A131178
Non-plane increasing unary binary (0-1-2) trees where the nodes of outdegree 1 come in 2 colors.
Original entry on oeis.org
1, 2, 5, 16, 64, 308, 1730, 11104, 80176, 643232, 5676560, 54650176, 569980384, 6401959328, 77042282000, 988949446144, 13488013248256, 194780492544512, 2969094574403840, 47640794742439936, 802644553810683904, 14166772337295285248, 261410917571703825920
Offset: 1
G.f. = x + 2*x^2 + 5*x^3 + 16*x^4 + 64*x^5 + 308*x^6 + 1730*x^7 + 11104*x^8 + ...
a(3) = 5: Denoting the two types of node of outdegree 1 by the letters a or b, the 5 possible trees are
.
. 1a 1b 1a 1b 1
. | | | | / \
. 2a 2b 2b 2a 2 3
. | | | |
. 3 3 3 3
- _Peter Bala_, Sep 01 2011
- Vincenzo Librandi, Table of n, a(n) for n = 1..100
- Jean-Luc Baril, Sergey Kirgizov, Vincent Vajnovszki, Patterns in treeshelves, arXiv:1611.07793 [cs.DM], 2016.
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1992, pp. 24-48.
- Lapo Cioni, Luca Ferrari, and Corentin Henriet. A direct bijection between two-stack sortable permutations and fighting fish, Euro. Conf. Comb., Graph Theory Appl. (2023) No. 12, 283-289.
- D. Dominici, Nested derivatives: A simple method for computing series expansions of inverse functions. arXiv:math/0501052v2 [math.CA], 2005.
-
E:= (2*(exp(sqrt(2)*x)-1)) / ((2+sqrt(2))-(2-sqrt(2))*exp(sqrt(2)*x)):
S:= map(simplify,series(E,x,101)):
seq(coeff(S,x,j)*j!, j=1..100); # Robert Israel, Nov 23 2016
-
max = 25; f[x_] := (2*(Exp[Sqrt[2]*x] - 1))/((2 + Sqrt[2]) - (2 - Sqrt[2])*Exp[Sqrt[2]*x]); Drop[ Simplify[ CoefficientList[ Series[f[x], {x, 0, max}], x]*Range[0, max]!], 1] (* Jean-François Alcover, Oct 05 2011 *)
-
x='x+O('x^66); /* that many terms */
default(realprecision,1000); /* working with floats here */
egf=(2*(exp(sqrt(2)*x)-1)) / ((2+sqrt(2))-(2-sqrt(2))*exp(sqrt(2)*x));
round(Vec(serlaplace(egf))) /* show terms */
/* Joerg Arndt, Sep 01 2011 */
-
/* the following program should be preferred. */
Vec( serlaplace( serreverse( intformal( 1/(1+2*x+1/2*x^2) + O(x^66) ) ) ) )
\\ Joerg Arndt, Mar 01 2014
-
{a(n) = if( n<1, 0, n! * polcoeff( 2 / (-2 + quadgen(8) * (-1 + 2 / (1 - exp(-quadgen(8) * x + x * O(x^n))))), n))};
Changed offset to 1 to agree with name and example. -
Michael Somos, Nov 23 2016
A144279
Partition number array, called M32hat(-3)= 'M32(-3)/M3'= 'A143173/A036040', related to A000369(n,m)= |S2(-3;n,m)| (generalized Stirling triangle).
Original entry on oeis.org
1, 3, 1, 21, 3, 1, 231, 21, 9, 3, 1, 3465, 231, 63, 21, 9, 3, 1, 65835, 3465, 693, 441, 231, 63, 27, 21, 9, 3, 1, 1514205, 65835, 10395, 4851, 3465, 693, 441, 189, 231, 63, 27, 21, 9, 3, 1, 40883535, 1514205, 197505, 72765, 53361, 65835, 10395, 4851, 2079, 1323, 3465
Offset: 1
a(4,3) = 9 = |S2(-3,2,1)|^2. The relevant partition of 4 is (2^2).
A144756
Partial products of successive terms of A017101; a(0)=1 .
Original entry on oeis.org
1, 3, 33, 627, 16929, 592515, 25478145, 1299385395, 76663738305, 5136470466435, 385235284982625, 31974528653557875, 2909682107473766625, 288058528639902895875, 30822262564469609858625, 3544560194914005133741875, 435980903974422631450250625, 57113498420649364719982831875
Offset: 0
a(0)=1, a(1)=3, a(2)=3*11=33, a(3)=3*11*19=627, a(4)=3*11*19*27=16929, ...
