A035469
Triangle read by rows, the Bell transform of the triple factorial numbers A007559(n+1) without column 0.
Original entry on oeis.org
1, 4, 1, 28, 12, 1, 280, 160, 24, 1, 3640, 2520, 520, 40, 1, 58240, 46480, 11880, 1280, 60, 1, 1106560, 987840, 295960, 40040, 2660, 84, 1, 24344320, 23826880, 8090880, 1296960, 109200, 4928, 112, 1, 608608000, 643843200
Offset: 1
Triangle starts:
{1}
{4, 1}
{28, 12, 1}
{280, 160, 24, 1}
{3640, 2520, 520, 40, 1}
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, in Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1922, pp. 24-48.
- Peter Bala, Generalized Dobinski formulas
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- Richell O. Celeste, Roberto B. Corcino and Ken Joffaniel M. Gonzales. Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
- Tom Copeland, A Class of Differential Operators and the Stirling Numbers
- Tom Copeland, Mathemagical Forests
- Tom Copeland, Addendum to Mathemagical Forests
- Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Wolfdieter Lang, First 10 rows.
- Shi-Mei Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104 [math.CO], 2012. - From _N. J. A. Sloane_, Aug 21 2012
- E. Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 (2001) 33-51.
- Mathias Pétréolle and Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019.
a(n, m)=: S2(4, n, m) is the fourth triangle of numbers in the sequence S2(1, n, m) :=
A008277(n, m) (Stirling 2nd kind), S2(2, n, m) :=
A008297(n, m) (Lah), S2(3, n, m) :=
A035342(n, m). a(n, 1)=
A007559(n).
-
a[n_, m_] /; n >= m >= 1 := a[n, m] = (3(n-1) + m)*a[n-1, m] + a[n-1, m-1]; a[n_, m_] /; n < m = 0; a[, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]] (* _Jean-François Alcover, Jul 22 2011 *)
rows = 9;
a[n_, m_] := BellY[n, m, Table[Product[3k+1, {k, 0, j}], {j, 0, rows}]];
Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
-
# uses[bell_matrix from A264428]
# Adds a column 1,0,0,0, ... at the left side of the triangle.
bell_matrix(lambda n: A007559(n+1) , 9) # Peter Luschny, Jan 19 2016
A271703
Triangle read by rows: the unsigned Lah numbers T(n, k) = binomial(n-1, k-1)*n!/k! if n > 0 and k > 0, T(n, 0) = 0^n and otherwise 0, for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 6, 6, 1, 0, 24, 36, 12, 1, 0, 120, 240, 120, 20, 1, 0, 720, 1800, 1200, 300, 30, 1, 0, 5040, 15120, 12600, 4200, 630, 42, 1, 0, 40320, 141120, 141120, 58800, 11760, 1176, 56, 1, 0, 362880, 1451520, 1693440, 846720, 211680, 28224, 2016, 72, 1
Offset: 0
As a rectangular array (diagonals of the triangle):
1, 1, 1, 1, 1, 1, ... A000012
0, 2, 6, 12, 20, 30, ... A002378
0, 6, 36, 120, 300, 630, ... A083374
0, 24, 240, 1200, 4200, 11760, ... A253285
0, 120, 1800, 12600, 58800, 211680, ...
0, 720, 15120, 141120, 846720, 3810240, ...
A000007, A000142, A001286, A001754, A001755, A001777.
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 0 1
2: 0 2 1
3: 0 6 6 1
4: 0 24 36 12 1
5: 0 120 240 120 20 1
6: 0 720 1800 1200 300 30 1
7: 0 5040 15120 12600 4200 630 42 1
8: 0 40320 141120 141120 58800 11760 1176 56 1
9: 0 362880 1451520 1693440 846720 211680 28224 2016 72 1
10: 0 3628800 16329600 21772800 12700800 3810240 635040 60480 3240 90 1
... - _Wolfdieter Lang_, Jun 12 2017
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., pp. 312, 552.
