cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 71 results. Next

A122197 Fractal sequence: count up to successive integers twice.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5
Offset: 1

Views

Author

Keywords

Comments

Fractal - deleting the first occurrence of each integer leaves the original sequence. Also, deleting all the 1's leaves the original sequence plus 1. New values occur at square indices. 1's occur at indices m^2+1 and m^2+m+1. Ordinal transform of A122196.
Except for its initial 1, A122197 is the natural fractal sequence of A002620; that is, A122197(n+1) is the number of the row of A194061 that contains n. See A194029 for definition of natural fractal sequence. - Clark Kimberling, Aug 12 2011
From Johannes W. Meijer, Sep 09 2013: (Start)
Triangle read by rows formed from antidiagonals of triangle A002260.
The row sums equal A008805(n-1) and the antidiagonal sums equal A211534(n+5). (End)

Examples

			The first few rows of the sequence a(n) as a triangle T(n, k):
  n/k  1   2   3
  1    1
  2    1
  3    1,  2
  4    1,  2
  5    1,  2,  3
  6    1,  2,  3
		

Crossrefs

Programs

  • Haskell
    import Data.List (transpose, genericIndex)
    a122197 n k = genericIndex (a122197_row n) (k - 1)
    a122197_row n = genericIndex a122197_tabf (n - 1)
    a122197_tabf = concat $ transpose [a002260_tabl, a002260_tabl]
    a122197_list = concat a122197_tabf
    -- Reinhard Zumkeller, Aug 07 2015, Jul 19 2012
    
  • Maple
    From Johannes W. Meijer, Sep 09 2013: (Start)
    a := proc(n) local t: t := floor((sqrt(4*n-3)-1)/2): (n-1) mod (t+1) + 1 end: seq(a(n), n=1..105); # End first program
    T := proc(n, k): if n < 1 then return(0) elif k < 1 or k> floor((n+1)/2) then return(0) else k fi: end: seq(seq(T(n, k), k=1..floor((n+1)/2)), n=1..19); # End second program. (End)
  • Mathematica
    With[{c=Table[Range[n],{n,10}]},Flatten[Riffle[c,c]]] (* Harvey P. Dale, Apr 19 2013 *)
  • PARI
    a(n)=n - (sqrtint(4*n) + 1)\2*sqrtint(n-1) \\ Charles R Greathouse IV, Jun 08 2020
    
  • Python
    from math import isqrt
    def A122197(n): return 1 if n<=1 else 1+((n-1)%((m:=isqrt(n-1))+int(n-1>m*(m+1)))) # Chai Wah Wu, Jun 05 2025

Formula

From Boris Putievskiy, Sep 09 2013: (Start)
a(n) = (A001477(n-1) mod A000194(n-1)) + 1 for n >= 2 with a(1) = 1.
a(n) = ((n-1) mod (t+1)) + 1, where t = floor((sqrt(4*n-3)-1)/2). (End)
From Johannes W. Meijer, Sep 09 2013: (Start)
T(n, k) = k for n >= 1 and 1 <= k <= (n+1)/2; T(n, k) = 0 elsewhere.
T(n, k) = A002260(n-k, k). (End)
a(n) = n - floor(sqrt(n) + 1/2)*floor(sqrt(n-1)). - Ridouane Oudra, Jun 08 2020
a(n) = A339399(2n-1). - Wesley Ivan Hurt, Jan 09 2022

A032279 Number of bracelets (turnover necklaces) of n beads of 2 colors, 5 of them black.

Original entry on oeis.org

1, 1, 3, 5, 10, 16, 26, 38, 57, 79, 111, 147, 196, 252, 324, 406, 507, 621, 759, 913, 1096, 1298, 1534, 1794, 2093, 2421, 2793, 3199, 3656, 4152, 4706, 5304, 5967, 6681, 7467, 8311, 9234, 10222, 11298, 12446, 13691, 15015, 16445
Offset: 5