-
Join[{1},FoldList[Times,8Range[0,20]+3]] (* Harvey P. Dale, Aug 11 2019 *)
A370915
A(n, k) = 4^n*Pochhammer(k/4, n). Square array read by ascending antidiagonals.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 5, 2, 1, 0, 45, 12, 3, 1, 0, 585, 120, 21, 4, 1, 0, 9945, 1680, 231, 32, 5, 1, 0, 208845, 30240, 3465, 384, 45, 6, 1, 0, 5221125, 665280, 65835, 6144, 585, 60, 7, 1, 0, 151412625, 17297280, 1514205, 122880, 9945, 840, 77, 8, 1
Offset: 0
The array starts:
[0] 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
[1] 0, 1, 2, 3, 4, 5, 6, 7, 8, ...
[2] 0, 5, 12, 21, 32, 45, 60, 77, 96, ...
[3] 0, 45, 120, 231, 384, 585, 840, 1155, 1536, ...
[4] 0, 585, 1680, 3465, 6144, 9945, 15120, 21945, 30720, ...
[5] 0, 9945, 30240, 65835, 122880, 208845, 332640, 504735, 737280, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 5, 2, 1;
[4] 0, 45, 12, 3, 1;
[5] 0, 585, 120, 21, 4, 1;
[6] 0, 9945, 1680, 231, 32, 5, 1;
[7] 0, 208845, 30240, 3465, 384, 45, 6, 1;
Columns:
A000007,
A007696,
A001813,
A008545,
A047053,
A007696,
A000407,
A034176,
A052570 and
A034177,
A051617,
A051618,
A051619,
A051620.
-
A := (n, k) -> 4^n*pochhammer(k/4, n):
for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
# Using the exponential generating functions of the columns:
EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 4*x)^(-k/4);
ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
seq(lprint(EGFcol(n, 9)), n = 0..5);
# Using the generating polynomials for the rows:
P := (n, x) -> local k; add(Stirling1(n, k)*(-4)^(n - k)*x^k, k=0..n):
seq(lprint([n], seq(P(n, k), k = 0..8)), n = 0..5);
# Implementing the LU decomposition of A:
with(LinearAlgebra):
L := Matrix(7, 7, (n, k) -> A371026(n-1, k-1)):
U := Matrix(7, 7, (n, k) -> binomial(n-1, k-1)):
MatrixMatrixMultiply(L, Transpose(U));
-
A[n_, k_] := 4^n * Pochhammer[k/4, n]; Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 06 2024 *)
-
def A(n, k): return 4**n * rising_factorial(k/4, n)
for n in range(6): print([A(n, k) for k in range(9)])
A088996
Triangle T(n, k) read by rows: T(n, k) = Sum_{j=0..n} binomial(j, n-k) * |Stirling1(n, n-j)|.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 2, 7, 6, 0, 6, 29, 46, 24, 0, 24, 146, 329, 326, 120, 0, 120, 874, 2521, 3604, 2556, 720, 0, 720, 6084, 21244, 39271, 40564, 22212, 5040, 0, 5040, 48348, 197380, 444849, 598116, 479996, 212976, 40320
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 2, 7, 6;
0, 6, 29, 46, 24;
0, 24, 146, 329, 326, 120;
0, 120, 874, 2521, 3604, 2556, 720;
0, 720, 6084, 21244, 39271, 40564, 22212, 5040;
0, 5040, 48348, 197380, 444849, 598116, 479996, 212976, 40320;
...
-
A088996:= func< n,k | (&+[(-1)^j*Binomial(j,n-k)*StirlingFirst(n,n-j): j in [0..n]]) >;
[A088996(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 23 2022
-
A059364 := (n, k) -> add(abs(Stirling1(n, n - j))*binomial(j, n - k), j = 0..n);
seq(seq(A059364(n, k), k = 0..n), n = 0..8); # Peter Luschny, Aug 27 2025
-
T[n_, k_]:= T[n, k]= Sum[(-1)^(n-i)*Binomial[i, k] StirlingS1[n+1, n+1-i], {i, 0, n}]; {{1}}~Join~Table[Abs@ T[n, k], {n,0,10}, {k,n+1,0,-1}] (* Michael De Vlieger, Jun 19 2018 *)
-
def A088996(n,k): return add((-1)^(n-i)*binomial(i,k)*stirling_number1(n+1,n+1-i) for i in (0..n))
for n in (0..10): [A088996(n,k) for k in (0..n)] # Peter Luschny, May 12 2013
A153271
Triangle T(n, k) = Product_{j=0..k} (j*n + prime(m)), with T(n, 0) = prime(m) and m = 3, read by rows.