- I. Lah, Eine neue Art von Zahlen, ihre Eigenschaften und Anwendung in der mathematischen Statistik, Mitt.-Bl. Math. Statistik, 7:203-213, 1955.
- T. Mansour, M. Schork, Commutation Relations, Normal Ordering, and Stirling Numbers, CRC Press, 2016
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened)
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales, Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
- M. F. Hasler and Peter Luschny, Formulas for A271703, OEIS Wiki, Aug. 2017.
- S. A. Joni, G.-C. Rota, and B. Sagan, From sets to functions: Three elementary examples, Discrete Mathematics, Volume 37, Issues 2-3, 1981, 193-202.
- Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
- D. E. Knuth, Convolution polynomials, Mathematica J. 2.1 (1992), no. 4, 67-78.
- Peter Luschny, Lah numbers
- Peter Luschny, Partition transform
- Robert S. Maier, Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers, arXiv:2308.10332 [math.CO], 2023. See. p. 18.
- Piotr Miska and Maciej Ulas, On some properties of the number of permutations being products of pairwise disjoint d-cycles, arXiv:1904.03395 [math.NT], 2019.
- Emanuele Munarini, Combinatorial identities involving the central coefficients of a Sheffer matrix, Applicable Analysis and Discrete Mathematics (2019) Vol. 13, 495-517.
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See p. 12.
-
T := (n, k) -> `if`(n=k, 1, binomial(n-1,k-1)*n!/k!):
seq(seq(T(n, k), k=0..n), n=0..9);
-
T[n_, k_] := Binomial[n, k]*FactorialPower[n-1, n-k];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 20 2017 *)
-
@cached_function
def T(n,k):
if k<0 : return 0
if k==n: return 1
return T(n-1,k-1) + (k+n-1)*T(n-1,k)
for n in (0..8): print([T(n,k) for k in (0..n)])
A060356
Expansion of e.g.f.: -LambertW(-x/(1+x)).
Original entry on oeis.org
0, 1, 0, 3, 4, 65, 306, 4207, 38424, 573057, 7753510, 134046671, 2353898196, 47602871329, 1013794852266, 23751106404495, 590663769125296, 15806094859299329, 448284980183376078, 13515502344669830287
Offset: 0
From _Gus Wiseman_, Dec 31 2019: (Start)
Non-isomorphic representatives of the a(7) = 4207 trees, written as root[branches], are:
1[2,3[4,5[6,7]]]
1[2,3[4,5,6,7]]
1[2[3,4],5[6,7]]
1[2,3,4[5,6,7]]
1[2,3,4,5[6,7]]
1[2,3,4,5,6,7]
(End)
The unlabeled version is
A001678(n + 1).
The case where the root is fixed is
A108919.
Unlabeled rooted trees are counted by
A000081.
Lone-child-avoiding rooted trees with labeled leaves are
A000311.
Matula-Goebel numbers of lone-child-avoiding rooted trees are
A291636.
Singleton-reduced rooted trees are counted by
A330951.
Cf.
A000669,
A004111,
A005121,
A048816,
A292504,
A316651,
A316652,
A318231,
A318813,
A330465,
A330624.
-
List([0..20],n->Sum([1..n],k->(-1)^(n-k)*Factorial(n)/Factorial(k) *Binomial(n-1,k-1)*k^(k-1))); # Muniru A Asiru, Feb 19 2018
-
seq(coeff(series( -LambertW(-x/(1+x)), x, n+1), x, n)*n!, n = 0..20); # G. C. Greubel, Mar 16 2020
-
CoefficientList[Series[-LambertW[-x/(1+x)], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 27 2012 *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
a[n_]:=If[n==1,1,n*Sum[Times@@a/@Length/@stn,{stn,Select[sps[Range[n-1]],Length[#]>1&]}]];
Array[a,10] (* Gus Wiseman, Dec 31 2019 *)
-
{ for (n=0, 100, f=n!; a=sum(k=1, n, (-1)^(n - k)*f/k!*binomial(n - 1, k - 1)*k^(k - 1)); write("b060356.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 04 2009
-
my(x='x+O('x^20)); concat([0], Vec(serlaplace(-lambertw(-x/(1+x))))) \\ G. C. Greubel, Feb 19 2018
A132056
Triangle read by rows, the Bell transform of Product_{k=0..n} 7*k+1 without column 0.