Views

Author

Keywords

Comments

From Vladimir Shevelev, Apr 23 2011: (Start)
Also number of non-equivalent necklaces of 5 beads each of them painted by one of n colors.
The sequence solves the so-called Reis problem about convex k-gons in case k=5. The full solution was given by H. Gupta (1979); I gave a short proof of Gupta's result and showed an equivalence of this problem and every one of the following problems: enumerating the bracelets of n beads of 2 colors, k of them black, and enumerating the necklaces of k beads each of them painted by one of n colors.
a(n) is an essentially unimprovable upper estimate for the number of distinct values of the permanent in (0,1)-circulants of order n with five 1's in every row. (End)
a(n+5) is the number of symmetry-allowed, linearly-independent terms at n-th order in the series expansion of the T_1 X h vibronic perturbation matrix, H(Q) (cf. Dunn & Bates). - Bradley Klee, Jul 20 2015
From Petros Hadjicostas, Jul 17 2018: (Start)
Let (c(n): n >= 1) be a sequence of nonnegative integers and let C(x) = Sum_{n>=1} c(n)*x^n be its g.f. Let k be a positive integer. Let a_k = (a_k(n): n >= 1) be the output sequence of the DIK[k] transform of sequence (c(n): n >= 1), and let A_k(x) = Sum_{n>=1} a_k(n)*x^n be its g.f. See Christian G. Bower's web link below. It can be proved that, when k is odd, A_k(x) = ((1/k)*Sum_{d|k} phi(d)*C(x^d)^(k/d) + C(x^2)^((k-1)/2)*C(x))/2.
For this sequence, k = 5, c(n) = 1 for all n >= 1, and C(x) = x/(1-x). Thus, a(n) = a_5(n) for all n >= 1. Since a_k(n) = 0 for 1 <= n <= k-1, the offset of this sequence is n = k = 5. Applying the formula for the g.f. of DIK[5] of (c(n): n >= 1) with C(x) = x/(1-x) and k = 5, we get A(x) = A_5(x) = x^5*((1/5)*Sum_{d|5} phi(d)*(1-x^d)^(-5/d) + (1+x)/(1-x^2)^3)/2, which obviously equals the g.f. in the formula section below.
The g.f. is also a special case of Herbert Kociemba's formula that is valid for both even and odd k: A_k(x) = x^k*((1/k)*Sum_{d|k} phi(d)*(1-x^d)^(-k/d) + (1+x)/(1-x^2)^Floor[(k+2)/2])/2.
Here, a(n) is defined to be the number of n-bead bracelets of two colors with 5 black beads and n-5 white beads. But it is also the number of dihedral compositions of n with 5 positive parts. (This statement is equivalent to Vladimir Shevelev's statement above that a(n) is the "number of non-equivalent necklaces of 5 beads each of them painted by one of n colors." By "necklaces" he means "turnover necklaces". See paragraph (2) of Section 2 in his 2004 paper in the Indian Journal of Pure and Applied Mathematics.)
Two cyclic compositions of n (with k = 5 parts) belong to the same equivalence class corresponding to a dihedral composition of n if and only if one can be obtained from the other by a rotation or reversal of order. (End)

Examples

			From _Petros Hadjicostas_, Jul 17 2018: (Start)
Every n-bead bracelet of two colors such that 5 beads are black and n-5 are white can be transformed into a dihedral composition of n with 5 positive parts in the following way. Start with one B bead and go in one direction (say clockwise) until you reach the next B bead. Continue this process until you come back to the original B bead.
Let b_i be the number of beads from B bead i until you reach the last W bead before B bead i+1 (or B bead 1). Here, b_i = 1 iff there are no W beads between B bead i and B bead i+1 (or B bead 5 and B bead 1). Then b_1 + b_2 + b_3 + b_4 + b_5 = n, and we get a dihedral composition of n. (Of course, b_2 + b_3 + b_4 + b_5 + b_1 and b_5 + b_4 + b_3 + b_2 + b_1 belong to the same equivalence class of the dihedral composition b_1 + b_2 + b_3 + b_4 + b_5.)
For example, a(8) = 5, and we have the following bracelets with 5 B beads and 3 W beads. Next to the bracelets we list the corresponding dihedral compositions of n with k=5 parts (they must be viewed on a circle):
BBBBBWWW <-> 1+1+1+1+4
BBBBWBWW <-> 1+1+1+2+3
BBWBBBWW <-> 1+2+1+1+3
BWBBWBWB <-> 2+1+2+2+1
BWBWBWBB <-> 2+2+2+1+1
(End)
		

References

  • N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1-x+2*x^3-x^5+x^6)/((1-x)^2*(1-x^2)^2*(1-x^5))); // Vincenzo Librandi, Sep 07 2013
  • Maple
    seq(floor(n^4/240 + n^3/24 + 5*n^2/24 + 25*n/48 + 1 + (-1)^n*n/16), n=0..100); # Robert Israel, Jul 22 2015
  • Mathematica
    k = 5; Table[(Apply[Plus, Map[EulerPhi[ # ]Binomial[n/#, k/# ] &, Divisors[GCD[n, k]]]]/n + Binomial[If[OddQ[n], n - 1, n - If[OddQ[k], 2, 0]]/2, If[OddQ[k], k - 1, k]/2])/2, {n, k, 50}] (* Robert A. Russell, Sep 27 2004 *)
    CoefficientList[Series[(1 - x + 2 x^3 - x^5 + x^6) / ((1 - x)^2 (1 - x^2)^2 (1 - x^5)), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 07 2013 *)
    k=5 (* Number of black beads in bracelet problem *); CoefficientList[Series[x^k*(1/k Plus@@(EulerPhi[#] (1-x^#)^(-(k/#))&/@Divisors[k])+(1+x)/(1-x^2)^Floor[(k+2)/2])/2,{x,0,50}],x] (* Herbert Kociemba, Nov 04 2016 *)
  • PARI
    a(n) = round((n^4 -10*n^3 +50*n^2 -(110+30*(1-n%2))*n)/240 +3/5) \\ Washington Bomfim, Jul 17 2008
    

