cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A161776 Number of reduced words of length n in the Weyl group B_11.

Original entry on oeis.org

1, 11, 65, 275, 934, 2706, 6941, 16159, 34749, 69927, 132991, 240901, 418198, 699258, 1130856, 1774992, 2711907, 4043193, 5894878, 8420346, 11802934, 16258034, 22034519, 29415309, 38716897, 50287667, 64504857, 81770051
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..11]])/(1-t)^11)); // G. C. Greubel, Oct 24 2018
  • Maple
    seq(coeff(series(mul((1-x^(2*k))/(1-x),k=1..11),x,122), x, n), n = 0 .. 121); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[((1 - x^2) (1 - x^4) (1 - x^6) (1 - x^8) (1 - x^10) (1 - x^12) (1 - x^14) (1 - x^16) (1 - x^18) (1 - x^20) (1 - x^22)) / (1 - x)^11, {x, 0, 121}], x] (* Vincenzo Librandi, Aug 22 2016 *)
  • PARI
    t='t+O('t^40); Vec(prod(k=1,11,1-t^(2*k))/(1-t)^11) \\ G. C. Greubel, Oct 24 2018
    

Formula

G.f. for B_m is the polynomial Prod_{k=1..m} (1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A161858 Number of reduced words of length n in the Weyl group B_12.

Original entry on oeis.org

1, 12, 77, 352, 1286, 3992, 10933, 27092, 61841, 131768, 264759, 505660, 923858, 1623116, 2753972, 4528964, 7240871, 11284064, 17178942, 25599288, 37402222, 53660256, 75694775, 105110084, 143826980, 194114636, 258619428, 340389204, 442891395, 570023312, 726112969
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Nov 30 2009

Keywords

Comments

Computed with MAGMA using commands similar to those used to compute A161409.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
  • N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)

Crossrefs

Row n=12 of A128084.
The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..12]])/(1-t)^12)); // G. C. Greubel, Oct 25 2018
  • Maple
    seq(coeff(series(mul((1-x^(2k))/(1-x),k=1..12),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[Product[(1-x^(2*k)),{k,1,12}]/(1-x)^12,{x,0,50}], x] (* G. C. Greubel, Oct 25 2018 *)
  • PARI
    t='t+O('t^50); Vec(prod(k=1,12,1-t^(2*k))/(1-t)^12) \\ G. C. Greubel, Oct 25 2018
    

Formula

G.f. for B_m is the polynomial Product_{k=1..m} (1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.

A267167 Growth series for affine Coxeter group B_4.

Original entry on oeis.org

1, 5, 14, 31, 59, 101, 161, 243, 351, 488, 658, 865, 1112, 1403, 1741, 2130, 2574, 3077, 3643, 4274, 4974, 5747, 6597, 7528, 8543, 9646, 10840, 12129, 13517, 15007, 16603, 18309, 20129, 22066, 24123, 26304, 28613, 31054, 33631, 36347, 39205, 42209, 45363, 48671, 52136, 55762, 59553, 63512, 67643, 71949, 76434, 81102, 85957, 91003, 96242
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-t^2)*(1+t^3)*(1-t^4)*(1-t^8)/((1-t)^5*(1-t^5)*(1 - t^7)))); // G. C. Greubel, Oct 24 2018
  • Maple
    seq(coeff(series((1-x^2)*(1+x^3)*(1-x^4)*(1-x^8)/((1-x)^5*(1-x^5)*(1-x^7)),x,n+1), x, n), n = 0 .. 55); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[(1-t^2)*(1+t^3)*(1-t^4)*(1-t^8)/((1-t)^5*(1-t^5)*(1 - t^7)), {t, 0, 50}], t] (* G. C. Greubel, Oct 24 2018 *)
  • PARI
    t='t+O('t^40); Vec((1-t^2)*(1+t^3)*(1-t^4)*(1-t^8)/((1-t)^5*(1-t^5)*(1 - t^7))) \\ G. C. Greubel, Oct 24 2018
    

Formula

The growth series for the affine Coxeter group of type B_k (k >= 2) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-1].
Here (k=4) the G.f. is (1+t+t^2+t^3+t^4+t^5+t^6+t^7)*(t^3+1)*(1+t+t^2+t^3)*(1+t) / (-1+t^7)/(-1+t^5)/(-1+t)^2.
a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + 2*a(n-7) - 2*a(n-8) + a(n-9) - a(n-12) + 2*a(n-13) - a(n-14), n > 0. - Muniru A Asiru, Oct 25 2018

A267175 Growth series for affine Coxeter group B_12.

Original entry on oeis.org

1, 13, 90, 443, 1741, 5811, 17109, 45577, 111852, 256282, 553866, 1138110, 2237924, 4233126, 7735923, 13707967, 23625303, 39706809, 65225654, 104927954, 165588279, 256738054, 391610309, 588352779, 871571154, 1274275456, 1840315206, 2627403376, 3710845242, 5188106314, 7184373674, 9859287465, 13415044111, 18106100284, 24250736849
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Formula

The growth series for the affine Coxeter group of type B_k (k >= 2) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-1].

