cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 46 results. Next

A131178 Non-plane increasing unary binary (0-1-2) trees where the nodes of outdegree 1 come in 2 colors.

Original entry on oeis.org

1, 2, 5, 16, 64, 308, 1730, 11104, 80176, 643232, 5676560, 54650176, 569980384, 6401959328, 77042282000, 988949446144, 13488013248256, 194780492544512, 2969094574403840, 47640794742439936, 802644553810683904, 14166772337295285248, 261410917571703825920
Offset: 1

Views

Author

Wenjin Woan, Oct 31 2007

Keywords

Comments

A labeled tree of size n is a rooted tree on n nodes that are labeled by distinct integers from the set {1,...,n}. An increasing tree is a labeled tree such that the sequence of labels along any branch starting at the root is increasing. Thus the root of an increasing tree will be labeled 1. In unary binary trees (sometimes called 0-1-2 trees) the outdegree of a node is either 0, 1 or 2. Here we are counting non-plane (where the subtrees stemming from a node are not ordered between themselves) increasing unary binary trees where the nodes of outdegree 1 come in two colors. An example is given below. - Peter Bala, Sep 01 2011
The number of plane increasing 0-1-2 trees on n nodes, where the nodes of outdegree 1 come in two colors, is equal to n!. Other examples of sequences counting increasing trees include A000111, A000670, A008544, A008545, A029768 and A080635. - Peter Bala, Sep 01 2011
Number of plane increasing 0-1-2 trees, where the nodes of outdegree 1 come in 2 colors, avoiding pattern T213. See A278679 for more definitions and examples. - Sergey Kirgizov, Dec 24 2016

Examples

			G.f. = x + 2*x^2 + 5*x^3 + 16*x^4 + 64*x^5 + 308*x^6 + 1730*x^7 + 11104*x^8 + ...
a(3) = 5: Denoting the two types of node of outdegree 1 by the letters a or b, the 5 possible trees are
.
.  1a    1b    1a    1b      1
.  |     |     |     |      / \
.  2a    2b    2b    2a    2   3
.  |     |     |     |
.  3     3     3     3
- _Peter Bala_, Sep 01 2011
		

Crossrefs

Programs

  • Maple
    E:=  (2*(exp(sqrt(2)*x)-1)) / ((2+sqrt(2))-(2-sqrt(2))*exp(sqrt(2)*x)):
    S:= map(simplify,series(E,x,101)):
    seq(coeff(S,x,j)*j!, j=1..100); # Robert Israel, Nov 23 2016
  • Mathematica
    max = 25; f[x_] := (2*(Exp[Sqrt[2]*x] - 1))/((2 + Sqrt[2]) - (2 - Sqrt[2])*Exp[Sqrt[2]*x]); Drop[ Simplify[ CoefficientList[ Series[f[x], {x, 0, max}], x]*Range[0, max]!], 1] (* Jean-François Alcover, Oct 05 2011 *)
  • PARI
    x='x+O('x^66); /* that many terms */
    default(realprecision,1000); /* working with floats here */
    egf=(2*(exp(sqrt(2)*x)-1)) / ((2+sqrt(2))-(2-sqrt(2))*exp(sqrt(2)*x));
    round(Vec(serlaplace(egf))) /* show terms */
    /* Joerg Arndt, Sep 01 2011 */
    
  • PARI
    /* the following program should be preferred. */
    Vec( serlaplace( serreverse( intformal( 1/(1+2*x+1/2*x^2) + O(x^66) ) ) ) )
    \\ Joerg Arndt, Mar 01 2014
    
  • PARI
    {a(n) = if( n<1, 0, n! * polcoeff( 2 / (-2 + quadgen(8) * (-1 + 2 / (1 - exp(-quadgen(8) * x + x * O(x^n))))), n))};