Formula

"DIK[ 5 ]" (necklace, indistinct, unlabeled, 5 parts) transform of 1, 1, 1, 1, ...
G.f.: x^5*(1-x+2*x^3-x^5+x^6)/((1-x)^2*(1-x^2)^2*(1-x^5)). - corrected for offset 5 by Robert Israel, Jul 22 2015
From Vladimir Shevelev, Apr 23 2011: (Start)
Put s(n,k,d)=1, if n == k (mod d), and 0, otherwise. Then
a(n) = (2/5)*s(n,0,5) + (n-1)*(n-3)*((n-2)*(n-4) + 15)/240, if n is odd >= 5;
a(n) = (2/5)*s(n,0,5) + (n-2)*(n-4)*((n-1)*(n-3) + 15)/240, if n is even >= 5. (End)
a(n+5) = floor(n^4/240 + n^3/24 + 5*n^2/24 + 25*n/48 + 1 + (-1)^n*n/16). - Robert Israel, Jul 22 2015
a(n) = (A008646(n-5) + A119963(n, 5))/2 = (A008646(n-5) + C(floor((n-1)/2), 2))/2 for n >= 5. - Petros Hadjicostas, Jul 17 2018

A116685 Triangle read by rows: T(n,k) is number of partitions of n that have k parts smaller than the largest part (n>=1, k>=0).

Original entry on oeis.org

1, 2, 2, 1, 3, 1, 1, 2, 3, 1, 1, 4, 2, 3, 1, 1, 2, 5, 3, 3, 1, 1, 4, 4, 6, 3, 3, 1, 1, 3, 6, 6, 7, 3, 3, 1, 1, 4, 6, 10, 7, 7, 3, 3, 1, 1, 2, 9, 10, 12, 8, 7, 3, 3, 1, 1, 6, 6, 15, 14, 13, 8, 7, 3, 3, 1, 1, 2, 11, 15, 20, 16, 14, 8, 7, 3, 3, 1, 1, 4, 10, 21, 22, 24, 17, 14, 8, 7, 3, 3, 1, 1, 4, 11, 21
Offset: 1

Views

Author

Emeric Deutsch, Feb 23 2006

Keywords

Comments

Same as A097364 without the 0's.
Also number of partitions of n such that the difference between the largest and smallest parts is k (see A097364). Example: T(6,2)=3 because we have [4,2],[3,2,1] and [3,1,1,1].
Row 1 has one term; row n (n>=2) has n-1 terms.
Row sums yield the partition numbers (A000041).
T(n,0)=A000005(n) (number of divisors of n).
T(n,1)=A049820(n) (n minus number of divisors of n).
T(n,2)=A008805(n-4) for n>=4.
Sum(k*T(n,k),k=0..n-2)=A116686

Examples

			Triangle starts:
01:  1
02:  2
03:  2  1
04:  3  1  1
05:  2  3  1  1
06:  4  2  3  1  1
07:  2  5  3  3  1  1
08:  4  4  6  3  3  1 1
09:  3  6  6  7  3  3 1 1
10:  4  6 10  7  7  3 3 1 1
11:  2  9 10 12  8  7 3 3 1 1
12:  6  6 15 14 13  8 7 3 3 1 1
13:  2 11 15 20 16 14 8 7 3 3 1 1
14:  4 10 21 22 24 17 ...
T(6,2)=3 because we have [4,1,1],[3,2,1] and [2,2,1,1].
		

Crossrefs

Columns k=3-10 give: A128508, A218567, A218568, A218569, A218570, A218571, A218572, A218573. T(2*n,n) = A117989(n). - Alois P. Heinz, Nov 02 2012

Programs

Formula

G.f.: sum(i>=1, x^i/(1-x^i)/prod(j=1..i-1, 1-t*x^j) ).

A244419 Coefficient triangle of polynomials related to the Dirichlet kernel. Rising powers. Riordan triangle ((1+z)/(1+z^2), 2*z/(1+z^2)).

Original entry on oeis.org

1, 1, 2, -1, 2, 4, -1, -4, 4, 8, 1, -4, -12, 8, 16, 1, 6, -12, -32, 16, 32, -1, 6, 24, -32, -80, 32, 64, -1, -8, 24, 80, -80, -192, 64, 128, 1, -8, -40, 80, 240, -192, -448, 128, 256, 1, 10, -40, -160, 240, 672, -448, -1024, 256, 512, -1, 10, 60, -160, -560, 672, 1792, -1024, -2304, 512, 1024
Offset: 0