Original entry on oeis.org
1, 8, 1, 120, 24, 1, 2640, 672, 48, 1, 76560, 22800, 2160, 80, 1, 2756160, 920160, 104880, 5280, 120, 1, 118514880, 43243200, 5639760, 347760, 10920, 168, 1, 5925744000, 2323918080, 336510720, 24071040, 937440, 20160, 224, 1
Offset: 1
{1}; {8,1}; {120,24,1}; {2640,672,48,1}; ...
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- M. Janjic, Some classes of numbers and derivatives, JIS 12 (2009) 09.8.3
- W. Lang, First 10 rows.
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> mul(7*k+1, k=0..n), 8); # Peter Luschny, Jan 27 2016
-
a[n_, m_] := a[n, m] = ((m*a[n-1, m-1]*(m-1)! + (m+7*n-7)*a[n-1, m]*m!)*n!)/(n*m!*(n-1)!);
a[n_, m_] /; n < m = 0; a[_, 0] = 0; a[1, 1] = 1;
Flatten[Table[a[n, m], {n, 1, 8}, {m, 1, n}]][[1 ;; 36]]
(* Jean-François Alcover, Jun 17 2011 *)
rows = 8;
a[n_, m_] := BellY[n, m, Table[Product[7k+1, {k, 0, j}], {j, 0, rows}]];
Table[a[n, m], {n, 1, rows}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018 *)
A086810
Triangle obtained by adding a leading diagonal 1,0,0,0,... to A033282.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 5, 5, 0, 1, 9, 21, 14, 0, 1, 14, 56, 84, 42, 0, 1, 20, 120, 300, 330, 132, 0, 1, 27, 225, 825, 1485, 1287, 429, 0, 1, 35, 385, 1925, 5005, 7007, 5005, 1430, 0, 1, 44, 616, 4004, 14014, 28028, 32032, 19448, 4862, 0, 1, 54, 936, 7644, 34398, 91728
Offset: 0
Triangle starts:
1;
0, 1;
0, 1, 2;
0, 1, 5, 5;
0, 1, 9, 21, 14;
...
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened.)
- Yu Hin (Gary) Au, Some Properties and Combinatorial Implications of Weighted Small Schröder Numbers, arXiv:1912.00555 [math.CO], 2019.
- Paul Barry, On the Inverses of a Family of Pascal-Like Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.6.
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
- V. Buchstaber and E. Bunkova,Elliptic formal group laws, integral Hirzebruch genera and Kirchever genera,, arXiv:1010.0944 [math-ph], 2010 (see p. 19).
- V. Buchstaber and T. Panov, Toric Topology. Chapter 1: Geometry and Combinatorics of Polytopes,, arXiv:1102.1079 [math.CO], 2011-2012 (see p. 41).
- G. Chatel, V. Pilaud, Cambrian Hopf Algebras, arXiv:1411.3704 [math.CO], 2014-2015.
- T. Copeland, Generators, Inversion, and Matrix, Binomial, and Integral Transforms, 2015.
- T. Copeland, Compositional inverse pairs, the Burgers-Hopf equation, and the Stasheff associahedra, 2014.
- T. Copeland, Lagrange a la Lah, 2011.
- B. Drake, Ira M. Gessel, and Guoce Xin, Three Proofs and a Generalization of the Goulden-Litsyn-Shevelev Conjecture on a Sequence Arising in Algebraic Geometry, J. of Integer Sequences, Vol. 10 (2007), Article 07.3.7.
- G. Kreweras, Sur les hiérarchies de segments, Cahiers Bureau Universitaire Recherche Opérationnelle, Cahier 20, Inst. Statistiques, Univ. Paris, 1973, p. 21-22.
