123, 1113, 1122, 11112.
From _Gus Wiseman_, Aug 12 2023: (Start)
The a(0) = 0 through a(9) = 13 partitions:
  .  .  .  .  (211)  (2111)  (321)    (3211)    (422)      (3321)
                             (2211)   (22111)   (431)      (4221)
                             (3111)   (31111)   (3221)     (4311)
                             (21111)  (211111)  (4211)     (5211)
                                                (22211)    (32211)
                                                (32111)    (33111)
                                                (41111)    (42111)
                                                (221111)   (222111)
                                                (311111)   (321111)
                                                (2111111)  (411111)
                                                           (2211111)
                                                           (3111111)
                                                           (21111111)
(End)
		

Crossrefs

Cf. A179009.
The binary complement is A236912, ranks A364461.
The binary version is A237113, ranks A364462.
The complement is counted by A237667, ranks A364531.
The binary version with re-usable parts is A363225, ranks A364348.
The strict case is A364272.
The binary complement with re-usable parts is A364345, ranks A364347.
These partitions have ranks A364532.
For subsets instead of partitions we have A364534, complement A151897.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, ranks A299702.
A299701 counts distinct subset-sums of prime indices.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    z = 20; m = Map[Count[Map[MemberQ[#, Apply[Alternatives, Map[Apply[Plus, #] &, DeleteDuplicates[DeleteCases[Subsets[#], _?(Length[#] < 2 &)]]]]] &, IntegerPartitions[#]], False] &, Range[z]]; PartitionsP[Range[z]] - m
    (* Peter J. C. Moses, Feb 10 2014 *)
    Table[Length[Select[IntegerPartitions[n],Intersection[#,Total/@Subsets[#,{2,Length[#]}]]!={}&]],{n,0,15}] (* Gus Wiseman, Aug 12 2023 *)

Extensions

a(21)-a(47) from Giovanni Resta, Feb 22 2014

A336866 Number of integer partitions of n without all distinct multiplicities.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 9, 15, 21, 28, 46, 56, 80, 114, 149, 192, 269, 337, 455, 584, 751, 943, 1234, 1527, 1944, 2422, 3042, 3739, 4699, 5722, 7100, 8668, 10634, 12880, 15790, 19012, 23093, 27776, 33528, 40102, 48264, 57469, 68793, 81727, 97372, 115227
Offset: 0

Views

Author

Gus Wiseman, Aug 09 2020

Keywords

Examples

			The a(0) = 0 through a(9) = 15 partitions (empty columns shown as dots):
  .  .  .  (21)  (31)  (32)  (42)    (43)    (53)     (54)
                       (41)  (51)    (52)    (62)     (63)
                             (321)   (61)    (71)     (72)
                             (2211)  (421)   (431)    (81)
                                     (3211)  (521)    (432)
                                             (3221)   (531)
                                             (3311)   (621)
                                             (4211)   (3321)
                                             (32111)  (4221)
                                                      (4311)
                                                      (5211)
                                                      (32211)
                                                      (42111)
                                                      (222111)
                                                      (321111)
		

Crossrefs

A098859 counts the complement.
A130092 gives the Heinz numbers of these partitions.
A001222 counts prime factors with multiplicity.
A013929 lists nonsquarefree numbers.
A047966 counts uniform partitions.
A047967 counts non-strict partitions.
A071625 counts distinct prime multiplicities.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A327498 gives the maximum divisor with distinct prime multiplicities.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!UnsameQ@@Length/@Split[#]&]],{n,0,30}]

Formula

a(n) = A000041(n) - A098859(n).

A001400 Number of partitions of n into at most 4 parts.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 11, 15, 18, 23, 27, 34, 39, 47, 54, 64, 72, 84, 94, 108, 120, 136, 150, 169, 185, 206, 225, 249, 270, 297, 321, 351, 378, 411, 441, 478, 511, 551, 588, 632, 672, 720, 764, 816, 864, 920, 972, 1033, 1089, 1154, 1215, 1285, 1350, 1425, 1495
Offset: 0

Views

Author

Keywords

Comments

Molien series for 4-dimensional representation of S_4 [Nebe, Rains, Sloane, Chap. 7].
Also number of pure 2-complexes on 4 nodes with n multiple 2-simplexes. - Vladeta Jovovic, Dec 27 1999
Also number of different integer triangles with perimeter <= n+3. Also number of different scalene integer triangles with perimeter <= n+9. - Reinhard Zumkeller, May 12 2002
a(n) is the coefficient of q^n in the expansion of (m choose 4)_q as m goes to infinity. - Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
Also number of partitions of n into parts <= 4. a(n) = A026820(n,4), for n > 3. - Reinhard Zumkeller, Jan 21 2010
Number of different distributions of n+10 identical balls in 4 boxes as x,y,z,p where 0 < x < y < z < p. - Ece Uslu and Esin Becenen, Jan 11 2016
Number of partitions of 5n+8 or 5n+12 into 4 parts (+-) 3 mod 5. a(4) = 5 partitions of 28: [7,7,7,7], [12,7,7,2], [12,12,2,2], [17,7,2,2], [22,2,2,2]. a(3) = 3 partitions of 27: [8,8,8,3], [13,8,3,3], [18,3,3,3]. - Richard Turk, Feb 24 2016
a(n) is the total number of non-isomorphic geodetic graphs of diameter n homeomorphic to a complete graph K4. - Carlos Enrique Frasser, May 24 2018