Views

Author

Wolfdieter Lang, Jul 29 2014

Keywords

Comments

This is the row reversed version of A180870. See also A157751 and A228565.
The Dirichlet kernel is D(n,x) = Sum_{k=-n..n} exp(i*k*x) = 1 + 2*Sum_{k=1..n} T(n,x) = S(n, 2*y) + S(n-1, 2*y) = S(2*n, sqrt(2*(1+y))) with y = cos(x), n >= 0, with the Chebyshev polynomials T (A053120) and S (A049310). This triangle T(n, k) gives in row n the coefficients of the polynomial Dir(n,y) = D(n,x=arccos(y)) = Sum_{m=0..n} T(n,m)*y^m. See A180870, especially the Peter Bala comments and formulas.
This is the Riordan triangle ((1+z)/(1+z^2), 2*z/(1+z^2)) due to the o.g.f. for Dir(n,y) given by (1+z)/(1 - 2*y*z + z^2) = G(z)/(1 - y*F(z)) with G(z) = (1+z)/(1+z^2) and F(z) = 2*z/(1+z^2) (see the Peter Bala formula under A180870). For Riordan triangles and references see the W. Lang link 'Sheffer a- and z- sequences' under A006232.
The A- and Z- sequences of this Riordan triangle are (see the mentioned W. Lang link in the preceding comment also for the references): The A-sequence has o.g.f. 1+sqrt(1-x^2) and is given by A(2*k+1) = 0 and A(2*k) [2, -1/2, -1/8, -1/16, -5/128, -7/256, -21/1024, -33/2048, -429/32768, -715/65536, ...], k >= 0. (See A098597 and A046161.)
The Z-sequence has o.g.f. sqrt((1-x)/(1+x)) and is given by
[1, -1, 1/2, -1/2, 3/8, -3/8, 5/16, -5/16, 35/128, -35/128, ...]. (See A001790 and A046161.)
The column sequences are A057077, 2*(A004526 with even numbers signed), 4*A008805 (signed), 8*A058187 (signed), 16*A189976 (signed), 32*A189980 (signed) for m = 0, 1, ..., 5.
The row sums give A005408 (from the o.g.f. due to the Riordan property), and the alternating row sums give A033999.
The row polynomials Dir(n, x), n >= 0, give solutions to the diophantine equation (a + 1)*X^2 - (a - 1)*Y^2 = 2 by virtue of the identity (a + 1)*Dir(n, -a)^2 - (a - 1)*Dir(n, a)^2 = 2, which is easily proved inductively using the recurrence Dir(n, a) = (1 + a)*(-1)^(n-1)*Dir(n-1, -a) + a*Dir(n-1, a) given below by Wolfdieter Lang. - Peter Bala, May 08 2025

Examples

			The triangle T(n,m) begins:
  n\m  0   1   2    3    4    5    6     7     8    9    10 ...
  0:   1
  1:   1   2
  2:  -1   2   4
  3:  -1  -4   4    8
  4:   1  -4 -12    8   16
  5:   1   6 -12  -32   16   32
  6:  -1   6  24  -32  -80   32   64
  7:  -1  -8  24   80  -80 -192   64   128
  8:   1  -8 -40   80  240 -192 -448   128   256
  9:   1  10 -40 -160  240  672 -448 -1024   256  512
  10: -1  10  60 -160 -560  672 1792 -1024 -2304  512  1024
  ...
Example for A-sequence recurrence: T(3,1) = Sum_{j=0..2} A(j)*T(2,j) = 2*(-1) + 0*2 + (-1/2)*4 = -4. Example for Z-sequence recurrence: T(4,0) = Sum_{j=0..3} Z(j)*T(3,j) = 1*(-1) + (-1)*(-4) + (1/2)*4 + (-1/2)*8 = +1. (For the A- and Z-sequences see a comment above.)
Example for the alternate recurrence: T(4,2) = 2*T(3,1) - T(3,2) = 2*(-4) - 4 = -12. T(4,3) = 0*T(3,2) + T(3,3) = T(3,3) = 8. - _Wolfdieter Lang_, Jul 30 2014
		

Crossrefs

Dir(n, x) : A005408 (x = 1), A002878 (x = 3/2), A001834 (x = 2), A030221 (x = 5/2), A002315 (x = 3), A033890 (x = 7/2), A057080 (x = 4), A057081 (x = 9/2), A054320 (x = 5), A077416 (x = 6), A028230 (x = 7), A159678 (x = 8), A049629 (x = 9), A083043 (x = 10),
(-1)^n * Dir(n, x): A122367 (x = -3/2); A079935 (x = -2), A004253 (x = -5/2), A001653 (x = -3), A049685 (x = -7/2), A070997 (x = -4), A070998 (x = -9/2), A072256(n+1) (x = -5).