- G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
- J. Zhou, Quantum deformation theory of the Airy curve and the mirror symmetry of a point, arXiv preprint arXiv:1405.5296 [math.AG], 2014.
Diagonals:
A000007,
A000012,
A000096,
A033275,
A033276,
A033277,
A033278,
A033279,
A000108,
A002054,
A002055,
A002056,
A007160,
A033280,
A033281.
Row sums:
A001003 (Schroeder numbers).
-
Table[Boole[n == 2] + If[# == -1, 0, Binomial[n - 3, #] Binomial[n + # - 1, #]/(# + 1)] &[k - 1], {n, 2, 12}, {k, 0, n - 2}] // Flatten (* after Jean-François Alcover at A033282, or *)
Table[If[n == 0, 1, Binomial[n, k] Binomial[n + k, k - 1]/n], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Aug 22 2016 *)
-
t(n, k) = if (n==0, 1, binomial(n, k)*binomial(n+k, k-1)/n);
tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n,k), ", ");); print(););} \\ Michel Marcus, Nov 22 2014
A078739
Triangle of generalized Stirling numbers S_{2,2}(n,k) read by rows (n>=1, 2<=k<=2n).
Original entry on oeis.org
1, 2, 4, 1, 4, 32, 38, 12, 1, 8, 208, 652, 576, 188, 24, 1, 16, 1280, 9080, 16944, 12052, 3840, 580, 40, 1, 32, 7744, 116656, 412800, 540080, 322848, 98292, 16000, 1390, 60, 1, 64, 46592, 1446368, 9196992, 20447056, 20453376, 10564304, 3047520, 511392, 50400
Offset: 1
From _Peter Bala_, Aug 15 2013: (Start)
The table begins
n\k | 2 3 4 5 6 7 8
= = = = = = = = = = = = = = = = = =
1 | 1
2 | 2 4 1
3 | 4 32 38 12 1
4 | 8 208 652 576 188 24 1
...
Graph coloring interpretation of T(2,3) = 4: The graph 2K_2 is 2 copies of K_2, the complete graph on 2 vertices:
o---o o---o
a b c d
The four 3-colorings of 2K_2 are ac|b|d, ad|b|c, bc|a|d and bd|a|c. (End)
- P. Blasiak, K. A. Penson and A. I. Solomon, The Boson Normal Ordering Problem and Generalized Bell Numbers, arXiv:quant-ph/0212072, 2002.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
- P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
- Steve Butler, Fan Chung, Jay Cummings, R. L. Graham, Juggling card sequences, arXiv:1504.01426 [math.CO], 2015.
- Leonard Carlitz, On Arrays of Numbers, Am. J. Math., 54,4 (1932) 739-752. [Eqs. (3) and (4) with lambda = 0, mu = 2, a_{n,k-1} = a(n, k).- _Wolfdieter Lang_, Jan 30 2020 ]
- P. Codara, O. M. D’Antona, P. Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers arXiv:1308.1700v1 [cs.DM]
- A. Dzhumadildaev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764v1, 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015]
- Askar Dzhumadil'daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
- S.-M. Ma, T. Mansour, M. Schork. Normal ordering problem and the extensions of the Stirling grammar, arXiv preprint arXiv:1308.0169 [math.CO], 2013.
- Toufik Mansour, Matthias Schork and Mark Shattuck, The Generalized Stirling and Bell Numbers Revisited, Journal of Integer Sequences, Vol. 15 (2012), #12.8.3.
Row sums give
A020556. Triangle S_{1, 1} =
A008277, S_{2, 1} =
A008297 (ignoring signs), S_{3, 1} =
A035342, S_{3, 2} =
A078740, S_{3, 3} =
A078741.
A090214 (S_{4,4}).
Cf.
A071951 (Legendre-Stirling triangle).
