cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 42 results. Next

A004808 Numbers that are the sum of 8 positive 10th powers.

Original entry on oeis.org

8, 1031, 2054, 3077, 4100, 5123, 6146, 7169, 8192, 59056, 60079, 61102, 62125, 63148, 64171, 65194, 66217, 118104, 119127, 120150, 121173, 122196, 123219, 124242, 177152, 178175, 179198, 180221, 181244, 182267, 236200, 237223, 238246, 239269, 240292, 295248, 296271, 297294
Offset: 1

Views

Author

Keywords

Examples

			1031 = 2^10 + 7 * 1^10 is a term.
From _David A. Corneth_, Aug 04 2020: (Start)
283583902 is in the sequence as 283583902 = 1^10 + 1^10 + 1^10 + 1^10 + 2^10 + 3^10 + 4^10 + 7^10.
493229701 is in the sequence as 493229701 = 3^10 + 5^10 + 5^10 + 5^10 + 6^10 + 6^10 + 6^10 + 7^10.
1256366075 is in the sequence as 1256366075 = 3^10 + 3^10 + 3^10 + 4^10 + 6^10 + 6^10 + 6^10 + 8^10. (End)
		

Crossrefs

Cf. A008454 (tenth powers).

Programs

  • Mathematica
    k = 8; p = 10; amax = 10^6; bmax = amax^(1/p) // Ceiling; Clear[b]; b[0] = 1; Select[Table[Total[Array[b, k]^p], {b[1], b[0], bmax}, Evaluate[ Sequence @@ Table[{b[j], b[j-1], bmax}, {j, 1, k}]]] //Flatten // Union, # <= amax&] (* Jean-François Alcover, Jul 19 2017 *)

A008456 12th powers: a(n) = n^12.

Original entry on oeis.org

0, 1, 4096, 531441, 16777216, 244140625, 2176782336, 13841287201, 68719476736, 282429536481, 1000000000000, 3138428376721, 8916100448256, 23298085122481, 56693912375296, 129746337890625, 281474976710656, 582622237229761
Offset: 0

Views

Author

Keywords

Comments

Numbers which are square, cubic and quartic. - Doug Bell, Jun 03 2017

Crossrefs

a(n) = A123868(n) + 1.
Cf. A000290 (squares), A000578 (cubes), A000583 (4th powers), A001014 (6th powers), A008454 (10th powers), A008455 (11th powers), A010801 (13th powers).
Cf. A013670 (zeta(12)).

Programs

Formula

Multiplicative with a(p^e) = p^(12*e). - David W. Wilson, Aug 01 2001
a(n) = A000290(n)^6 = A000578(n)^4 = A000583(n)^3 = A001014(n)^2. - Doug Bell, Jun 03 2017
From Amiram Eldar, Oct 08 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(12) = 691*Pi^12/638512875 (A013670).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2047*zeta(12)/2048 = 1414477*Pi^12/1307674368000. (End)
a(n) = 13*a(n-1)-78*a(n-2)+286*a(n-3)-715*a(n-4)+1287*a(n-5)-1716*a(n-6)+1716*a(n-7)-1287*a(n-8)+715*a(n-9)-286*a(n-10)+78*a(n-11)-13*a(n-12)+a(n-13). - Wesley Ivan Hurt, Dec 02 2021
Intersection of A000578 and A000583; i.e., cubes and 4th powers. - M. F. Hasler, Jul 03 2025

A003992 Square array read by upwards antidiagonals: T(n,k) = n^k for n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 8, 1, 0, 1, 5, 16, 27, 16, 1, 0, 1, 6, 25, 64, 81, 32, 1, 0, 1, 7, 36, 125, 256, 243, 64, 1, 0, 1, 8, 49, 216, 625, 1024, 729, 128, 1, 0, 1, 9, 64, 343, 1296, 3125, 4096, 2187, 256, 1, 0, 1, 10, 81, 512, 2401, 7776, 15625, 16384, 6561, 512, 1, 0
Offset: 0