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = Which[k == 0, (-1)^Quotient[n, 2], (0 <= n && n < k) || (n == -1 && k == 1), 0, True, 2 T[n-1, k-1] - T[n-2, k]];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2019, from Sage *)
  • Sage
    def T(n, k):
        if k == 0: return (-1)^(n//2)
        if (0 <= n and n < k) or (n == -1 and k == 1): return 0
        return 2*T(n-1, k-1) - T(n-2, k)
    for n in range(11): [T(n,k) for k in (0..n)] # Peter Luschny, Jul 29 2014

Formula

T(n, m) = [y^m] Dir(n,y) for n >= m >= 0 and 0 otherwise, with the polynomials Dir(y) defined in a comment above.
T(n, m) = 2^m*(S(n,m) + S(n-1,m)) with the entries S(n,m) of A049310 given there explicitly.
O.g.f. for polynomials Dir(y) see a comment above (Riordan triangle ((1+z)/(1+z^2), 2*z/(1+z^2))).
O.g.f. for column m: ((1 + x)/(1 + x^2))*(2*x/(1 + x^2))^m, m >= 0, (Riordan property).
Recurrence for the polynomials: Dir(n, y) = 2*y*Dir(n-1, y) - Dir(n-2, y), n >= 1, with input D(-1, y) = -1 and D(0, y) = 1.
Triangle three-term recurrence: T(n,m) = 2*T(n-1,m-1) - T(n-2,m) for n >= m >= 1 with T(n,m) = 0 if 0 <= n < m, T(0,0) = 1, T(-1,1) = 0 and T(n,0) = A057077(n) = (-1)^(floor(n/2)).
From Wolfdieter Lang, Jul 30 2014: (Start)
In analogy to A157751 one can derive a recurrence for the row polynomials Dir(n, y) = Sum_{m=0..n} T(n,m)*y^m also using a negative argument but only one recursive step: Dir(n,y) = (1+y)*(-1)^(n-1)*Dir(n-1,-y) + y*Dir(n-1,y), n >= 1, Dir(0,y) = 1 (Dir(-1,y) = -1). See also A180870 from where this formula can be derived by row reversion.
This entails another triangle recurrence T(n,m) = (1 + (-1)^(n-m))*T(n-1,m-1) - (-1)^(n-m)*T(n-1,m), for n >= m >= 1 with T(n,m) = 0 if n < m and T(n,0) = (-1)^floor(n/2). (End)
From Peter Bala, Aug 14 2022: (Start)
The row polynomials Dir(n,x), n >= 0, are related to the Chebyshev polynomials of the first kind T(n,x) by the binomial transform as follows:
(2^n)*(x - 1)^(n+1)*Dir(n,x) = (-1) * Sum_{k = 0..2*n+1} binomial(2*n+1,k)*T(k,-x).
Note that Sum_{k = 0..2*n} binomial(2*n,k)*T(k,x) = (2^n)*(1 + x)^n*T(n,x). (End)
From Peter Bala, May 04 2025: (Start)
For n >= 1, the n-th row polynomial Dir(n, x) = (-1)^n * (U(n, -x) - U(n-1, -x)) = U(2*n, sqrt((1+x)/2)), where U(n, x) denotes the n-th Chebyshev polynomial of the second kind.
For n >= 1 and x < 1, Dir(n, x) = (-1)^n * sqrt(2/(1 - x )) * T(2*n+1, sqrt((1 - x)/2)), where T(n, x) denotes the n-th Chebyshev polynomial of the first kind.
Dir(n, x)^2 - 2*x*Dir(n, x)*Dir(n+1, x) + Dir(n+1, x)^2 = 2*(1 + x).
Dir(n, x) = (-1)^n * R(n, -2*(x+1)), where R(n, x) is the n-th row polynomial of the triangle A085478.
Dir(n, x) = Sum_{k = 0..n} (-1)^(n+k) * binomial(n+k, 2*k) * (2*x + 2)^k. (End)

A157751 Triangle of coefficients of polynomials F(n,x) in descending powers of x generated by F(n,x)=(x+1)*F(n-1,x)+F(n-1,-x), with initial F(0,x)=1.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 4, 4, 8, 1, 4, 12, 8, 16, 1, 6, 12, 32, 16, 32, 1, 6, 24, 32, 80, 32, 64, 1, 8, 24, 80, 80, 192, 64, 128, 1, 8, 40, 80, 240, 192, 448, 128, 256, 1, 10, 40, 160, 240, 672, 448, 1024, 256, 512, 1, 10, 60, 160, 560, 672, 1792, 1024, 2304, 512, 1024, 1, 12, 60, 280, 560, 1792, 1792, 4608, 2304, 5120, 1024, 2048
Offset: 0

