cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 200 results. Next

A328464 Square array A(n,k) = A276156((2^(n-1)) * (2k-1)) / A002110(n-1), read by descending antidiagonals.

Original entry on oeis.org

1, 3, 1, 7, 4, 1, 9, 16, 6, 1, 31, 19, 36, 8, 1, 33, 106, 41, 78, 12, 1, 37, 109, 386, 85, 144, 14, 1, 39, 121, 391, 1002, 155, 222, 18, 1, 211, 124, 421, 1009, 2432, 235, 324, 20, 1, 213, 1156, 426, 1079, 2443, 4200, 341, 438, 24, 1, 217, 1159, 5006, 1086, 2575, 4213, 7430, 457, 668, 30, 1, 219, 1171, 5011, 17018, 2586, 4421, 7447, 12674, 691, 900, 32, 1
Offset: 1

Views

Author

Antti Karttunen, Oct 16 2019

Keywords

Comments

Array is read by falling antidiagonals with n (row) and k (column) ranging as: (n,k) = (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), ...
Row n contains all such sums of distinct primorials whose least significant summand is A002110(n-1), with each sum divided by that least significant primorial, which is also the largest primorial which divides that sum.

Examples

			Top left 9 X 11 corner of the array:
1: | 1,  3,   7,   9,    31,    33,    37,    39,    211,    213,    217
2: | 1,  4,  16,  19,   106,   109,   121,   124,   1156,   1159,   1171
3: | 1,  6,  36,  41,   386,   391,   421,   426,   5006,   5011,   5041
4: | 1,  8,  78,  85,  1002,  1009,  1079,  1086,  17018,  17025,  17095
5: | 1, 12, 144, 155,  2432,  2443,  2575,  2586,  46190,  46201,  46333
6: | 1, 14, 222, 235,  4200,  4213,  4421,  4434,  96578,  96591,  96799
7: | 1, 18, 324, 341,  7430,  7447,  7753,  7770, 215442, 215459, 215765
8: | 1, 20, 438, 457, 12674, 12693, 13111, 13130, 392864, 392883, 393301
9: | 1, 24, 668, 691, 20678, 20701, 21345, 21368, 765050, 765073, 765717
		

Crossrefs

Cf. A328463 (transpose).
Column 2: A008864.
Column 3: A023523 (after its initial term).
Column 4: A286624.
Cf. also arrays A276945, A286625.

Programs

  • PARI
    up_to = 105;
    A002110(n) = prod(i=1,n,prime(i));
    A276156(n) = { my(p=2,pr=1,s=0); while(n,if(n%2,s += pr); n >>= 1; pr *= p; p = nextprime(1+p)); (s); };
    A328464sq(n,k) = (A276156((2^(n-1)) * (k+k-1)) / A002110(n-1));
    A328464list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A328464sq(col,(a-(col-1))))); (v); };
    v328464 = A328464list(up_to);
    A328464(n) = v328464[n];

Formula

A(n,k) = A276156((2^(n-1)) * (2k-1)) / A002110(n-1).
a(n) = A328461(A135764(n)). [When all sequences are considered as one-dimensional]

A373669 Least k such that the k-th maximal run of non-prime-powers has length n. Position of first appearance of n in A110969, and the sequence ends if there is none.

Original entry on oeis.org

1, 5, 7, 12, 18, 190, 28, 109, 40, 28195574, 53
Offset: 1

Views

Author

Gus Wiseman, Jun 14 2024

Keywords

Comments

A run of a sequence (in this case A361102) is an interval of positions at which consecutive terms differ by one.
Are there only 9 terms?
From David A. Corneth, Jun 14 2024: (Start)
No. a(10) exists.
Between the prime 144115188075855859 and 144115188075855872 = 2^57 there are 12 non-prime-powers so a(12) exists. (End)

Examples

			The maximal runs of non-prime-powers begin:
   1
   6
  10
  12
  14  15
  18
  20  21  22
  24
  26
  28
  30
  33  34  35  36
  38  39  40
  42
  44  45  46
  48
  50  51  52
  54  55  56  57  58
  60
		

Crossrefs

For composite runs we have A073051, sorted A373400, firsts of A176246.
For squarefree runs we have firsts of A120992.
For prime-powers runs we have firsts of A174965.
For prime runs we have firsts of A251092 or A175632.
For squarefree antiruns we have A373128, firsts of A373127.
For nonsquarefree runs we have A373199, firsts of A053797.
The sorted version is A373670.
For antiruns we have firsts of A373672.
For runs of non-prime-powers:
- length A110969
- min A373676
- max A373677
- sum A373678
A000961 lists the powers of primes (including 1).
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A361102 lists the non-prime-powers, without 1 A024619.

Programs

  • Mathematica
    q=Length/@Split[Select[Range[10000],!PrimePowerQ[#]&],#1+1==#2&]//Most;
    spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[y,Range[#1]]&];
    Table[Position[q,k][[1,1]],{k,spna[q]}]

A006022 Sprague-Grundy (or Nim) values for the game of Maundy cake on an n X 1 sheet.