Views

Author

Keywords

Comments

If the array is transposed, T(n,k) is the number of oriented rows of n colors using up to k different colors. The formula would be T(n,k) = [n==0] + [n>0]*k^n. The generating function for column k would be 1/(1-k*x). For T(3,2)=8, the rows are AAA, AAB, ABA, ABB, BAA, BAB, BBA, and BBB. - Robert A. Russell, Nov 08 2018
T(n,k) is the number of multichains of length n from {} to [k] in the Boolean lattice B_k. - Geoffrey Critzer, Apr 03 2020

Examples

			Rows begin:
[1, 0,  0,   0,    0,     0,      0,      0, ...],
[1, 1,  1,   1,    1,     1,      1,      1, ...],
[1, 2,  4,   8,   16,    32,     64,    128, ...],
[1, 3,  9,  27,   81,   243,    729,   2187, ...],
[1, 4, 16,  64,  256,  1024,   4096,  16384, ...],
[1, 5, 25, 125,  625,  3125,  15625,  78125, ...],
[1, 6, 36, 216, 1296,  7776,  46656, 279936, ...],
[1, 7, 49, 343, 2401, 16807, 117649, 823543, ...], ...
		

Crossrefs

Main diagonal is A000312. Other diagonals include A000169, A007778, A000272, A008788. Antidiagonal sums are in A026898.
Cf. A099555.
Transpose is A004248. See A051128, A095884, A009999 for other versions.
Cf. A277504 (unoriented), A293500 (chiral).

Programs

  • Magma
    [[(n-k)^k: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 08 2018
  • Mathematica
    Table[If[k == 0, 1, (n - k)^k], {n, 0, 11}, {k, 0, n}]//Flatten
  • PARI
    T(n,k) = (n-k)^k \\ Charles R Greathouse IV, Feb 07 2017
    

Formula

E.g.f.: Sum T(n,k)*x^n*y^k/k! = 1/(1-x*exp(y)). - Paul D. Hanna, Oct 22 2004
E.g.f.: Sum T(n,k)*x^n/n!*y^k/k! = e^(x*e^y). - Franklin T. Adams-Watters, Jun 23 2006

Extensions

More terms from David W. Wilson
Edited by Paul D. Hanna, Oct 22 2004

A368714 Numbers whose maximal exponent in their prime factorization is even.

Original entry on oeis.org

1, 4, 9, 12, 16, 18, 20, 25, 28, 36, 44, 45, 48, 49, 50, 52, 60, 63, 64, 68, 75, 76, 80, 81, 84, 90, 92, 98, 99, 100, 112, 116, 117, 121, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 162, 164, 169, 171, 172, 175, 176, 180, 188, 192, 196, 198, 204, 207, 208
Offset: 1

Views

Author

Amiram Eldar, Jan 04 2024

Keywords

Comments

First differs from A240112 at n = 30.
Numbers k such that A051903(k) is even.
The asymptotic density of this sequence is Sum_{k>=2} (-1)^k * (1 - 1/zeta(k)) = 0.27591672059822700769... .

Crossrefs

Programs

  • Mathematica
    Select[Range[210], # == 1 || EvenQ[Max[FactorInteger[#][[;;, 2]]]] &]
  • PARI
    lista(kmax) = for(k = 1, kmax, if(k == 1 || !(vecmax(factor(k)[,2])%2), print1(k, ", ")));

A017506 a(n) = (11*n + 9)^10.

Original entry on oeis.org

3486784401, 10240000000000, 819628286980801, 17080198121677824, 174887470365513049, 1152921504606846976, 5631351470947265625, 22130157888803070976, 73742412689492826049, 215892499727278669824
Offset: 0

Views

Author

Keywords

Crossrefs

Powers of the form (11*n+9)^m: A017497 (m=1), A017498 (m=2), A017499 (m=3), A017500 (m=4), A017501 (m=5), A017502 (m=6), A017503 (m=7), A017504 (m=8), A017505 (m=9), this sequence (m=10), A017607 (m=11), A017508 (m=12).
Subsequence of A008454.