-
# Note that the function implements the full triangle because it can be
# much better reused and referenced in this form.
A078739 := proc(n,k) local r;
add((-1)^(n-r)*binomial(n,r)*combinat[stirling2](n+r,k),r=0..n) end:
# Displays the truncated triangle from the definition:
seq(print(seq(A078739(n,k),k=2..2*n)),n=1..6); # Peter Luschny, Mar 25 2011
-
t[n_, k_] := Sum[(-1)^(n-r)*Binomial[n, r]*StirlingS2[n+r, k], {r, 0, n}]; Table[t[n, k], {n, 1, 7}, {k, 2, 2*n}] // Flatten (* Jean-François Alcover, Apr 11 2013, after Peter Luschny *)
A066667
Coefficient triangle of generalized Laguerre polynomials (a=1).
Original entry on oeis.org
1, 2, -1, 6, -6, 1, 24, -36, 12, -1, 120, -240, 120, -20, 1, 720, -1800, 1200, -300, 30, -1, 5040, -15120, 12600, -4200, 630, -42, 1, 40320, -141120, 141120, -58800, 11760, -1176, 56, -1, 362880, -1451520, 1693440, -846720, 211680, -28224, 2016
Offset: 0
Triangle a(n,m) begins
n\m 0 1 2 3 4 5 6 7 8
0: 1
1: 2 -1
2: 6 -6 1
3: 24 -36 12 -1
4: 120 -240 120 -20 1
5: 720 -1800 1200 -300 30 -1
6: 5040 -15120 12600 -4200 630 -42 1
7: 40320 -141120 141120 -58800 11760 -1176 56 -1
8: 362880 -1451520 1693440 -846720 211680 -28224 2016 -72 1
9: 3628800, -16329600, 21772800, -12700800, 3810240, -635040, 60480, -3240, 90, -1.
Reformatted and extended by _Wolfdieter Lang_, Jan 31 2013.
From _Wolfdieter Lang_, Jan 31 2013 (Start)
Recurrence (standard): a(4,2) = 2*4*12 - (-36) - 4*3*1 = 120.
Recurrence (simple): a(4,2) = 7*12 - (-36) = 120. (End)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 778 (22.5.17).
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 95 (4.1.62)
- R. Witula, E. Hetmaniok, and D. Slota, The Hermite-Bell polynomials for negative powers, (submitted, 2012)
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 >= n >= 150, flattened).
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 778 (22.5.17).
- Mathias Pétréolle and Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019.
- Jian Zhou, On Some Mathematics Related to the Interpolating Statistics, arXiv:2108.10514 [math-ph], 2021.
-
A066667 := (n, k) -> (-1)^k*binomial(n, k)*(n + 1)!/(k + 1)!:
for n from 0 to 9 do seq(A066667(n,k), k = 0..n) od; # Peter Luschny, Jun 22 2022
-
Table[(-1)^m*Binomial[n, m]*(n + 1)!/(m + 1)!, {n, 0, 8}, {m, 0, n}] // Flatten (* Michael De Vlieger, Sep 04 2019 *)
-
row(n) = Vecrev(n!*pollaguerre(n, 1)); \\ Michel Marcus, Feb 06 2021
A001754
Lah numbers: a(n) = n!*binomial(n-1,2)/6.
Original entry on oeis.org
0, 0, 1, 12, 120, 1200, 12600, 141120, 1693440, 21772800, 299376000, 4390848000, 68497228800, 1133317785600, 19833061248000, 366148823040000, 7113748561920000, 145120470663168000, 3101950060425216000, 69337707233034240000, 1617879835437465600000
Offset: 1
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Column m=3 of unsigned triangle
A111596.
-
[Factorial(n)*Binomial(n-1, 2)/6: n in [1..25]]; // Vincenzo Librandi, Oct 11 2011
-
[seq(n!*binomial(n-1,2)/6, n=1..40)];
-
Table[(n-2)*(n-1)*n!/12, {n, 21}] (* Arkadiusz Wesolowski, Nov 26 2012 *)
With[{nn=30},CoefficientList[Series[(x/(1-x))^3/6,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 04 2017 *)
-
[factorial(n-1)*binomial(n,3)/2 for n in (1..30)] # G. C. Greubel, May 10 2021
A062137
Coefficient triangle of generalized Laguerre polynomials n!*L(n,3,x) (rising powers of x).