Original entry on oeis.org

0, 1, 1, 3, 1, 4, 1, 7, 4, 6, 1, 10, 1, 8, 6, 15, 1, 13, 1, 16, 8, 12, 1, 22, 6, 14, 13, 22, 1, 21, 1, 31, 12, 18, 8, 31, 1, 20, 14, 36, 1, 29, 1, 34, 21, 24, 1, 46, 8, 31, 18, 40, 1, 40, 12, 50, 20, 30, 1, 51, 1, 32, 29, 63, 14, 45, 1, 52, 24, 43, 1, 67, 1, 38, 31, 58, 12, 53, 1
Offset: 1

Views

Author

Keywords

Comments

There are three equivalent formulas for a(n). Suppose n >= 2, and let p1 <= p2 <= ... <= pk be the prime factors of n, with repetition.
Theorem 1: a(1) = 0. For n >= 2, a(n) = n*s(n), where
s(n) = 1/p1 + 1/(p1*p2) + 1/(p1*p2*p3) + ... + 1/(p1*p2*...*pk).
This is implicit in Berlekamp, Conway and Guy, Winning Ways, 2 vols., 1982, pp. 28, 53.
Note that s(n) = A322034(n) / A322035(n).
David James Sycamore observed on Nov 24 2018 that Theorem 1 implies a(n) < n for all n (see comments in A322034), and also leads to a simple recurrence for a(n):
Theorem 2: a(1) = 0. For n >= 2, a(n) = p*a(n/p) + 1, where p is the largest prime factor of n.
Proof. (Th. 1 implies Th. 2) If n is a prime, Theorem 1 gives a(n) = 1 = n*a(1)+1. For a nonprime n, let n = m*p where p is the largest prime factor of n and m >= 2. From Theorem 1, a(m) = m*s(m), a(n) = q*m*(s(m) + 1/n) = q*a(m) + 1.
(Th. 2 implies Th. 1) The reverse implication is equally easy.
Theorem 2 is equivalent to the following more complicated recurrence:
Theorem 3: a(1) = 0. For n >= 2, a(n) = max_{p|n, p prime} (p*a(n/p)+1).

Examples

			For n=24, s(24) = 1/2 + 1/4 + 1/8 + 1/24 = 11/12, so a(24) = 24*11/12 = 22.
		

References

  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 28, 53.
  • E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Second Edition, Vol. 1, A K Peters, 2001, pp. 27, 51.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a006022 1 = 0
    a006022 n = (+ 1) $ sum $ takeWhile (> 1) $
              iterate (\x -> x `div` a020639 x) (a032742 n)
    -- Reinhard Zumkeller, Jun 03 2012
    
  • Maple
    P:=proc(n) local FM: FM:=ifactors(n)[2]: seq(seq(FM[j][1], k=1..FM[j][2]), j=1..nops(FM)) end: # A027746
    s:=proc(n) local i,t,b; global P;t:=0; b:=1; for i in [P(n)] do b:=b*i; t:=t+1/b; od; t; end; # A322034/A322035
    A006022 := n -> if n = 1 then 0 else n*s(n); fi;
    # N. J. A. Sloane, Nov 28 2018
  • Mathematica
    Nest[Function[{a, n}, Append[a, Max@ Map[# a[[n/#]] + 1 &, Rest@ Divisors@ n]]] @@ {#, Length@ # + 1} &, {0, 1}, 77] (* Michael De Vlieger, Nov 23 2018 *)
  • PARI
    lista(nn) = {my(v = vector(nn)); for (n=1, nn, if (n>1, my(m = 0); fordiv (n, d, if (d>1, m = max(m, d*v[n/d]+1))); v[n] = m;); print1(v[n], ", "););} \\ Michel Marcus, Nov 25 2018

Formula

a(n) = n * Sum_{k=1..N} (1/(p1^m1*p2^m2*...*pk^mk)) * (pk^mk-1)/(pk-1) for n>=2, where pk is the k-th distinct prime factor of n, N is the number of distinct prime factors of n, and mk is the multiplicity of pk occurring in n. To prove this, expand the factors in Theorem 1 and use the geometrical series identity. - Jonathan Blanchette, Nov 01 2019
From Antti Karttunen, Apr 12 2020: (Start)
a(n) = A322382(n) + A333791(n).
a(n) = A332993(n) - n = A001065(n) - A333783(n). (End)
a(n) = Sum_{k=1..bigomega(n)} F^k(n), where F^k(n) is the k-th iterate of F(n) = A032742(n). - Ridouane Oudra, Jan 26 2024

Extensions

Edited and extended by Christian G. Bower, Oct 18 2002
Entry revised by N. J. A. Sloane, Nov 28 2018

A175222 a(n) = prime(n) + 5.