Views

Author

Clark Kimberling, Mar 05 2009

Keywords

Comments

Conjecture 1. If n>1 is even then F(n,x) has no real roots.
Conjecture 2. If n>0 is odd then F(n,x) has exactly one real root, r,
and if n>4 then 0 < -r < n.
Conjectures 1 and 2 are true. [From Alain Thiery (Alain.Thiery(AT)math.u-bordeaux1.fr), May 14 2010]
Cayley (1876) states "We, in fact, find 1 + sin u = 1 + x, 1 - sin 3u = (1 + x)(1 - 2x)^2, 1 + sin 5u = (1 + x)(1 + 2x - 4x^2)^2, 1 - sin 7u = (1 + x)(1 - 4x - 4x^2 + 8x^3)^2, &c.". - Michael Somos, Jun 19 2012
Appears to be the unsigned row reverse of A180870 and A228565. - Peter Bala, Feb 17 2014
From Wolfdieter Lang, Jul 29 2014: (Start)
This triangle is the Riordan triangle ((1+z)/(1-z^2), 2*z/(1-z^2)). For Riordan triangles see the W. Lang link 'Sheffer a-and z-sequences' under A006232, also for references. The o.g.f. given by Peter Bala in the formula section refers to the row reversed triangle. The usual information on this triangle, like o.g.f. for the columns, the row sums, the alternating row sums, the recurrences using A- and Z-sequences, etc. follows from this Riordan property. The Riordan proof follows from the given o.g.f. by Peter Bala, call it Grev(x,z), by row reversion: G(x,z) = Grev(1/x,x*z) = (1+z)/(1- 2*x*z - z^2) = G(z)*(1/(1 - x*F(z))) with G(z) = (1+z)/(1-z^2) and F(z) = z*2/(1-z^2). See A244419 for the discussion for a signed version of this triangle.
(End)

Examples

			Rows 0 to 8:
1
1 2
1 2 4
1 4 4 8
1 4 12 8 16
1 6 12 32 16 32
1 6 24 32 80 32 64
1 8 24 80 80 192 64 128
1 8 40 80 240 192 448 128 256
(Row 8) = (1, 4*2, 10*4, 10*8, 15*16, 6*32, 7*64, 1*128, 1*256).
First few polynomials:
F(0,x)=1, F(1,x)=x+2, F(2,x)=x^2+2*x+4, F(3,x)=x^3+4*x^2+4*x+8.
The row polynomials R(n,x) start: 1, 1 + 2*x = x*F(1,1/x), 1 + 2*x + 4^x^2 = x^2*F(2,1/x), ...  - _Wolfdieter Lang_, Jul 29 2014
		

References

  • A. Cayley, On an Expression for 1 +- sin(2p+1)u in Terms of sin u, Messenger of Mathematics, 5 (1876), pp. 7-8 = Mathematical Papers Vol. 10, n. 630, pp. 1-2.

Crossrefs

Programs

  • Mathematica
    T[n_, 0]:= 1; T[n_, n_]:= 2^n; T[n_, k_]:= T[n, k] = T[n-1, k] + (1 + (-1)^(n-k))*T[n-1, k-1]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] (* G. C. Greubel, Sep 24 2018 *)
  • PARI
    t(n,k) = if(k==0, 1, if(k==n, 2^n, t(n-1,k) + (1+(-1)^(n-k))*t(n-1,k-1)));
    for(n=0,15, for(k=0,n, print1(t(n,k), ", "))) \\ G. C. Greubel, Sep 24 2018

Formula

Count the top row as row 0 and let C(n,k) denote the usual binomial
coefficient. For row 2n, define p(0)=C(n,0), p(1)=C(n,1), p(2)=C(n+1,2),
p(3)=C(n+1,3), p(4)=C(n+2,4), p(5)=c(n+2,5),..., until reaching two final
1's: p(2n-1)=C(2n-1,2n-1) and p(2n)=C(2n,2n). Then the k-th number in row
2n is p(k)*2^k. For row 2n+1, define q(0)=C(n,0), q(1)=C(n+1,1),
q(2)=C(n+1,2), q(3)=C(n+2,3),..., until reaching q(2n+1)=C(2n+1,2n+1).
Then the k-th number in row 2n+1 is q(k)*2^k.
From Peter Bala, Jan 17 2014: (Start)
Working with an offset of 0, the o.g.f. is (1 + x*z)/(1 - 2*z - x^2*z^2) = 1 + (x + 2)*z + (x^2 + 2*x + 4)*z^2 + ....
Recurrence equation: T(n,k) = 2*T(n-1,k-1) + T(n-2,k-2) with T(n,0) = 1.
The polynomials G(n,x) defined by G(0,x) = 1 and G(n,x) = x*F(n-1,x) for n >= 1 satisfy G(n,x) = (x + 1)*G(n-1,x) - G(n-1,-x). Cf. A140070 and A140071. (End)
From Wolfdieter Lang, Jul 29 2014: (Start)
O.g.f. for the row polynomials (rising powers of x) R(n,x) = x^n*F(n,1/x): (1+z)/(1 - 2*x*z - z^2). Riordan triangle ((1+z)/(1-z^2), 2*z/(1-z^2)). See a comment above.
Recurrence for the row polynomials R(n,x) = (1+x)*R(n-1,x) - (-1)^n*x*R(n-1,-x), n >= 1, R(0,x) = 1.
R(n,x) = Ftilde(n,2*x) + Ftilde(n-1,2*x) with the monic Fibonacci polynomials Ftilde(n,x) given in A168561.
Recurrence for the triangle: R(n,m) = R(n-1,m) + (1 + (-1)^(n-m))*R(n-1,m-1), n >= m >= 1, R(n,m) = 0 if n < m, R(n,0) = 1.
O.g.f. column sequences ((1+x)/(1-x^2))*(2*x/(1-x^2))^m, m >= 0. See A000012, 2*A004526, 4*A008805, 8*A058187, 16*A189976, 32*A189980, ...
Row sums A078057. Alternating row sums A123335.
(End)

Extensions

Offset corrected to 0. Cf.s added, keyword easy added by Wolfdieter Lang, Jul 29 2014

A101881 Write two numbers, skip one, write two, skip two, write two, skip three ... and so on.