Formula

E.g.f.: A(x) = (2*(exp(sqrt(2)*x)-1)) / ((2+sqrt(2))-(2-sqrt(2))*exp(sqrt(2)*x)) = x+2*x^2/2!+5*x^3/3!+16*x^4/4!+64*x^5/5!+....
From Peter Bala, Sep 01 2011: (Start)
The generating function A(x) satisfies the autonomous differential equation A' = 1+2*A+1/2*A^2 with A(0) = 0. It follows that the inverse function A(x)^-1 may be expressed as an integral A(x)^-1 = int {t = 0..x} 1/(1+2*t+1/2*t^2).
Applying [Dominici, Theorem 4.1] to invert the integral gives the following method for calculating the terms of the sequence: let f(x) = 1+2*x+1/2*x^2. Let D be the operator f(x)*d/dx. Then a(n) = D^n(f(x)) evaluated at x = 0. Compare with A000111(n+1) = D^n(1+x+x^2/2!) evaluated at x = 0.
(End)
G.f.: 1/Q(0), where Q(k) = 1 - 2*x*(2*k+1) - m*x^2*(k+1)*(2*k+1)/( 1 - 2*x*(2*k+2) - m*x^2*(k+1)*(2*k+3)/Q(k+1) ) and m=1; (continued fraction). - Sergei N. Gladkovskii, Sep 24 2013
G.f.: 1/Q(0), where Q(k) = 1 - 2*x*(k+1) - 1/2*x^2*(k+1)*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 02 2013
a(n) ~ n! * 2^((n+3)/2) / log(3+2*sqrt(2))^(n+1). - Vaclav Kotesovec, Oct 08 2013
G.f.: conjecture: T(0)/(1-2*x) -1, where T(k) = 1 - x^2*(k+1)*(k+2)/(x^2*(k+1)*(k+2) - 2*(1-2*x*(k+1))*(1-2*x*(k+2))/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 19 2013
E.g.f.: x/(T(0)-x), where T(k) = 4*k + 1 + x^2/(8*k+6 + x^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 30 2013

Extensions

Terms >= 80176 from Peter Bala, Sep 01 2011
Changed offset to 1 to agree with name and example. - Michael Somos, Nov 23 2016

A144279 Partition number array, called M32hat(-3)= 'M32(-3)/M3'= 'A143173/A036040', related to A000369(n,m)= |S2(-3;n,m)| (generalized Stirling triangle).

Original entry on oeis.org

1, 3, 1, 21, 3, 1, 231, 21, 9, 3, 1, 3465, 231, 63, 21, 9, 3, 1, 65835, 3465, 693, 441, 231, 63, 27, 21, 9, 3, 1, 1514205, 65835, 10395, 4851, 3465, 693, 441, 189, 231, 63, 27, 21, 9, 3, 1, 40883535, 1514205, 197505, 72765, 53361, 65835, 10395, 4851, 2079, 1323, 3465
Offset: 1

Views

Author

Wolfdieter Lang, Oct 09 2008

Keywords

Comments

Each partition of n, ordered as in Abramowitz-Stegun (A-St order; for the reference see A134278), is mapped to a nonnegative integer a(n,k) =: M32hat(-3;n,k) with the k-th partition of n in A-St order.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42,...].
If M32hat(-3;n,k) is summed over those k with fixed number of parts m one obtains triangle S2hat(-3):= A144280(n,m).

Examples

			a(4,3) = 9 = |S2(-3,2,1)|^2. The relevant partition of 4 is (2^2).
		

Crossrefs

Cf. A144274 (M32hat(-2) array), A144284 (M32hat(-4) array).

Formula

a(n,k) = Product_{j=1..n} |S2(-3,j,1)|^e(n,k,j), with |S2(-3,n,1)|= A008545(n-1) = (4*n-5)(!^4) (4-factorials) for n>=2 and 1 if n=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n.
Formally a(n,k)= 'M32(-3)/M3' = 'A143173/A036040' (elementwise division of arrays).

A144756 Partial products of successive terms of A017101; a(0)=1 .