Programs

  • GAP
    List([0..20], n-> (11*n+9)^10); # G. C. Greubel, Oct 28 2019
  • Magma
    [(11*n+9)^10: n in [0..20]]; // G. C. Greubel, Oct 28 2019
    
  • Maple
    seq((11*n+9)^10, n=0..20); # G. C. Greubel, Oct 28 2019
  • Mathematica
    (11*Range[20] -2)^10 (* G. C. Greubel, Oct 28 2019 *)
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{3486784401,10240000000000,819628286980801,17080198121677824,174887470365513049,1152921504606846976,5631351470947265625,22130157888803070976,73742412689492826049,215892499727278669824,569468379011812486801},30] (* Harvey P. Dale, Jul 14 2021 *)
  • PARI
    vector(21, n, (11*n-2)^10) \\ G. C. Greubel, Oct 28 2019
    
  • Sage
    [(11*n+9)^10 for n in (0..20)] # G. C. Greubel, Oct 28 2019
    

Formula

From G. C. Greubel, Oct 28 2019: (Start)
G.f.: (3486784401 + 10201645371589*x + 707180060122856*x^2 + 8626911645462848*x^3 + 30396397449853370*x^4 + 36709149032258330*x^5 + 15541165896383216*x^6 + 2068692379779224*x^7 + 61886937611357*x^8 + 137858480585*x^9 + 1024*x^10)/(1-x)^11.
E.g.f.: (3486784401 + 10236513215599*x + 399575886882601*x^2 + 2442004962325170*x^3 + 4643478795311290*x^4 + 3676175396995563*x^5 + 1399671561315027*x^6 + 274137726759600*x^7 + 27874157090835*x^8 + 1379399399235*x^9 + 25937424601*x^10)*exp(x). (End)

A075671 Sum of next n 10th powers.

Original entry on oeis.org

1, 60073, 71280377, 14843001474, 1091618326275, 39736919990851, 870012241054523, 12967387960026452, 143075291905145949, 1240006139651007925, 8817026830146599701, 53151169903167142598, 278615540073819826527, 1295610629596485350799, 5430916505417064431575
Offset: 1

Views

Author

Zak Seidov, Sep 24 2002

Keywords

Examples

			a(1) = 1^10 = 1; a(2) = 2^10 + 3^10 = 60073; a(3) = 4^10 + 5^10 + 6^10 = 71280377; a(4) = 7^10 + 8^10 + 9^10 + 10^10 = 14843001474.
		

Crossrefs

Cf. A008454 (10th powers).
Cf. A072474 (for squares), A075664 - A075670 (3rd to 9th powers), A069876 (n-th powers).

Programs

  • Mathematica
    i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; s=10; Table[Sum[i^s, {i, i1, i2}], {n, 20}]
    With[{nn=20},Total/@TakeList[Range[(nn(nn+1))/2]^10,Range[nn]]] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Mar 18 2018 *)

Formula

a(n) = Sum_{i=n(n-1)/2+1..n(n-1)/2+n} i^10.
a(n) = (33n^21 + 825n^19 + 6336n^17 + 18546n^15 + 14289n^13 - 14187n^11 - 418n^9 + 20592n^7 - 10560n^5 - 4224n^3 + 2560n)/33792. - Charles R Greathouse IV, Sep 17 2009
G.f.: (x^20 +60051*x^19 +69959002*x^18 +13288708503*x^17 +781445555829*x^16 +19040717780376*x^15 +225625446425352*x^14 +1431958892640624*x^13 +5170348336132746*x^12 +11021721646301518*x^11 +14154518527431996*x^10 +11021721646301518*x^9 +5170348336132746*x^8 +1431958892640624*x^7 +225625446425352*x^6 +19040717780376*x^5 +781445555829*x^4 +13288708503*x^3 +69959002*x^2 +60051*x +1) / (x -1)^22. - Colin Barker, Dec 19 2012