Original entry on oeis.org

1, 2, 4, 5, 8, 9, 13, 14, 19, 20, 26, 27, 34, 35, 43, 44, 53, 54, 64, 65, 76, 77, 89, 90, 103, 104, 118, 119, 134, 135, 151, 152, 169, 170, 188, 189, 208, 209, 229, 230, 251, 252, 274, 275, 298, 299, 323, 324, 349, 350, 376, 377, 404, 405, 433, 434, 463, 464, 494
Offset: 0

Views

Author

Candace Mills (scorpiocand(AT)yahoo.com), Dec 19 2004

Keywords

Comments

Equals row sums of triangle A177994. - Gary W. Adamson, May 16 2010
From Ralf Stephan, Mar 09 2014: (Start)
Write the positive integers in a skewed triangle:
1, 2;
0, 3, 4, 5;
0, 0, 6, 7, 8, 9;
0, 0, 0, 10, 11, 12, 13, 14;
...
Sequence consists of the first number in each column. (End)
In a regular k-polygon draw lines connecting all the vertices. Select a triangle that tiles the polygon into k pieces. This triangle contains two adjacent polygon vertices. The third vertex is for even k the center of the polygon and for odd k one of the vertices of the central k-polygon (which is not included in the tiling). Count all lines connecting vertices in the original k-polygon that passes through the interior of the tiling triangle. That count is a(k-5). (See illustrations below.) - Lars Blomberg, Feb 20 2020
a(n) is the smallest number which has n+1 as a part in any of its maximally refined strict partitions. The first such are:(1),(2),(1,3),(1,4),(1,2,5),(1,2,6),(1,2,3,7),(1,2,3,8),(1,2,3,4,9) etc. - Sigurd Kittilsen, Oct 18 2024

Crossrefs

Programs

  • Haskell
    import Data.List (intersperse)
    a101881 n = a101881_list !! n
    a101881_list = scanl1 (+) $ intersperse 1 [1..]
    -- Reinhard Zumkeller, Feb 20 2015
    
  • Magma
    [(1/16)*(2*n^2+18*n+15+(2*n+1)*(-1)^n): n in [0..60]]; // Vincenzo Librandi, Mar 11 2014
    
  • Mathematica
    CoefficientList[Series[(-1 + x^3 - x)/((x + 1)^2 (x - 1)^3), {x, 0, 60}], x] (* Vincenzo Librandi, Mar 11 2014 *)
    LinearRecurrence[{1,2,-2,-1,1},{1,2,4,5,8},60] (* Harvey P. Dale, Dec 07 2016 *)
    With[{nn=60},Take[#,2]&/@TakeList[Range[(nn^2+nn-6)/2],Range[3,nn]]]// Flatten (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 30 2019 *)
  • PARI
    Vec((-1+x^3-x)/((x+1)^2*(x-1)^3) + O(x^60)) \\ Iain Fox, Nov 17 2017

Formula

G.f.: (-1+x^3-x)/((x+1)^2*(x-1)^3). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
a(n) = (1/16)*(2*n^2 + 18*n + 15 + (2*n+1)*(-1)^n). - Ralf Stephan, Mar 09 2014
a(2*n) = A034856(n+1); a(2*n+1) = A000096(n+1). - Reinhard Zumkeller, Feb 20 2015
a(n) = n + 1 + A008805(n-2). - Wesley Ivan Hurt, Nov 17 2017
E.g.f.: (cosh(x) - sinh(x))*(1 - 2*x + (15 + 20*x + 2*x^2)*(cosh(2*x) + sinh(2*x)))/16. - Stefano Spezia, Feb 20 2020

A279453 Triangle read by rows: T(n, k) is the number of nonequivalent ways to place k points on an n X n square grid so that no more than 2 points are on a vertical or horizontal straight line.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 3, 8, 14, 17, 9, 2, 1, 3, 21, 73, 202, 306, 285, 115, 20, 1, 6, 49, 301, 1397, 4361, 9110, 11810, 8679, 2929, 288, 1, 6, 93, 890, 6582, 34059, 126396, 326190, 568134, 624875, 390426, 111798, 8791, 1, 10, 171, 2321, 24185, 185181, 1055025
Offset: 1

Views

Author

Heinrich Ludwig, Dec 17 2016

Keywords

Comments

Length of n-th row is A272651(n) + 1, where A272651(n) is the maximal number of points that can be placed under the condition mentioned.
Rotations and reflections of placements are not counted. If they are to be counted, see A279445.
For condition "no more than 2 points on a straight line at any angle", see A235453.