Examples

			(4 choose 4)_q = 1, (5 choose 4)_q = q^4 + q^3 + q^2 + q + 1, (6 choose 4)_q = q^8 + q^7 + 2*q^6 + 2*q^5 + 3*q^4 + 2*q^3 + 2*q^2 + q + 1, (7 choose 4) = q^12 + q^11 + 2*q^10 + 3*q^9 + 4*q^8 + 4*q^7 + 5*q^6 + 4*q^5 + 4*q^4 + 3*q^3 + 2*q^2 + q + 1 so the coefficient of q^0 converges to 1, q^1 to 1, q^2 to 2 and so on.
G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 6*x^5 + 9*x^6 + 11*x^7 + ...
a(4) = 5, i.e., {1,2,3,8}, {1,2,4,7}, {1,2,5,6}, {2,3,4,5}, {1,3,4,6}. Number of different distributions of 14 identical balls in 4 boxes as x,y,z,p where 0 < x < y < z < p. - _Ece Uslu_, Esin Becenen, Jan 11 2016
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 115, row m=4 of Q(m,n) table; p. 120, P(n,4).
  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 2.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 275.
  • D. E. Knuth, The Art of Computer Programming, vol. 4, Fascicle 3, Generating All Combinations and Partitions, Addison-Wesley, 2005, Section 7.2.1.4., p. 56, exercise 31.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Essentially same as A026810. Partial sums of A005044.
a(n) = A008284(n+4, 4), n >= 0.
First differences of A002621.

Programs

  • Haskell
    a001400 n = a001400_list !! n
    a001400_list = scanl1 (+) a005044_list -- Reinhard Zumkeller, Feb 28 2013
  • Magma
    K:=Rationals(); M:=MatrixAlgebra(K,4); q1:=DiagonalMatrix(M,[1,-1,1,-1]); p1:=DiagonalMatrix(M,[1,1,-1,-1]); q2:=DiagonalMatrix(M,[1,1,1,-1]); h:=M![1,1,1,1, 1,1,-1,-1, 1,-1,1,-1, 1,-1,-1,1]/2; G:=MatrixGroup<4,K|q1,q2,h>; MolienSeries(G);
    
  • Maple
    A001400 := n->if n mod 2 = 0 then round(n^2*(n+3)/144); else round((n-1)^2*(n+5)/144); fi;
    with(combstruct):ZL5:=[S,{S=Set(Cycle(Z,card<5))}, unlabeled]:seq(count(ZL5,size=n),n=0..55); # Zerinvary Lajos, Sep 24 2007
    A001400:=-(-z**8+z**9+2*z**4-z**7-1-z)/(z**2+1)/(z**2+z+1)/(z+1)**2/(z-1)**4; # [conjectured by Simon Plouffe in his 1992 dissertation; gives sequence except for an initial 1]
    B:=[S,{S = Set(Sequence(Z,1 <= card),card <=4)},unlabelled]: seq(combstruct[count](B, size=n), n=0..55); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    CoefficientList[ Series[ 1/((1 - x)*(1 - x^2)*(1 - x^3)*(1 - x^4)), {x, 0, 65} ], x ]
    LinearRecurrence[{1, 1, 0, 0, -2, 0, 0, 1, 1, -1}, {1, 1, 2, 3, 5, 6, 9, 11, 15, 18}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 17 2012 *)
    a[n_] := Sum[Floor[(n - j - 3*k + 2)/2], {j, 0, Floor[n/4]}, {k, j, Floor[(n - j)/3]}]; Table[a[n], {n, 0, 55}] (* L. Edson Jeffery, Jul 31 2014 *)
    a[ n_] := With[{m = n + 5}, Round[ (2 m^3 - 3 m (5 + 3 (-1)^m)) / 288]]; (* Michael Somos, Dec 29 2014 *)
    a[ n_] := With[{m = Abs[n + 5] - 5}, Sign[n + 5] Length[ IntegerPartitions[ m, 4]]]; (* Michael Somos, Dec 29 2014 *)
    a[ n_] := With[{m = Abs[n + 5] - 5}, Sign[n + 5] SeriesCoefficient[ 1 / ((1 - x) (1 - x^2) (1 - x^3) (1 - x^4)), {x, 0, m}]]; (* Michael Somos, Dec 29 2014 *)
    Table[Length@IntegerPartitions[n, 4], {n, 0, 55}] (* Robert Price, Aug 18 2020 *)
  • PARI
    a(n) = round(((n+4)^3 + 3*(n+4)^2 -9*(n+4)*((n+4)% 2))/144) \\ Washington Bomfim, Jul 03 2012
    