A068293 a(1) = 1; thereafter a(n) = 6*(2^(n-1) - 1).

Original entry on oeis.org

1, 6, 18, 42, 90, 186, 378, 762, 1530, 3066, 6138, 12282, 24570, 49146, 98298, 196602, 393210, 786426, 1572858, 3145722, 6291450, 12582906, 25165818, 50331642, 100663290, 201326586, 402653178, 805306362, 1610612730, 3221225466, 6442450938, 12884901882
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2002

Keywords

Comments

1/4 the number of colorings of an n X n octagonal array with 4 colors.
Consider the planar net 3^6 (as in the top left figure in the uniform planar nets link). Then a(n) is the total number of ways that a spider starting at a point P can reach any point n steps away by using a path of length n. - N. J. A. Sloane, Feb 20 2016
From Gary W. Adamson, Jan 13 2009: (Start)
Equals inverse binomial transform of A091344: (1, 7, 31, 115, 391, ...).
Equals binomial transform of (1, 5, 7, 5, 7, 5, ...). (End)
For n > 1, number of ternary strings of length n with exactly 2 different digits. - Enrique Navarrete, Nov 20 2020

Crossrefs

Programs

  • Magma
    [1] cat [6*(2^(n-1)-1): n in [2..40]]; // Vincenzo Librandi, Feb 20 2016
  • Mathematica
    a=0; lst={1}; k=6; Do[a+=k; AppendTo[lst, a]; k+=k, {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 16 2008 *)
    Transpose[NestList[{First[#]+1,6(2^First[#]-1)}&,{1,1},30]][[2]] (* or *) Join[{1},LinearRecurrence[{3,-2},{6,18},30]] (* Harvey P. Dale, Nov 27 2011 *)
  • PARI
    a(n)=polcoeff(prod(i=1,2,(1+i*x))/(prod(i=1,2,(1-i*x))+x*O(x^n)),n)
    for(n=0,50,print1(a(n),","))
    

Formula

G.f.: (1+x)*(1+2*x)/((1-x)*(1-2*x)). - Benoit Cloitre, Apr 13 2002
a(n) = 3*a(n-1) - 2*a(n-2); a(1)=1, a(2)=6, a(3)=18. - Harvey P. Dale, Nov 27 2011
E.g.f.: 1 - 6*exp(x)*(exp(x) - 1). - Stefano Spezia, May 18 2024

Extensions

More terms from Benoit Cloitre, Apr 13 2002
Old definition (which is now a comment) replaced with explicit formula by N. J. A. Sloane, May 12 2010

A047622 Numbers that are congruent to {0, 3, 5} mod 8.

Original entry on oeis.org

0, 3, 5, 8, 11, 13, 16, 19, 21, 24, 27, 29, 32, 35, 37, 40, 43, 45, 48, 51, 53, 56, 59, 61, 64, 67, 69, 72, 75, 77, 80, 83, 85, 88, 91, 93, 96, 99, 101, 104, 107, 109, 112, 115, 117, 120, 123, 125, 128, 131, 133, 136, 139, 141, 144, 147, 149, 152, 155, 157
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n : n in [0..150] | n mod 8 in [0, 3, 5]]; // Wesley Ivan Hurt, Jun 13 2016
  • Maple
    seq(floor((8*n-7)/3), n=1..52); # Gary Detlefs, Mar 07 2010
  • Mathematica
    Select[Range[0,150], MemberQ[{0,3,5}, Mod[#,8]]&] (* Harvey P. Dale, Oct 04 2012 *)
    LinearRecurrence[{1, 0, 1, -1}, {0, 3, 5, 8}, 100] (* Vincenzo Librandi, Jun 14 2016 *)

Formula

From R. J. Mathar, Oct 18 2008: (Start)
G.f.: x^2*(3+2*x+3*x^2)/((1-x)^2*(1+x+x^2)).
a(n) = A008576(n-1), for n>1. (End)
a(n) = floor((8n-7)/3). - Gary Detlefs, Mar 07 2010
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-24-3*cos(2*n*Pi/3)-sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-3, a(3k-1) = 8k-5, a(3k-2) = 8k-8. (End)
a(n) = A047408(n) - 1. - Lorenzo Sauras Altuzarra, Jan 31 2023
E.g.f.: 3 + (8/3)*exp(x)*(x - 1) - exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/9. - Stefano Spezia, Mar 30 2023

A008577 Crystal ball sequence for planar net 4.8.8.

Original entry on oeis.org

1, 4, 9, 17, 28, 41, 57, 76, 97, 121, 148, 177, 209, 244, 281, 321, 364, 409, 457, 508, 561, 617, 676, 737, 801, 868, 937, 1009, 1084, 1161, 1241, 1324, 1409, 1497, 1588, 1681, 1777, 1876, 1977, 2081, 2188, 2297, 2409, 2524, 2641, 2761, 2884, 3009, 3137, 3268
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + 4*x + 9*x^2 + 17*x^3 + 28*x^4 + 41*x^5 + 67*x^6 + ... - _Michael Somos_, May 02 2020
		

Crossrefs

Partial sums of A008576.