Examples

			The table begins with T(1, 0):
1 1
1 1  2   1    1
1 3  8  14   17    9    2
1 3 21  73  202  306  285   115   20
1 6 49 301 1397 4361 9110 11810 8679 2929 288
...
T(4, 3) = 73 because there are 73 nonequivalent ways to place 3 points on a 4 X 4 square grid so that no more than 2 points are on a vertical or horizontal straight line.
		

Crossrefs

Row sums give A279454.
Diagonal T(n, n) is A279452.

A189976 a(n) is the number of incongruent two-color bracelets of n beads, 8 of them black (A005514), having a diameter of symmetry.

Original entry on oeis.org

1, 1, 5, 5, 15, 15, 35, 35, 70, 70, 126, 126, 210, 210, 330, 330, 495, 495, 715, 715, 1001, 1001, 1365, 1365, 1820, 1820, 2380, 2380, 3060, 3060, 3876, 3876, 4845, 4845, 5985, 5985, 7315, 7315, 8855, 8855, 10626
Offset: 8

Views

Author

Vladimir Shevelev, May 03 2011

Keywords

Comments

For n >= 9, a(n-1) is the number of incongruent two-color bracelets of n beads, 9 from them are black (A032281), having a diameter of symmetry.

Crossrefs

Programs

Formula

a(n) = C(floor(n/2),4).
a(n+5) = A194005(n,n-4). [Johannes W. Meijer, Aug 15 2011]
G.f.: -x^8/((x-1)^5*(x+1)^4). [Colin Barker, Feb 06 2013]

Extensions

Data added and link corrected by Johannes W. Meijer, Aug 15 2011

A230370 Voids left after packing 3 curves coins patterns (3c3s type) into fountain of coins base n.

Original entry on oeis.org

0, 0, 3, 6, 13, 19, 39, 54, 66, 85, 100, 123, 141, 168, 189, 220, 244, 279, 306, 345, 375, 418, 451, 498, 534, 585, 624, 679, 721, 780, 825, 888, 936, 1003, 1054, 1125, 1179, 1254, 1311, 1390, 1450, 1533, 1596, 1683
Offset: 1

Views

Author

Kival Ngaokrajang, Oct 17 2013

Keywords

Comments

Refer to arrangement same as A005169: "A fountain is formed by starting with a row of coins, then stacking additional coins on top so that each new coin touches two in the previous row". The 3 curves coins patterns consist of a part of each coin circumference and forms a continuous area. There are total 4 distinct patterns. For selected pattern, I would like to call "3c3s" type as it cover 3 coins and symmetry. When packing 3c3s into fountain of coins base n, the total number of 3c3s is A008805, the coins left is A008795 and voids left is a(n). See illustration in links.

Crossrefs

A001399, A230267, A230276 (5-curves coins patterns); A074148, A229093, A220154 (4-curves coins patterns); A008795 (3-curves coins patterns).

Formula

G.f.: x^3*(11*x^8 - 5*x^7 - 21*x^6 + 6*x^5 + 9*x^4 + x^2 + 3*x + 3)/((1-x)*(1-x^2)^2) (conjectured). Ralf Stephan, Oct 19 2013

A235453 Triangle T(n, k) = Number of non-equivalent (mod D_4) ways to arrange k indistinguishable points on an n X n square grid so that no three of them are collinear. Triangle read by rows.

Original entry on oeis.org

1, 0, 1, 2, 1, 1, 3, 8, 13, 15, 5, 1, 3, 21, 70, 181, 217, 142, 28, 4, 6, 49, 290, 1253, 3192, 4699, 3385, 1076, 110, 5, 6, 93, 867, 6044, 27041, 77970, 134353, 129929, 62177, 12511, 717, 11, 10, 171, 2266, 22302, 149217, 672506, 1958674, 3531747, 3695848, 2068757
Offset: 1

Views

Author

Heinrich Ludwig, Jan 12 2014

Keywords

Comments

The triangle T(n, k) is irregularly shaped: 1 <= k <= 2n. First row corresponds to n = 1.
Without the restriction "non-equivalent (mod D_4)" the numbers are given by triangle A194193. (But this one is read by antidiagonals!)
T(n, 2n) = A000769(n).
2n is an upper bound on the number of points that can be placed on the grid. For large n, it is conjectured that this bound is not reached (see MathWorld link).

Examples

			Triangle begins
1,  0;
1,  2,   1,    1;
3,  8,  13,   15,     5,     1;
3, 21,  70,  181,   217,   142,     28,      4;
6, 49, 290, 1253,  3192,  4699,   3385,   1076,   110,     5;
6, 93, 867, 6044, 27041, 77970, 134353, 129929, 62177, 12511, 717, 11;
...
		

Crossrefs

Column 1 is A008805
Column 2 is A014409
Column 3 is A235454
Column 4 is A235455
Column 5 is A235456
Column 6 is A235457
Column 7 is A235458
Previous Showing 21-30 of 71 results. Next