  • PARI
    {a(n) = n+=5; round( (2*n^3 - 3*n*(5 + 3*(-1)^n)) / 288)}; \\ Michael Somos, Dec 29 2014
    
  • PARI
    a(n) = #partitions(n,,4); \\ Ruud H.G. van Tol, Jun 02 2024
    

Formula

G.f.: 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
a(n) = 1 + (a(n-2) + a(n-3) + a(n-4)) - (a(n-5) + a(n-6) + a(n-7)) + a(n-9). - Norman J. Meluch (norm(AT)iss.gm.com), Mar 09 2000
P(n, 4) = (1/288)*(2*n^3 + 6*n^2 - 9*n - 13 + (9*n+9)*pcr{1, -1}(2, n) - 32*pcr{1, -1, 0}(3, n) - 36*pcr{1, 0, -1, 0}(4, n)) (see Comtet).
Let c(n) = Sum_{i=0..floor(n/3)} (1 + ceiling((n-3*i-1)/2)), then a(n) = Sum_{i=0..floor(n/4)} (1 + ceiling((n-4*i-1)/2) + c(n-4*i-3)). - Jon Perry, Jun 27 2003
Euler transform of finite sequence [1, 1, 1, 1].
(n choose 4)_q = (q^n-1)*(q^(n-1)-1)*(q^(n-2)-1)*(q^(n-3)-1)/((q^4-1)*(q^3-1)*(q^2-1)*(q-1)).
a(n) = round(((n+4)^3 + 3*(n+4)^2 - 9*(n+4)*((n+4) mod 2))/144). - Washington Bomfim, Jul 03 2012
a(n) = a(n-1) + a(n-2) - 2*a(n-5) + a(n-8) + a(n-9) - a(n-10). - David Neil McGrath, Sep 12 2014
a(n) = -a(-10-n) for all n in Z. - Michael Somos, Dec 29 2014
a(n) - a(n+1) - a(n+3) + a(n+4) = 0 if n is odd, else floor(n/4) + 2 for all n in Z. - Michael Somos, Dec 29 2014
a(n) = n^3/144 + n^2/24 - 7*n/144 + 1 + floor(n/4)/4 + floor(n/3)/3 + (n+5)*floor(n/2)/8 + floor((n+1)/4)/4. - Vaclav Kotesovec, Aug 18 2015
a(n) = a(n-4) + A001399(n). - Ece Uslu, Esin Becenen, Jan 11 2016, corrected Sep 25 2020
a(6*n) - a(6*n+1) - a(6*n+4) + a(6*n+5) = n+1. - Richard Turk, Apr 19 2016
a(n) = a(n-1) + A005044(n+3) for n>0, i.e., first differences is A005044. - Yuchun Ji, Oct 12 2020
From Vladimír Modrák and Zuzana Soltysova, Dec 09 2020: (Start)
a(n) = round((n + 3)^2/12) + Sum_{i=0..floor(n/4)} round((n - 4*i - 1)^2/12).
a(n) = floor(((n + 3)^2 + 4)/12) + Sum_{i=0..floor(n/4)} floor(((n - 4*i - 1)^2 + 4)/12). (End)
a(n) - a(n-3) = A008642(n). - R. J. Mathar, Jun 23 2021
a(n) - a(n-2) = A025767(n). - R. J. Mathar, Jun 23 2021
a(n) = round((2*n^3 + 30*n^2 + 135*n + 175)/288 + (-1)^n*(n+5)/32). - Dave Neary, Oct 28 2021
From Vladimír Modrák, Jul 13 2022: (Start)
a(n) = Sum_{j=0..floor(n/4)} Sum_{i=0..floor(n/3)} ceiling((max(0,n + 1 - 3*i - 4*j))/2).
a(n) = Sum_{i=0..floor(n/4)} floor(((n + 3 - 4*i)^2 + 4)/12). (End)
a(n) = floor(((n+4)^2*(n+7) - 9*(n+4)*(n mod 2) + 32)/144). - Vladimír Modrák, Mar 23 2025

A026820 Euler's table: triangular array T read by rows, where T(n,k) = number of partitions in which every part is <= k for 1 <= k <= n. Also number of partitions of n into at most k parts.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 3, 4, 5, 1, 3, 5, 6, 7, 1, 4, 7, 9, 10, 11, 1, 4, 8, 11, 13, 14, 15, 1, 5, 10, 15, 18, 20, 21, 22, 1, 5, 12, 18, 23, 26, 28, 29, 30, 1, 6, 14, 23, 30, 35, 38, 40, 41, 42, 1, 6, 16, 27, 37, 44, 49, 52, 54, 55, 56, 1, 7, 19, 34, 47, 58, 65, 70, 73, 75, 76, 77
Offset: 1

Views

Author

Keywords

Examples

			Triangle starts:
  1;
  1, 2;
  1, 2,  3;
  1, 3,  4,  5;
  1, 3,  5,  6,  7;
  1, 4,  7,  9, 10, 11;
  1, 4,  8, 11, 13, 14, 15;
  1, 5, 10, 15, 18, 20, 21, 22;
  1, 5, 12, 18, 23, 26, 28, 29, 30;
  1, 6, 14, 23, 30, 35, 38, 40, 41, 42;
  1, 6, 16, 27, 37, 44, 49, 52, 54, 55, 56;
  ...
		