Programs

Formula

G.f.: ((1+x)^2*(1+x^2)) / ((1-x)^3*(1+x+x^2)). - Ralf Stephan, Apr 24 2004
a(n) = 4*(n/3)*(n+1)+10/9+A099837(n+2)/9. - R. J. Mathar, Nov 20 2010
The above g.f. and formula were originally stated as conjectures, but I now have a proof. This also justifies the b-file. Details will be added later. - N. J. A. Sloane, Dec 29 2015
From Michael Somos, May 02 2020: (Start)
Euler transform of length 3 sequence [4, -1, 1, -1].
a(n) = a(-1-n) = floor((n^2+n+1)*4/3) for all n in Z.
a(n) - 2*a(n+1) + a(n+2) = A164359(n) unless n=0.
(End)

A068600 Number of n-uniform tilings having n different arrangements of polygons about their vertices.

Original entry on oeis.org

11, 20, 39, 33, 15, 10, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Brian Galebach, Mar 28 2002

Keywords

Comments

Sequence gives the number of edge-to-edge regular-polygon tilings having n topologically distinct vertex types, with each vertex type having a different arrangement of surrounding polygons. Does not allow for tilings with two or more vertex types having the same arrangement of surrounding polygons, even when those vertices are topologically distinct. There are no 8- or higher-uniform tilings having the equivalent number of distinct polygon arrangements.
There are eleven 1-uniform tilings (also called the "Archimedean" tessellations) which comprise the three regular tessellations (all triangles, squares, or hexagons) plus the eight semiregular tessellations. (See A250120. - N. J. A. Sloane, Nov 29 2014)

References

  • This sequence was originally calculated by Otto Krotenheerdt.
  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, page 69.
  • Krotenheerdt, Otto. "Die homogenen Mosaike n-ter Ordnung in der euklidischen Ebene," Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-natur. Reihe, 18(1969), 273-290; 19 (1970)19-38 and 97-122.

Crossrefs

Cf. A068599.
List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706 (3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120(3.3.3.3.6), A250122 (3.12.12).

A250123 Coordination sequence of point of type 3.3.4.3.4 in 4-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}.

Original entry on oeis.org

1, 5, 8, 8, 11, 17, 25, 27, 24, 30, 38, 46, 47, 44, 46, 50, 64, 68, 65, 66, 70, 80, 80, 83, 87, 91, 100, 100, 99, 99, 109, 121, 121, 119, 119, 125, 133, 139, 140, 140, 145, 153, 155, 152, 158, 166, 174, 175, 172, 174, 178, 192, 196, 193, 194, 198, 208, 208, 211
Offset: 0

Views

Author

N. J. A. Sloane, Nov 29 2014

Keywords

Comments

This tiling appears as an example in Connelly et al. (2014), Fig. 6 (the heavy black lines in the figures here are an artifact from that figure).
For the definition of k-uniform tiling see Section 2.2 of Chapter 2 of Grünbaum and Shephard (1987).

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987.

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706(3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).

Formula

Empirical g.f.: -(x+1)*(x^15 +3*x^14 -4*x^11 -6*x^10 -7*x^9 -4*x^8 -7*x^7 -11*x^6 -9*x^5 -7*x^4 -4*x^3 -4*x^2 -4*x -1) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). - Colin Barker, Dec 02 2014

Extensions

Galebach link from Joseph Myers, Nov 30 2014
Extended by Joseph Myers, Dec 02 2014

A250124 Coordination sequence of point of type 3.3.12.4 in 4-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}.

Original entry on oeis.org

1, 4, 7, 10, 15, 16, 21, 29, 28, 34, 33, 40, 48, 45, 53, 51, 59, 65, 64, 72, 68, 78, 83, 83, 89, 87, 97, 100, 102, 107, 106, 114, 119, 121, 124, 125, 132, 138, 138, 143, 144, 149, 157, 156, 162, 161, 168, 176, 173, 181, 179, 187, 193, 192, 200, 196, 206, 211, 211
Offset: 0

Views

Author

N. J. A. Sloane, Nov 29 2014

Keywords

Comments

This tiling appears as an example in Connelly et al. (2014), Fig. 6 (the heavy black lines in the figures here are an artifact from that figure).
For the definition of k-uniform tiling see Section 2.2 of Chapter 2 of Grünbaum and Shephard (1987).

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987.

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706(3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).

Formula

Empirical g.f.: -(3*x^14 -4*x^12 -4*x^11 -7*x^10 -12*x^9 -14*x^8 -21*x^7 -17*x^6 -15*x^5 -15*x^4 -10*x^3 -7*x^2 -4*x -1) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). - Colin Barker, Dec 02 2014

Extensions

Galebach link from Joseph Myers, Nov 30 2014
Extended by Joseph Myers, Dec 02 2014
Previous Showing 21-30 of 42 results. Next