Original entry on oeis.org

1, 3, 33, 627, 16929, 592515, 25478145, 1299385395, 76663738305, 5136470466435, 385235284982625, 31974528653557875, 2909682107473766625, 288058528639902895875, 30822262564469609858625, 3544560194914005133741875, 435980903974422631450250625, 57113498420649364719982831875
Offset: 0

Views

Author

Philippe Deléham, Sep 20 2008

Keywords

Examples

			a(0)=1, a(1)=3, a(2)=3*11=33, a(3)=3*11*19=627, a(4)=3*11*19*27=16929, ...
		

Crossrefs

Programs

  • Mathematica
    Join[{1},FoldList[Times,8Range[0,20]+3]] (* Harvey P. Dale, Aug 11 2019 *)

Formula

a(n) = Sum_{k=0..n} A132393(n,k)*3^k*8^(n-k).
a(n) = (-5)^n*sum_{k=0..n} (8/5)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 2/G(0), where G(k)= 1 + 1/(1 - 2*x*(8*k+3)/(2*x*(8*k+3) - 1 + 16*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
a(n) +(-8*n+5)*a(n-1)=0. - R. J. Mathar, Sep 04 2016
From Ilya Gutkovskiy, Mar 23 2017: (Start)
E.g.f.: 1/(1 - 8*x)^(3/8).
a(n) ~ sqrt(2*Pi)*8^n*n^n/(exp(n)*n^(1/8)*Gamma(3/8)). (End)
Sum_{n>=0} 1/a(n) = 1 + (e/8^5)^(1/8)*(Gamma(3/8) - Gamma(3/8, 1/8)). - Amiram Eldar, Dec 20 2022

Extensions

a(11) corrected by Ilya Gutkovskiy, Mar 23 2017

A370915 A(n, k) = 4^n*Pochhammer(k/4, n). Square array read by ascending antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 5, 2, 1, 0, 45, 12, 3, 1, 0, 585, 120, 21, 4, 1, 0, 9945, 1680, 231, 32, 5, 1, 0, 208845, 30240, 3465, 384, 45, 6, 1, 0, 5221125, 665280, 65835, 6144, 585, 60, 7, 1, 0, 151412625, 17297280, 1514205, 122880, 9945, 840, 77, 8, 1
Offset: 0

Views

Author

Peter Luschny, Mar 06 2024

Keywords

Comments

The sequence of square arrays A(m, n, k) starts: A094587 (m = 1), A370419 (m = 2), A371077(m = 3), this array (m = 4).

Examples

			The array starts:
[0] 1,    1,     1,     1,      1,      1,      1,      1,      1, ...
[1] 0,    1,     2,     3,      4,      5,      6,      7,      8, ...
[2] 0,    5,    12,    21,     32,     45,     60,     77,     96, ...
[3] 0,   45,   120,   231,    384,    585,    840,   1155,   1536, ...
[4] 0,  585,  1680,  3465,   6144,   9945,  15120,  21945,  30720, ...
[5] 0, 9945, 30240, 65835, 122880, 208845, 332640, 504735, 737280, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
[0] 1;
[1] 0,      1;
[2] 0,      1,     1;
[3] 0,      5,     2,    1;
[4] 0,     45,    12,    3,   1;
[5] 0,    585,   120,   21,   4,  1;
[6] 0,   9945,  1680,  231,  32,  5, 1;
[7] 0, 208845, 30240, 3465, 384, 45, 6, 1;
		

Crossrefs

Similar square arrays: A094587, A370419, A371077.
Cf. A370913 (row sums of triangle), A371026.