References

  • G. Chrystal, Algebra, Vol. II, p. 558.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIV.2, p. 493.

Crossrefs

Partial sums of rows of A008284, row sums give A058397, central terms give A171985, mirror is A058400.
T(n,n) = A000041(n), T(n,1) = A000012(n), T(n,2) = A008619(n) for n>1, T(n,3) = A001399(n) for n>2, T(n,4) = A001400(n) for n>3, T(n,5) = A001401(n) for n>4, T(n,6) = A001402(n) for n>5, T(n,7) = A008636(n) for n>6, T(n,8) = A008637(n) for n>7, T(n,9) = A008638(n) for n>8, T(n,10) = A008639(n) for n>9, T(n,11) = A008640(n) for n>10, T(n,12) = A008641(n) for n>11, T(n,n-2) = A007042(n-1) for n>2, T(n,n-1) = A000065(n) for n>1.

Programs

  • Haskell
    import Data.List (inits)
    a026820 n k = a026820_tabl !! (n-1) !! (k-1)
    a026820_row n = a026820_tabl !! (n-1)
    a026820_tabl = zipWith
       (\x -> map (p x) . tail . inits) [1..] $ tail $ inits [1..] where
       p 0 _ = 1
       p _ [] = 0
       p m ks'@(k:ks) = if m < k then 0 else p (m - k) ks' + p m ks
    -- Reinhard Zumkeller, Dec 18 2013
    
  • Maple
    T:= proc(n, k) option remember;
          `if`(n=0 or k=1, 1, T(n, k-1) + `if`(k>n, 0, T(n-k, k)))
        end:
    seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Apr 21 2012
  • Mathematica
    t[n_, k_] := Length@ IntegerPartitions[n, k]; Table[ t[n, k], {n, 12}, {k, n}] // Flatten
    (* Second program: *)
    T[n_, k_] := T[n, k] = If[n==0 || k==1, 1, T[n, k-1] + If[k>n, 0, T[n-k, k]]]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 22 2015, after Alois P. Heinz *)
  • PARI
    T(n,k)=my(s); forpart(v=n,s++,,k); s \\ Charles R Greathouse IV, Feb 27 2018
    
  • SageMath
    from sage.combinat.partition import number_of_partitions_length
    from itertools import accumulate
    for n in (1..11):
        print(list(accumulate([number_of_partitions_length(n, k) for k in (1..n)])))
    # Peter Luschny, Jul 28 2022

Formula

T(T(n,n),n) = A134737(n). - Reinhard Zumkeller, Nov 07 2007
T(A000217(n),n) = A173519(n). - Reinhard Zumkeller, Feb 20 2010
T(n,k) = T(n,k-1) + T(n-k,k). - Thomas Dybdahl Ahle, Jun 13 2011
T(n,k) = Sum_{i=1..min(k,floor(n/2))} T(n-i,i) + Sum_{j=1+floor(n/2)..k} A000041(n-j). - Bob Selcoe, Aug 22 2014 [corrected by Álvar Ibeas, Mar 15 2018]
O.g.f.: Product_{i>=0} 1/(1-y*x^i). - Geoffrey Critzer, Mar 11 2012
T(n,k) = A008284(n+k,k). - Álvar Ibeas, Jan 06 2015

A225485 Number of partitions of n that have frequency depth k, an array read by rows.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 3, 4, 3, 1, 1, 4, 8, 1, 1, 3, 6, 9, 3, 1, 2, 8, 12, 7, 1, 3, 11, 17, 10, 1, 1, 11, 26, 17, 1, 5, 19, 25, 27, 1, 1, 17, 44, 38, 1, 3, 25, 53, 52, 1, 1, 3, 29, 63, 76, 4
Offset: 1