Extensions

More terms from Colin Barker, Dec 19 2012

A354600 a(n) = Product_{k=0..9} floor((n+k)/10).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1536, 2304, 3456, 5184, 7776, 11664, 17496, 26244, 39366, 59049, 78732, 104976, 139968, 186624, 248832, 331776, 442368, 589824, 786432, 1048576, 1310720, 1638400, 2048000, 2560000, 3200000, 4000000
Offset: 0

Views

Author

Wesley Ivan Hurt, Jul 08 2022

Keywords

Comments

For n >= 10, a(n) is the maximal product of ten positive integers with sum n.

Crossrefs

Maximal product of k positive integers with sum n, for k = 2..10: A002620 (k=2), A006501 (k=3), A008233 (k=4), A008382 (k=5), A008881 (k=6), A009641 (k=7), A009694 (k=8), A009714 (k=9), this sequence (k=10).
Cf. A008454 (subsequence), A013668.

Programs

  • Mathematica
    Table[Product[Floor[(n + k)/10], {k, 0, 9}], {n, 0, 50}]
  • PARI
    a(n) = prod(k=0, 9, (n+k)\10); \\ Michel Marcus, Jul 09 2022

Formula

a(n) = 2*a(n-1) - a(n-2) + 9*a(n-10) - 18*a(n-11) + 9*a(n-12) - 36*a(n-20) + 72*a(n-21) - 36*a(n-22) + 84*a(n-30) - 168*a(n-31) + 84*a(n-32) - 126*a(n-40) + 252*a(n-41) - 126*a(n-42) + 126*a(n-50) - 252*a(n-51) + 126*a(n-52) - 84*a(n-60) + 168*a(n-61) - 84*a(n-62) + 36*a(n-70) - 72*a(n-71) + 36*a(n-72) - 9*a(n-80) + 18*a(n-81) - 9*a(n-82) + a(n-90) - 2*a(n-91) + a(n-92).
Sum_{n>=10} 1/a(n) = 1 + zeta(10). - Amiram Eldar, Jan 10 2023
a(10*n) = n^10 (A008454). - Bernard Schott, Feb 02 2023

A123867 a(n) = n^10 - 1.

Original entry on oeis.org

0, 1023, 59048, 1048575, 9765624, 60466175, 282475248, 1073741823, 3486784400, 9999999999, 25937424600, 61917364223, 137858491848, 289254654975, 576650390624, 1099511627775, 2015993900448, 3570467226623, 6131066257800, 10239999999999, 16679880978200
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 16 2006

Keywords

Comments

a(n) mod 11 = 0 iff n mod 11 > 0; a(A008593(n)) = 10.

Crossrefs

Programs

Formula

From G. C. Greubel, Aug 08 2019: (Start)
G.f.: x^2*(1023 + 47795*x + 455312*x^2 + 1310144*x^3 + 1310606*x^4 + 454982*x^5 + 47960*x^6 + 968*x^7 + 11*x^8 + x^9)/(1-x)^11.
E.g.f.: 1 +(-1 + x + 511*x^2 + 9330*x^3 + 34105*x^4 + 42525*x^5 + 22827*x^6 + 5880*x^7 + 750*x^8 + 45*x^9 + x^10)*exp(x). (End)

A170801 a(n) = n^10*(n^9 + 1)/2.

Original entry on oeis.org

0, 1, 262656, 581160258, 137439477760, 9536748046875, 304679900238336, 5699447733924196, 72057594574798848, 675425860579888245, 5000000005000000000, 30579545237175985446, 159739999716270145536
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Comments

Number of unoriented rows of length 19 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=262656, there are 2^19=524288 oriented arrangements of two colors. Of these, 2^10=1024 are achiral. That leaves (524288-1024)/2=261632 chiral pairs. Adding achiral and chiral, we get 262656. - Robert A. Russell, Nov 13 2018

Crossrefs

Row 19 of A277504.
Cf. A010807 (oriented), A008454 (achiral).
Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), A170796 (m=4), A170797 (m=5), A170798 (m=6), A170799 (m=7), A170800 (m=8), this sequence (m=9), A170802 (m=10).