Programs

  • Maple
    A := (n, k) -> 4^n*pochhammer(k/4, n):
    for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
    T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
    # Using the exponential generating functions of the columns:
    EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 4*x)^(-k/4);
    ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
    seq(lprint(EGFcol(n, 9)), n = 0..5);
    # Using the generating polynomials for the rows:
    P := (n, x) -> local k; add(Stirling1(n, k)*(-4)^(n - k)*x^k, k=0..n):
    seq(lprint([n], seq(P(n, k), k = 0..8)), n = 0..5);
    # Implementing the LU decomposition of A:
    with(LinearAlgebra):
    L := Matrix(7, 7, (n, k) -> A371026(n-1, k-1)):
    U := Matrix(7, 7, (n, k) -> binomial(n-1, k-1)):
    MatrixMatrixMultiply(L, Transpose(U));
  • Mathematica
    A[n_, k_] := 4^n * Pochhammer[k/4, n]; Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 06 2024 *)
  • SageMath
    def A(n, k): return 4**n * rising_factorial(k/4, n)
    for n in range(6): print([A(n, k) for k in range(9)])

Formula

A(n, k) = 4^n*Product_{j=0..n-1} (j + k/4).
A(n, k) = 4^n*Gamma(k/4 + n) / Gamma(k/4) for k >= 1.
The exponential generating function for column k is (1 - 4*x)^(-k/4). But much more is true: (1 - m*x)^(-k/m) are the exponential generating functions for the columns of the arrays A(m, n, k) = m^n*Pochhammer(k/m, n).
The polynomials P(n, x) = Sum_{k=0..n} Stirling1(n, k)*(-4)^(n-k)*x^k are ordinary generating functions for row n, i.e., A(n, k) = P(n, k).
In A370419 Werner Schulte pointed out how A371025 is related to the LU decomposition of A370419. Here the same procedure can be used and amounts to A = A371026 * transpose(binomial triangle), where '*' denotes matrix multiplication. See the Maple section for an implementation.

A088996 Triangle T(n, k) read by rows: T(n, k) = Sum_{j=0..n} binomial(j, n-k) * |Stirling1(n, n-j)|.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 2, 7, 6, 0, 6, 29, 46, 24, 0, 24, 146, 329, 326, 120, 0, 120, 874, 2521, 3604, 2556, 720, 0, 720, 6084, 21244, 39271, 40564, 22212, 5040, 0, 5040, 48348, 197380, 444849, 598116, 479996, 212976, 40320
Offset: 0

Views

Author

Philippe Deléham, Dec 01 2003, Aug 17 2007

Keywords

Examples

			Triangle begins:
  1;
  0,    1;
  0,    1,     2;
  0,    2,     7,      6;
  0,    6,    29,     46,     24;
  0,   24,   146,    329,    326,    120;
  0,  120,   874,   2521,   3604,   2556,    720;
  0,  720,  6084,  21244,  39271,  40564,  22212,   5040;
  0, 5040, 48348, 197380, 444849, 598116, 479996, 212976, 40320;
  ...
		

Crossrefs

Variant: A059364, diagonals give A000007, A000142, A067318.
Cf. A001147 (row sums), A048994, A084938.

Programs

  • Magma
    A088996:= func< n,k | (&+[(-1)^j*Binomial(j,n-k)*StirlingFirst(n,n-j): j in [0..n]]) >;
    [A088996(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 23 2022
  • Maple
    A059364 := (n, k) -> add(abs(Stirling1(n, n - j))*binomial(j, n - k), j = 0..n);
    seq(seq(A059364(n, k), k = 0..n), n = 0..8);  # Peter Luschny, Aug 27 2025
  • Mathematica
    T[n_, k_]:= T[n, k]= Sum[(-1)^(n-i)*Binomial[i, k] StirlingS1[n+1, n+1-i], {i, 0, n}]; {{1}}~Join~Table[Abs@ T[n, k], {n,0,10}, {k,n+1,0,-1}] (* Michael De Vlieger, Jun 19 2018 *)
  • Sage
    def A088996(n,k): return add((-1)^(n-i)*binomial(i,k)*stirling_number1(n+1,n+1-i) for i in (0..n))
    for n in (0..10): [A088996(n,k) for k in (0..n)]  # Peter Luschny, May 12 2013
    