Views

Author

Clark Kimberling, May 08 2013

Keywords

Comments

Let S = {x(1),...,x(k)} be a multiset whose distinct elements are y(1),...,y(h). Let f(i) be the frequency of y(i) in S. Define F(S) = {f(1),..,f(h)}, F(1,S) = F(S), and F(m,S) = F(F(m-1),S) for m>1. Then lim(F(m,S)) = {1} for every S, so that there is a least positive integer i for which F(i,S) = {1}, which we call the frequency depth of S.
Equivalently, the frequency depth of an integer partition is the number of times one must take the multiset of multiplicities to reach (1). For example, the partition (32211) has frequency depth 5 because we have: (32211) -> (221) -> (21) -> (11) -> (2) -> (1). - Gus Wiseman, Apr 19 2019
From Clark Kimberling, Sep 26 2023: (Start)
Below, m^n abbreviates the sum m+...+m of n terms. In the following list, the numbers p_1,...,p_k are distinct, m >= 1, and k >= 1. The forms of the partitions being counted are as follows:
column 1: [n],
column 2: [m^k],
column 3: [p_1^m,...,p_k^m],
column 4: [(p_1^m_1)^m,..., (p_k^m_k)^m], distinct numbers m_i.
Column 3 is of special interest. Assume first that m = 1, so that the form of partition being counted is p = [p_1,...,p_k], with conjugate given by [q_1,...,q_m] where q_i is the number of parts of p that are >= i. Since the p_i are distinct, the distinct parts of q are the integers 1,2,...,k. For the general case that m >= 1, the distinct parts of q are the integers m,...,km. Let S(n) denote the set of partitions of n counted by column 3. Then if a and b are in the set S*(n) of conjugates of partitions in S(n), and if a > b, then a - b is also in S*(n). Call this the subtraction property. Conversely, if a partition q has the subtraction property, then q must consist of a set of numbers m,..,km for some m. Thus, column 3 counts the partitions of n that have the subtraction property. (End)

Examples

			The first 9 rows:
  n = 1 .... 0
  n = 2 .... 1..1
  n = 3 .... 1..1..1
  n = 4 .... 1..2..1..1
  n = 5 .... 1..1..2..3
  n = 6 .... 1..3..4..3
  n = 7 .... 1..1..4..8..1
  n = 8 .... 1..3..6..9..3
  n = 9 .... 1..2..8.12..7
For the 7 partitions of 5, successive frequencies are shown here:
  5 -> 1 (depth 1)
  41 -> 11 -> 2 -> 1 (depth 3)
  32 -> 11 -> 2 -> 1 (depth 3)
  311 -> 12 -> 11 -> 2 -> 1 (depth 4)
  221 -> 12 -> 11 -> 2 -> 1 (depth 4)
  2111 -> 13 -> 11 -> 2 -> 1 (depth 4)
  11111 -> 5 -> 1 (depth 2)
Summary: 1 partition has depth 1; 1 has depth 2; 2 have 3; and 3 have 4, so that the row for n = 5 is 1..1..2..3 .
		

Crossrefs

Row sums are A000041.
Column k = 2 is A032741.
Column k = 3 is A325245.
a(n!) = A325272(n).
Integer partition triangles: A008284 (first omega), A116608 (second omega), A325242 (third omega), A325268 (second-to-last omega), A225485 or A325280 (length/frequency depth).

Programs

  • Mathematica
    c[s_] := c[s] = Select[Table[Count[s, i], {i, 1, Max[s]}], # > 0 &]
    f[s_] := f[s] = Drop[FixedPointList[c, s], -2]
    t[s_] := t[s] = Length[f[s]]
    u[n_] := u[n] = Table[t[Part[IntegerPartitions[n], i]],
      {i, 1, Length[IntegerPartitions[n]]}];
    Flatten[Table[Count[u[n], k], {n, 2, 25}, {k, 1, Max[u[n]]}]]

A026794 Triangular array T read by rows: T(n,k) = number of partitions of n in which least part is k, 1<=k<=n.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 3, 1, 0, 1, 5, 1, 0, 0, 1, 7, 2, 1, 0, 0, 1, 11, 2, 1, 0, 0, 0, 1, 15, 4, 1, 1, 0, 0, 0, 1, 22, 4, 2, 1, 0, 0, 0, 0, 1, 30, 7, 2, 1, 1, 0, 0, 0, 0, 1, 42, 8, 3, 1, 1, 0, 0, 0, 0, 0, 1, 56, 12, 4, 2, 1, 1, 0, 0, 0, 0, 0, 1, 77, 14, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 101, 21, 6, 3, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Keywords