Original entry on oeis.org
5, 5, 30, 5, 35, 315, 5, 40, 440, 6160, 5, 45, 585, 9945, 208845, 5, 50, 750, 15000, 375000, 11250000, 5, 55, 935, 21505, 623645, 21827575, 894930575, 5, 60, 1140, 29640, 978120, 39124800, 1838865600, 99298742400, 5, 65, 1365, 39585, 1464645, 65909025, 3493178325, 213083877825, 14702787569925
Offset: 0
Triangle begins as:
5;
5, 30;
5, 35, 315;
5, 40, 440, 6160;
5, 45, 585, 9945, 208845;
5, 50, 750, 15000, 375000, 11250000;
5, 55, 935, 21505, 623645, 21827575, 894930575;
Sequences related to m values:
-
m:=3;
function T(n,k)
if k eq 0 then return NthPrime(m);
else return (&*[j*n + NthPrime(m): j in [0..k]]);
end if; return T; end function;
[T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 03 2019
-
m:=3; seq(seq(`if`(k=0, ithprime(m), mul(j*n + ithprime(m), j=0..k)), k=0..n), n=0..10); # G. C. Greubel, Dec 03 2019
-
T[n_, k_, m_]:= If[k==0, Prime[m], Product[j*n + Prime[m], {j,0,k}]];
Table[T[n,k,3], {n,0,10}, {k,0,n}]//Flatten
-
T(n,k) = my(m=3); if(k==0, prime(m), prod(j=0,k, j*n + prime(m)) ); \\ G. C. Greubel, Dec 03 2019
-
def T(n, k):
m=3
if (k==0): return nth_prime(m)
else: return product(j*n + nth_prime(m) for j in (0..k))
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 03 2019
A235136
a(n) = (2*n - 1) * a(n-2) for n>1, a(0) = a(1) = 1.
Original entry on oeis.org
1, 1, 3, 5, 21, 45, 231, 585, 3465, 9945, 65835, 208845, 1514205, 5221125, 40883535, 151412625, 1267389585, 4996616625, 44358635475, 184874815125, 1729986783525, 7579867420125, 74389431691575, 341094033905625, 3496303289504025, 16713607661375625
Offset: 0
G.f. = 1 + x + 3*x^2 + 5*x^3 + 21*x^4 + 45*x^5 + 231*x^6 + 585*x^7 + ...
-
a[ n_] := 2^n If[ OddQ[n], 2 Pochhammer[ 1/4, (n + 1)/2], Pochhammer[ 3/4, n/2]]; (* Michael Somos, Jan 16 2014 *)
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ (-2 Gamma[5/2] HermiteH[ -3/2, x] + (3 Gamma[5/4] + 2 Gamma[7/4]) Hypergeometric1F1[ 3/4, 1/2, x^2]) / (3 Gamma[5/4]), {x, 0, n}] // FullSimplify]; (* Michael Somos, Jan 16 2014 *)
RecurrenceTable[{a[0]==a[1]==1, a[n]==(2 n - 1) a[n - 2]}, a, {n, 25}] (* Vincenzo Librandi, Aug 08 2018 *)
-
{a(n) = if( n<0, (-1)^(-n\2) / a(-1-n), if( n<2, 1, (2*n - 1) * a(n-2)))};
A254795
Numerators of the convergents of the generalized continued fraction 2 + 1^2/(4 + 3^2/(4 + 5^2/(4 + ... ))).
Original entry on oeis.org
2, 9, 54, 441, 4410, 53361, 747054, 12006225, 216112050, 4334247225, 95353438950, 2292816782025, 59613236332650, 1671463434096225, 50143903022886750, 1606276360166472225, 54613396245660055650, 1967688541203928475625, 74772164565749282073750
Offset: 0
A020041
a(n) = round( Gamma(n+3/4)/Gamma(3/4) ).
Original entry on oeis.org
1, 1, 1, 4, 14, 64, 370, 2495, 19339, 169215, 1649844, 17735823, 208395916, 2657047924, 36534408953, 538882532061, 8487399879954, 142163947989232, 2523410076808877, 47313938940166438, 934450294068287158
Offset: 0
-
[Round(Gamma(n+3/4)/Gamma(3/4)): n in [0..30]]; // G. C. Greubel, Dec 06 2019
-
Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end;
seq( round(pochhammer(3/4,n)), n=0..30); # G. C. Greubel, Dec 06 2019
-
Table[Round[Pochhammer[3/4,n]], {n,0,30}] (* G. C. Greubel, Dec 06 2019 *)
-
x=3/4; vector(30, n, round(gamma(n-1+x)/gamma(x)) ) \\ G. C. Greubel, Dec 06 2019
-
[round(rising_factorial(3/4,n)) for n in (0..30)] # G. C. Greubel, Dec 06 2019
A143167
Second column of triangle A000369: |S2(-3;n+2,2)|.
Original entry on oeis.org
1, 9, 111, 1785, 35595, 848925, 23586255, 748471185, 26715409875, 1059544210725, 46230843633975, 2201008238854425, 113546715232225275, 6309834090304870125, 375777507964741257375, 23876826206710426574625, 1612323634555365676819875
Offset: 0
-
f:= gfun:-rectoproc({a(n) = (8*n+1)*a(n-1) - 2*(4*n-1)*(2*n-1)*a(n-2),a(0)=1, a(1)=9}, a(n), remember):
map(f, [$0..50]); # Robert Israel, Jan 09 2019
-
x = 'x + O('x^40); serlaplace((3 - 2*(1-4*x)^(1/4))/(1-4*x)^(7/4)) \\ Michel Marcus, Jun 18 2017
Comments