Formula

T(n, k) given by [0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] where DELTA is the operator defined in A084938. [Original name.]
Sum_{k=0..n} (-1)^k*T(n,k) = (-1)^n.
From Vladeta Jovovic, Dec 15 2004: (Start)
E.g.f.: (1-y-y*x)^(-1/(1+x)).
Sum_{k=0..n} T(n, k)*x^k = Product_{k=1..n} (k*x+k-1). (End)
T(n, k) = n*T(n-1, k-1) + (n-1)*T(n-1, k); T(0, 0) = 1, T(0, k) = 0 if k > 0, T(n, k) = 0 if k < 0. - Philippe Deléham, May 22 2005
Sum_{k=0..n} T(n,k)*x^(n-k) = A019590(n+1), A000012(n), A000142(n), A001147(n), A007559(n), A007696(n), A008548(n), A008542(n), A045754(n), A045755(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, respectively. Sum_{k=0..n} T(n,k)*x^k = A033999(n), A000007(n), A001147(n), A008544(n), A008545(n), A008546(n), A008543(n), A049209(n), A049210(n), A049211(n), A049212(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, respectively. - Philippe Deléham, Aug 10 2007
T(n, k) = Sum_{j=0..n} (-1)^j*binomial(j, n-k)*StirlingS1(n, n-j). - G. C. Greubel, Feb 23 2022

Extensions

New name using a formula of G. C. Greubel by Peter Luschny, Aug 27 2025

A153271 Triangle T(n, k) = Product_{j=0..k} (j*n + prime(m)), with T(n, 0) = prime(m) and m = 3, read by rows.

Original entry on oeis.org

5, 5, 30, 5, 35, 315, 5, 40, 440, 6160, 5, 45, 585, 9945, 208845, 5, 50, 750, 15000, 375000, 11250000, 5, 55, 935, 21505, 623645, 21827575, 894930575, 5, 60, 1140, 29640, 978120, 39124800, 1838865600, 99298742400, 5, 65, 1365, 39585, 1464645, 65909025, 3493178325, 213083877825, 14702787569925
Offset: 0

Views

Author

Roger L. Bagula, Dec 22 2008

Keywords

Comments

Row sums are {5, 35, 355, 6645, 219425, 11640805, 917404295, 101177741765, 14919432040765, 2839006665525525, 677815000136926955, ...}.

Examples

			Triangle begins as:
  5;
  5, 30;
  5, 35, 315;
  5, 40, 440,  6160;
  5, 45, 585,  9945, 208845;
  5, 50, 750, 15000, 375000, 11250000;
  5, 55, 935, 21505, 623645, 21827575, 894930575;
		

Crossrefs

Cf. A153271 (m=2), this sequence (m=3), A153272 (m=4).
Sequences related to m values:

Programs

  • Magma
    m:=3;
    function T(n,k)
      if k eq 0 then return NthPrime(m);
      else return (&*[j*n + NthPrime(m): j in [0..k]]);
      end if; return T; end function;
    [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 03 2019
    
  • Maple
    m:=3; seq(seq(`if`(k=0, ithprime(m), mul(j*n + ithprime(m), j=0..k)), k=0..n), n=0..10); # G. C. Greubel, Dec 03 2019
  • Mathematica
    T[n_, k_, m_]:= If[k==0, Prime[m], Product[j*n + Prime[m], {j,0,k}]];
    Table[T[n,k,3], {n,0,10}, {k,0,n}]//Flatten
  • PARI
    T(n,k) = my(m=3); if(k==0, prime(m), prod(j=0,k, j*n + prime(m)) ); \\ G. C. Greubel, Dec 03 2019
    
  • Sage
    def T(n, k):
        m=3
        if (k==0): return nth_prime(m)
        else: return product(j*n + nth_prime(m) for j in (0..k))
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 03 2019

Formula

T(n, k) = Product_{j=0..k} (j*n + prime(m)), with T(n, 0) = prime(m) and m = 3.