Comments

At least one part is k and each part is at least k.
From Emeric Deutsch, Feb 19 2006: (Start)
Also number of partitions of n in which the largest part occurs exactly k times. Example: T(6,2)=2 because we have [3,3] and [2,2,1,1].
G.f. of column k is x^k/prod(j>=k, 1-x^j ) (k>=1).
Row sums yield the partition numbers (A000041).
T(n,1) = A000041(n-1) (the partition numbers).
T(n,2) = A002865(n-2) (n>=2).
T(n,3)=A026796(n). T(n,4) = A026797(n). T(n,5) = A026798(n). T(n,6) = A026799(n). T(n,7) = A026800(n). T(n,8) = A026801(n). T(n,9) = A026802(n). T(n,10) = A026803(n).
Sum(k*T(n,k),k=1..n) = A046746(n). (End)
Triangle inverse = A161363. - Gary W. Adamson, Jun 07 2009
T(n,g) is also the number of not necessarily connected 2-regular graphs with girth exactly g: the part i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles. - Jason Kimberley, Feb 05 2012
From Bob Selcoe, Jul 24 2014 (Start):
Below is a process to generate equations for column k.
Let P be the partition numbers A000041(n-j) and let f(k) denote equations which generate column k.
To find f(k), start with f(1) = P(n-j), j=1. Thus T(n,1) = f(1) = P(n-1). This is the equation for column 1.
To find f(k) k>1, first sum the terms of f(k-1) replacing the value j with j+1, and then subtract the terms of f(k-1) replacing the value j with j+k. So to find f(2) (i.e., the equation for column 2, where k=2), start with f(1) = P(n-1); first replace j with j+1 (yielding P(n-2)), and then replace j with j+2 (yielding P(n-3)). Subtracting the second term from the first, we get: f(2) = P(n-2) - P(n-3).
To find f(3), start with f(2), replace j with j+1 (yielding P(n-3) - P(n-4)) and then replace j with j+3 (yielding P(n-5) - P(n-6)). Subtracting the second group of terms from the first, we get: f(3) = P(n-3) - P(n-4) - P(n-5) + P(n-6). This is the equation for column 3; also the equation for T(n,3) = A026796(n). So for example, T(13,3) = 5 because P(13-3) - P(13-4) - P(13-5) + P(13-6) = 42 - 30 - 22 + 15 = 5.
Continue as above to find f(k) k={4..inf.}. This will generate equations for T(n,4) = A026797(n), T(n,5) = A026798(n), T(n,6) = A026799(n), ad inf.
(End)

Examples

			T(12,3) = 4 because we have [9,3], [6,3,3], [5,4,3] and [3,3,3,3]. - Edited by _Bob Selcoe_, Sep 03 2016
Triangle starts:
    1;
    1,  1;
    2,  0, 1;
    3,  1, 0, 1;
    5,  1, 0, 0, 1;
    7,  2, 1, 0, 0, 1;
   11,  2, 1, 0, 0, 0, 1;
   15,  4, 1, 1, 0, 0, 0, 1;
   22,  4, 2, 1, 0, 0, 0, 0, 1;
   30,  7, 2, 1, 1, 0, 0, 0, 0, 1;
   42,  8, 3, 1, 1, 0, 0, 0, 0, 0, 1;
   56, 12, 4, 2, 1, 1, 0, 0, 0, 0, 0, 1;
   77, 14, 5, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1;
  101, 21, 6, 3, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1;
  135, 24, 9, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Row sums give A000041.
Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9). For g >= 3, girth at least g implies no loops or parallel edges. - Jason Kimberley, Feb 05 2012
Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: this sequence (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10). - Jason Kimberley, Feb 05 2012

Programs

  • Maple
    g:=sum(t^i*x^i/product(1-x^j,j=i..30),i=1..30): gser:=simplify(series(g,x=0,19)): for n from 1 to 15 do P[n]:=coeff(gser,x^n) od: for n from 1 to 15 do seq(coeff(P[n],t^j),j=1..n) od; # Emeric Deutsch, Feb 19 2006
    nmax:=13; for n from 1 to nmax do T(n,n):=1 od: for n from 1 to nmax do for k from floor(n/2)+1 to n-1 do T(n,k):=0 od: od: for n from 2 to nmax do for k from 1 to floor(n/2) do T(n,k):=sum(T(n-k,i),i=k..n-k) od: od: seq(seq(T(n,k),k=1..n), n=1..nmax); # Johannes W. Meijer, Jun 21 2010
    nmax:=13; with(combinat): for n from 1 to nmax do for k from n+1 to nmax do T(n,k):=0 od: od: for n from 1 to nmax do T(n,1):=numbpart(n-1) od: for n from 1 to nmax do T(n,n):=1 od: for n from 2 to nmax do for k from 2 to n-1 do T(n,k) := T(n-1,k-1) - T(n-k,k-1) od: od: seq(seq(T(n,k),k=1..n), n=1..nmax); # Johannes W. Meijer, Jun 21 2010
    #
    p:= (f, g)-> zip((x,y)-> x+y, f, g, 0):
    b:= proc(n, i) option remember; local h;
          h:= `if`(n=i and i>0, [0$(i-1), 1], []);
          `if`(i<1, h, p(p(h, b(n, i-1)), `if`(n b(n, n)[]:
    seq(T(n), n=1..14); # Alois P. Heinz, Mar 28 2012
  • Mathematica
    t[n_, k_] /; k<1 || k>n = 0; t[n_, n_] = 1; t[n_, k_] := t[n, k] = Sum[t[n-k, i], {i, k, n-k}]; Flatten[ Table[t[n, k], {n, 1, 14}, {k, 1, n}]] (* Jean-François Alcover, May 11 2012, after PARI *)
  • PARI
    {T(n, k) = if( k<1 || k>n, 0, if( n==k, 1, sum(i=k, n-k, T(n-k, i))))} \\ Michael Somos, Feb 06 2003
    