Programs

  • GAP
    List([0..30], n -> n^10*(n^9+1)/2); # G. C. Greubel, Nov 15 2018
  • Magma
    [n^10*(n^9+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
    
  • Maple
    seq(n^10*(n^9 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
  • Mathematica
    Table[(n^19 + n^10)/2, {n,0,30}] (* Robert A. Russell, Nov 13 2018 *)
  • PARI
    vector(30, n, n--; n^10*(n^9+1)/2) \\ G. C. Greubel, Nov 15 2018
    
  • Sage
    [n^10*(n^9+1)/2 for n in range(30)] # G. C. Greubel, Nov 15 2018
    

Formula

From Robert A. Russell, Nov 13 2018: (Start)
a(n) = (A010807(n) + A008454(n)) / 2 = (n^19 + n^10) / 2.
G.f.: (Sum_{j=1..19} S2(19,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..10} S2(10,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x*Sum_{k=0..18} A145882(19,k) * x^k / (1-x)^20.
E.g.f.: (Sum_{k=1..19} S2(19,k)*x^k + Sum_{k=1..10} S2(10,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>19, a(n) = Sum_{j=1..20} -binomial(j-21,j) * a(n-j). (End)

A170802 a(n) = n^10*(n^10 + 1)/2.

Original entry on oeis.org

0, 1, 524800, 1743421725, 549756338176, 47683720703125, 1828079250264576, 39896133290043625, 576460752840294400, 6078832731271856601, 50000000005000000000, 336374997479248716901, 1916879996254696243200
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Comments

By definition, all terms are triangular numbers. - Harvey P. Dale, Aug 12 2012
Number of unoriented rows of length 20 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=524800, there are 2^20=1048576 oriented arrangements of two colors. Of these, 2^10=1024 are achiral. That leaves (1048576-1024)/2=523776 chiral pairs. Adding achiral and chiral, we get 524800. - Robert A. Russell, Nov 13 2018

Crossrefs

Row 20 of A277504.
Cf. A010808 (oriented), A008454 (achiral).
Sequences of the form n^10*(n^m + 1)/2: A170793 (m=1), A170794 (m=2), A170795 (m=3), A170896 (m=4), A170797 (m=5), A170798 (m=6), A170799 (m=7), A170800 (m=8), A170801 (m=9), this sequence (m=10).

Programs

  • GAP
    List([0..30], n -> n^10*(n^10+1)/2); # G. C. Greubel, Nov 15 2018
    
  • Magma
    [n^10*(n^10+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
    
  • Maple
    seq(n^10*(n^10 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
  • Mathematica
    n10[n_]:=Module[{c=n^10},(c(c+1))/2];Array[n10,15,0] (* Harvey P. Dale, Jul 17 2012 *)
  • PARI
    vector(30, n, n--; n^10*(n^10+1)/2) \\ G. C. Greubel, Nov 15 2018
    
  • Python
    for n in range(0,20): print(int(n**10*(n**10 + 1)/2), end=', ') # Stefano Spezia, Nov 15 2018
  • Sage
    [n^10*(n^10+1)/2 for n in range(30)] # G. C. Greubel, Nov 15 2018
    

Formula

From Robert A. Russell, Nov 13 2018: (Start)
a(n) = (A010808(n) + A008454(n)) / 2 = (n^20 + n^10) / 2.
G.f.: (Sum_{j=1..20} S2(20,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..10} S2(10,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x*Sum_{k=0..19} A145882(20,k) * x^k / (1-x)^21.
E.g.f.: (Sum_{k=1..20} S2(20,k)*x^k + Sum_{k=1..10} S2(10,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>20, a(n) = Sum_{j=1..21} -binomial(j-22,j) * a(n-j). (End)
Previous Showing 11-20 of 42 results. Next