Extensions

Edited by G. C. Greubel, Dec 03 2019

A235136 a(n) = (2*n - 1) * a(n-2) for n>1, a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 3, 5, 21, 45, 231, 585, 3465, 9945, 65835, 208845, 1514205, 5221125, 40883535, 151412625, 1267389585, 4996616625, 44358635475, 184874815125, 1729986783525, 7579867420125, 74389431691575, 341094033905625, 3496303289504025, 16713607661375625
Offset: 0

Views

Author

Michael Somos, Jan 03 2014

Keywords

Examples

			G.f. = 1 + x + 3*x^2 + 5*x^3 + 21*x^4 + 45*x^5 + 231*x^6 + 585*x^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := 2^n If[ OddQ[n], 2 Pochhammer[ 1/4, (n + 1)/2], Pochhammer[ 3/4, n/2]]; (* Michael Somos, Jan 16 2014 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ (-2 Gamma[5/2] HermiteH[ -3/2, x] + (3 Gamma[5/4] + 2 Gamma[7/4]) Hypergeometric1F1[ 3/4, 1/2, x^2]) / (3 Gamma[5/4]), {x, 0, n}] // FullSimplify]; (* Michael Somos, Jan 16 2014 *)
    RecurrenceTable[{a[0]==a[1]==1, a[n]==(2 n - 1) a[n - 2]}, a, {n, 25}] (* Vincenzo Librandi, Aug 08 2018 *)
  • PARI
    {a(n) = if( n<0, (-1)^(-n\2) / a(-1-n), if( n<2, 1, (2*n - 1) * a(n-2)))};

Formula

Let b(n) = a(2*n - 2) / a(2*n + 1). Then b(-n) = b(n), 0 = b(n+1) * (b(n+1) + 2*b(n+2)) + b(n) * (2*b(n+1) - 5*b(n+2)) for all n in Z.
a(n-1) + a(n-2) = A196265(n) if n>1.
a(2*n) = A008545(n). a(2*n - 1) = A007696(n). a(n) = A007662(2*n - 1).
E.g.f. A(x) =: y satisfies 0 = y * 3 + y' * 2*x - y''.
0 = a(n)*(2*a(n+1) - a(n+3)) + a(n+1)*(a(n+2)) for all n in Z. - Michael Somos, Jan 24 2014
Let b(n) = a(n - 2) / a(n + 1). Then b(-n) = (-1)^n * b(n), 0 = b(n) * (b(n+1) - 4*b(n+3)) + b(n+2) * (2*b(n+1) + b(n+3)) for all n in Z. - Michael Somos, Sep 13 2014
a(n) ~ c * sqrt(Pi) * (2*n)^(n/2+1/4) / exp(n/2), where c = 2/Gamma(1/4) if n is odd, and 1/Gamma(3/4) if n is even. - Amiram Eldar, Sep 01 2025

A254795 Numerators of the convergents of the generalized continued fraction 2 + 1^2/(4 + 3^2/(4 + 5^2/(4 + ... ))).

Original entry on oeis.org

2, 9, 54, 441, 4410, 53361, 747054, 12006225, 216112050, 4334247225, 95353438950, 2292816782025, 59613236332650, 1671463434096225, 50143903022886750, 1606276360166472225, 54613396245660055650, 1967688541203928475625, 74772164565749282073750
Offset: 0

Views

Author

Peter Bala, Feb 23 2015

Keywords

Comments

Brouncker gave the generalized continued fraction expansion 4/Pi = 1 + 1^2/(2 + 3^2/(2 + 5^2/(2 + ... ))). The sequence of convergents begins [1/1, 3/2, 15/13, 105/76, ... ]. The numerators of the convergents are in A001147, the denominators in A024199.
In extending Brouckner's result, Osler showed that 2 + 1^2/(4 + 3^2/(4 + 5^2/(4 + ... ))) = L^2/Pi, where L is the lemniscate constant A062539. The sequence of convergents to Osler's continued fraction begins [2/1, 9/4, 54/25, 441/200, 4410/2025, ...]. Here we list the (unreduced) numerators of these convergents. See A254796 for the sequence of denominators. See A254794 for the decimal expansion of L^2/Pi.