  • PARI
    A026794(n,k)=#select(p->p[1]==k,partitions(n,[k,n])) \\ For illustration: Creates the list of all partitions of n with smallest part equal to k. - M. F. Hasler, Jun 14 2018

Formula

T(n, k) = sum{T(n-k, i), k<=i<=n-k} for k=1, 2, ..., m, T(n, k)=0 for k=m+1, ..., n-1, where m=floor(n/2); T(n, n)=1 for n >= 1.
G.f.: G(t,x)=sum(t^i*x^i/product(1-x^j, j=i..infinity), i=1..infinity). - Emeric Deutsch, Feb 19 2006
G.f.: Sum_{k>=1} tx^k/(1-tx^k)/product(1-x^j,j=1..k-1). - Emeric Deutsch, Mar 13 2006
T(n,k) = T(n-1,k-1) - T(n-k,k-1) for n>=2 and 2<=k<=(n-1) with T(n,1) = A000041(n-1), T(n,n) = 1 for n>=1 and T(n,k) = 0 for k>n. - Johannes W. Meijer, Jun 21 2010
T(k,k) = 1 and T(n,1) = row sum (n-1); thus Meijer's 2010 formula generates the triangle without a priori reference to A000041 (the partition sequence). - Bob Selcoe, Sep 03 2016

Extensions

More terms from Emeric Deutsch, Feb 19 2006

A363225 Number of integer partitions of n containing three parts (a,b,c) (repeats allowed) such that a + b = c. A variation of sum-full partitions.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 9, 14, 21, 29, 43, 58, 81, 109, 148, 195, 263, 339, 445, 574, 744, 942, 1209, 1515, 1923, 2399, 3005, 3721, 4629, 5693, 7024, 8589, 10530, 12804, 15596, 18876, 22870, 27538, 33204, 39816, 47766, 57061, 68161, 81099, 96510, 114434, 135634
Offset: 0

Views

Author

Gus Wiseman, Jul 19 2023

Keywords

Comments

Note that, by this definition, the partition (2,1) is sum-full, because (1,1,2) is a triple satisfying a + b = c.

Examples

			The a(3) = 1 through a(9) = 14 partitions:
  (21)  (211)  (221)   (42)     (421)     (422)      (63)
               (2111)  (321)    (2221)    (431)      (432)
                       (2211)   (3211)    (521)      (621)
                       (21111)  (22111)   (3221)     (3321)
                                (211111)  (4211)     (4221)
                                          (22211)    (4311)
                                          (32111)    (5211)
                                          (221111)   (22221)
                                          (2111111)  (32211)
                                                     (42111)
                                                     (222111)
                                                     (321111)
                                                     (2211111)
                                                     (21111111)
		

Crossrefs

For subsets of {1..n} we have A093971, A088809 without re-using parts.
The complement for subsets is A007865, A085489 without re-using parts.
Without re-using parts we have A237113, complement A236912.
For sums of any length > 1 (without re-usable parts) we have A237668, complement A237667.
The strict case is A363226.
The complement is counted by A364345, strict A364346.
These partitions have ranks A364348, complement A364347.
The strict linear combination-free version is A364350.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Tuples[#,3],#[[1]]+#[[2]]==#[[3]]&]!={}&]],{n,0,15}]
  • Python
    from collections import Counter
    from itertools import combinations_with_replacement
    from sympy.utilities.iterables import partitions
    def A363225(n): return sum(1 for p in partitions(n) if any(q[0]+q[1]==q[2] for q in combinations_with_replacement(sorted(Counter(p).elements()),3))) # Chai Wah Wu, Sep 21 2023

Extensions

a(31)-a(48) from Chai Wah Wu, Sep 21 2023

A364839 Number of strict integer partitions of n such that some part can be written as a nonnegative linear combination of the others.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 3, 2, 4, 5, 7, 7, 12, 12, 17, 20, 26, 29, 39, 43, 54, 62, 77, 88, 107, 122, 148, 168, 200, 229, 267, 308, 360, 407, 476, 536, 623, 710, 812, 917, 1050, 1190, 1349, 1530, 1733, 1944, 2206, 2483, 2794, 3138, 3524
Offset: 0