Original entry on oeis.org
1, 4, -1, 20, -10, 1, 120, -90, 18, -1, 840, -840, 252, -28, 1, 6720, -8400, 3360, -560, 40, -1, 60480, -90720, 45360, -10080, 1080, -54, 1, 604800, -1058400, 635040, -176400, 25200, -1890, 70, -1, 6652800, -13305600, 9313920
Offset: 0
The triangle a(n,m) begins:
n\m 0 1 2 3 4 5 ...
0: 1
1: 4 -1
2: 20 -10 1
3: 120 -90 18 -1
4: 840 -840 252 -28 1
5: 6720 -8400 3360 -560 40 -1
... Formatted by _Wolfdieter Lang_, Jul 07 2014
For more rows see the link.
n = 2: 2!*L(2,3,x) = 20 - 10*x + x^2.
- A. Messiah, Quantum mechanics, vol. 1, p. 419, eq.(XI.18a), North Holland, 1969.
-
Flatten[Table[((-1)^m)*n!*Binomial[n+3,n-m]/m!,{n,0,9},{m,0,n}]] (* Indranil Ghosh, Feb 23 2017 *)
-
row(n) = Vecrev(n!*pollaguerre(n, 3)); \\ Michel Marcus, Feb 06 2021
A062139
Coefficient triangle of generalized Laguerre polynomials n!*L(n,2,x) (rising powers of x).
Original entry on oeis.org
1, 3, -1, 12, -8, 1, 60, -60, 15, -1, 360, -480, 180, -24, 1, 2520, -4200, 2100, -420, 35, -1, 20160, -40320, 25200, -6720, 840, -48, 1, 181440, -423360, 317520, -105840, 17640, -1512, 63, -1, 1814400, -4838400, 4233600
Offset: 0
Triangle begins:
1;
3, -1;
12, -8, 1;
60, -60, 15, -1;
360, -480, 180, -24, 1;
2520, -4200, 2100, -420, 35, -1;
...
2!*L(2,2,x) = 12 - 8*x + x^2.
Unsigned row 3 polynomial in reverse form as the numerator of a continued fraction: 1 - x/(1 + 4*x/(1 + 3*x/(1 + 3*x/(1 + 2*x/(1 + 2*x/(1 + x/(1 + x))))))) = (60*x^3 + 60*x^2 + 15*x + 1)/(24*x^4 + 96*x^3 + 72*x^2 + 16*x + 1). - _Peter Bala_, Oct 06 2019
-
with(PolynomialTools):
p := n -> (n+2)!*hypergeom([-n],[3],x)/2:
seq(CoefficientList(simplify(p(n)), x), n=0..9); # Peter Luschny, Apr 08 2015
-
Flatten[Table[((-1)^m)*n!*Binomial[n+2,n-m]/m!,{n,0,8},{m,0,n}]] (* Indranil Ghosh, Feb 24 2017 *)
-
tabl(nn) = {for (n=0, nn, for (k=0, n, print1(((-1)^k)*n!*binomial(n+2, n-k)/k!, ", ");); print(););} \\ Michel Marcus, May 06 2014
-
row(n) = Vecrev(n!*pollaguerre(n, 2)); \\ Michel Marcus, Feb 06 2021
-
import math
f=math.factorial
def C(n,r):return f(n)//f(r)//f(n-r)
i=0
for n in range(16):
for m in range(n+1):
i += 1
print(i,((-1)**m)*f(n)*C(n+2,n-m)//f(m)) # Indranil Ghosh, Feb 24 2017
-
from functools import cache
@cache
def T(n, k):
if k < 0 or k > n: return 0
if k == n: return (-1)**n
return (n + k + 2) * T(n-1, k) - T(n-1, k-1)
for n in range(7): print([T(n,k) for k in range(n + 1)])
# Peter Luschny, Mar 25 2024
Previous
Showing 31-40 of 107 results.
Next
Comments