Crossrefs

Programs

  • Maple
    a[0] := 2: a[1] := 9:
    for n from 2 to 18 do a[n] := 4*a[n-1] + (2*n-1)^2*a[n-2] end do:
    seq(a[n], n = 0 .. 18);

Formula

a(2*n-1) = ( A008545(n) )^2 = ( Product {k = 0..n-1} 4*k + 3 )^2.
a(2*n) = (4*n + 2)*( A008545(n) )^2 = (4*n + 2)*( Product {k = 0..n-1} 4*k + 3 )^2.
a(n) = 4*a(n-1) + (2*n - 1)^2*a(n-2) with a(0) = 2, a(1) = 9.
a(2*n) = (4*n + 2)*a(2*n-1); a(2*n+1) = (4*n + 4)*a(2*n) + a(2*n-1).

A020041 a(n) = round( Gamma(n+3/4)/Gamma(3/4) ).

Original entry on oeis.org

1, 1, 1, 4, 14, 64, 370, 2495, 19339, 169215, 1649844, 17735823, 208395916, 2657047924, 36534408953, 538882532061, 8487399879954, 142163947989232, 2523410076808877, 47313938940166438, 934450294068287158
Offset: 0

Views

Author

Keywords

Comments

Gamma(n+3/4)/Gamma(3/4) = 1, 3/4, 21/16, 231/64, 3465/256, 65835/1024, 1514205/4096, 40883535/16384, 1267389585/65536, ... - R. J. Mathar, Sep 04 2016

Crossrefs

Programs

  • Magma
    [Round(Gamma(n+3/4)/Gamma(3/4)): n in [0..30]]; // G. C. Greubel, Dec 06 2019
    
  • Maple
    Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end;
    seq( round(pochhammer(3/4,n)), n=0..30); # G. C. Greubel, Dec 06 2019
  • Mathematica
    Table[Round[Pochhammer[3/4,n]], {n,0,30}] (* G. C. Greubel, Dec 06 2019 *)
  • PARI
    x=3/4; vector(30, n, round(gamma(n-1+x)/gamma(x)) ) \\ G. C. Greubel, Dec 06 2019
    
  • Sage
    [round(rising_factorial(3/4,n)) for n in (0..30)] # G. C. Greubel, Dec 06 2019

A143167 Second column of triangle A000369: |S2(-3;n+2,2)|.

Original entry on oeis.org

1, 9, 111, 1785, 35595, 848925, 23586255, 748471185, 26715409875, 1059544210725, 46230843633975, 2201008238854425, 113546715232225275, 6309834090304870125, 375777507964741257375, 23876826206710426574625, 1612323634555365676819875
Offset: 0

Views

Author

Wolfdieter Lang, Sep 15 2008

Keywords

Crossrefs

First column of A000369 is A008545, third one is A143168.

Programs

  • Maple
    f:= gfun:-rectoproc({a(n) = (8*n+1)*a(n-1) - 2*(4*n-1)*(2*n-1)*a(n-2),a(0)=1, a(1)=9}, a(n), remember):
    map(f, [$0..50]); # Robert Israel, Jan 09 2019
  • PARI
    x = 'x + O('x^40); serlaplace((3 - 2*(1-4*x)^(1/4))/(1-4*x)^(7/4)) \\ Michel Marcus, Jun 18 2017

Formula

a(n) = A000369(n+2,2) = |S2(-3;n+2,2)|, n >= 0.
E.g.f.: d^2/dx^2 ((1-(1-4*x)^(1/4))^2 )/2! = (3 - 2*(1-4*x)^(1/4))/(1-4*x)^(7/4).
From Robert Israel, Jan 09 2019: (Start)
a(n) = (8*n+1)*a(n-1) - 2*(4*n-1)*(2*n-1)*a(n-2).
a(n) = 4^(n+1)*(Gamma(n+7/4)/Gamma(3/4) - Gamma(n+3/2)/Gamma(1/2)). (End)
Previous Showing 31-40 of 46 results. Next