Views

Author

Gus Wiseman, Aug 19 2023

Keywords

Examples

			For y = (4,3,2) we can write 4 = 0*3 + 2*2, so y is counted under a(9).
For y = (11,5,3) we can write 11 = 1*5 + 2*3, so y is counted under a(19).
For y = (17,5,4,3) we can write 17 = 1*3 + 1*4 + 2*5, so y is counted under a(29).
The a(1) = 0 through a(12) = 12 strict partitions (A = 10, B = 11):
  .  .  (21)  (31)  (41)  (42)   (61)   (62)   (63)   (82)    (A1)    (84)
                          (51)   (421)  (71)   (81)   (91)    (542)   (93)
                          (321)         (431)  (432)  (532)   (632)   (A2)
                                        (521)  (531)  (541)   (641)   (B1)
                                               (621)  (631)   (731)   (642)
                                                      (721)   (821)   (651)
                                                      (4321)  (5321)  (732)
                                                                      (741)
                                                                      (831)
                                                                      (921)
                                                                      (5421)
                                                                      (6321)
		

Crossrefs

For sums instead of combinations we have A364272, binary A364670.
The complement in strict partitions is A364350.
Non-strict versions are A364913 and the complement of A364915.
For subsets instead of partitions we have A364914, complement A326083.
The case of no all positive coefficients is A365006.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Or@@Table[combs[#[[k]], Delete[#,k]]!={}, {k,Length[#]}]&]],{n,0,15}]
  • Python
    from sympy.utilities.iterables import partitions
    def A364839(n):
        if n <= 1: return 0
        alist, c = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)], 0
        for p in partitions(n,k=n-1):
            if max(p.values(),default=0)==1:
                s = set(p)
                if any(set(t).issubset(s-{q}) for q in s for t in alist[q]):
                    c += 1
        return c # Chai Wah Wu, Sep 23 2023

A036043 Irregular triangle read by rows: row n (n >= 0) gives number of parts in all partitions of n (in Abramowitz and Stegun order).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 3, 1, 2, 2, 3, 4, 1, 2, 2, 3, 3, 4, 5, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 7, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 7, 8, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 8, 9
Offset: 0

Views

Author

Keywords

Comments

The sequence of row lengths of this array is p(n) = A000041(n) (partition numbers).
The sequence of row sums is A006128(n).
The number of times k appears in row n is A008284(n,k). - Franklin T. Adams-Watters, Jan 12 2006
The next level (row) gets created from each node by adding one or two more nodes. If a single node is added, its value is one more than the value of its parent. If two nodes are added, the first is equal in value to the parent and the value of the second is one more than the value of the parent. See A128628. - Alford Arnold, Mar 27 2007
The 1's in the (flattened) sequence mark the start of a new row, the value that precedes the 1 equals the row number minus one. (I.e., the 1 preceded by a 0 is the start of row 1, the 1 preceded by a 6 is the start of row 7, etc.) - M. F. Hasler, Jun 06 2018
Also the maximum part in the n-th partition in graded lexicographic order (sum/lex, A193073). - Gus Wiseman, May 24 2020

Examples

			0;
1;
1, 2;
1, 2, 3;
1, 2, 2, 3, 4;
1, 2, 2, 3, 3, 4, 5;
1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6;
1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 7;
		

References

  • Abramowitz and Stegun, Handbook, p. 831, column labeled "m".

Crossrefs

Row lengths are A000041.
Partition lengths of A036036 and A334301.
The version not sorted by length is A049085.
The generalization to compositions is A124736.
The Heinz number of the same partition is A334433.
The number of distinct elements in the same partition is A334440.
The maximum part of the same partition is A334441.
Lexicographically ordered reversed partitions are A026791.
Lexicographically ordered partitions are A193073.

Programs

  • Maple
    with(combinat): nmax:=9: for n from 1 to nmax do y(n):=numbpart(n): P(n):=sort(partition(n)): for k from 1 to y(n) do B(k) := P(n)[k] od: for k from 1 to y(n) do s:=0: j:=0: while sJohannes W. Meijer, Jun 21 2010, revised Nov 29 2012
    # alternative implementation based on A119441 by R. J. Mathar, Jul 12 2013
    A036043 := proc(n,k)
        local pi;
        pi := ASPrts(n)[k] ;
        nops(pi) ;
    end proc:
    for n from 1 to 10 do
        for k from 1 to A000041(n) do
            printf("%d,",A036043(n,k)) ;
        end do:
        printf("\n") ;
    end do:
  • Mathematica
    Table[Length/@Sort[IntegerPartitions[n]],{n,0,30}] (* Gus Wiseman, May 22 2020 *)
  • PARI
    A036043(n,k)=#partitions(n)[k] \\ M. F. Hasler, Jun 06 2018
    
  • SageMath
    def A036043_row(n):
        return [len(p) for k in (0..n) for p in Partitions(n, length=k)]
    for n in (0..10): print(A036043_row(n)) # Peter Luschny, Nov 02 2019

Formula

a(n) = A001222(A334433(n)). - Gus Wiseman, May 22 2020

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Jun 17 2001
a(0) inserted by Franklin T. Adams-Watters, Jun 24 2014
Incorrect formula deleted by M. F. Hasler, Jun 06 2018
Previous Showing 71-80 of 579 results. Next