Original entry on oeis.org

7, 8, 10, 12, 16, 18, 22, 24, 28, 34, 36, 42, 46, 48, 52, 58, 64, 66, 72, 76, 78, 84, 88, 94, 102, 106, 108, 112, 114, 118, 132, 136, 142, 144, 154, 156, 162, 168, 172, 178, 184, 186, 196, 198, 202, 204, 216, 228, 232, 234, 238, 244, 246, 256, 262, 268, 274, 276
Offset: 1

Views

Author

Jaroslav Krizek, Mar 06 2010

Keywords

Comments

a(n) = A000040(n) + 5 = A008864(n) + 4 = A052147(n) + 3 = A113395(n) + 2 = A175221 (n) + 1 = A139049(n) - 1 = A175223(n) - 2 = A175224(n) - 3 = A140353(n) - 4 = A175225(n) - 5.

Crossrefs

Programs

Extensions

More terms from Vincenzo Librandi, Mar 14 2010

A373670 Numbers k such that the k-th run-length A110969(k) of the sequence of non-prime-powers (A024619) is different from all prior run-lengths.

Original entry on oeis.org

1, 5, 7, 12, 18, 28, 40, 53, 71, 109, 170, 190, 198, 207, 236, 303, 394, 457, 606, 774, 1069, 1100, 1225, 1881, 1930, 1952, 2247, 2281, 3140, 3368, 3451, 3493, 3713, 3862, 4595, 4685, 6625, 8063, 8121, 8783, 12359, 12650, 14471, 14979, 15901, 17129, 19155
Offset: 1

Views

Author

Gus Wiseman, Jun 15 2024

Keywords

Comments

The unsorted version is A373669.

Examples

			The maximal runs of non-prime-powers begin:
   1
   6
  10
  12
  14  15
  18
  20  21  22
  24
  26
  28
  30
  33  34  35  36
  38  39  40
  42
  44  45  46
  48
  50  51  52
  54  55  56  57  58
  60
So the a(n)-th runs begin:
   1
  14  15
  20  21  22
  33  34  35  36
  54  55  56  57  58
		

Crossrefs

For nonsquarefree runs we have A373199 (if increasing), firsts of A053797.
For squarefree antiruns see A373200, unsorted A373128, firsts of A373127.
For composite runs we have A373400, unsorted A073051, firsts of A176246.
For prime antiruns we have A373402.
For runs of non-prime-powers:
- length A110969, firsts A373669, sorted A373670 (this sequence):
- min A373676
- max A373677
- sum A373678
For runs of prime-powers:
- length A174965
- min A373673
- max A373674
- sum A373675
A000961 lists the powers of primes (including 1).
A057820 gives first differences of consecutive prime-powers, gaps A093555.
A361102 lists the non-prime-powers, without 1 A024619.

Programs

  • Mathematica
    t=Length/@Split[Select[Range[10000],!PrimePowerQ[#]&],#1+1==#2&];
    Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]

A023512 Exponent of 2 in prime factorization of prime(n) + 1.

Original entry on oeis.org

0, 2, 1, 3, 2, 1, 1, 2, 3, 1, 5, 1, 1, 2, 4, 1, 2, 1, 2, 3, 1, 4, 2, 1, 1, 1, 3, 2, 1, 1, 7, 2, 1, 2, 1, 3, 1, 2, 3, 1, 2, 1, 6, 1, 1, 3, 2, 5, 2, 1, 1, 4, 1, 2, 1, 3, 1, 4, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 3, 4, 1, 2, 7, 1, 1, 1, 1, 2, 1, 4, 1, 3, 2, 1, 1, 1, 4, 2, 5, 3, 2, 2, 3, 1, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 1

Views

Author

Keywords

Comments

2^a(n) is the largest power of 2 dividing (prime(n)+1).
By Dirichlet's theorem on arithmetic progressions, the asymptotic density of primes p such that p == 2^k-1 (mod 2^k) within all the primes is 1/2^(k-1), for k >= 1. This is also the asymptotic density of terms in this sequence that are >= k. Therefore, the asymptotic density of the occurrences of k in this sequence is d(k) = 1/2^(k-1) - 1/2^k = 1/2^k, and the asymptotic mean of this sequence is Sum_{k>=1} k*d(k) = 2. - Amiram Eldar, Mar 14 2025

Examples

			a(9) = 3 because the 9th prime is 23 and the largest power of 2 dividing 24 is 3.
		

Crossrefs

Programs

  • Magma
    [Valuation(NthPrime(n)+1, 2): n in [1..110]]; // Bruno Berselli, Aug 05 2013
    
  • Maple
    with(numtheory): a:=proc(n) local div,s,j,c: div:=divisors(1+ithprime(n)): s:=nops(div): for j from 1 to s do if type(simplify(log[2](div[j])), integer)=true then c[j]:=simplify(log[2](div[j])) else c[j]:=0 fi od: max(seq(c[j],j=1..s)) end: seq(a(n),n=1..120); # most probably not the simplest Maple program - Emeric Deutsch, Jul 20 2005
  • Mathematica
    Join[{0}, Table[FactorInteger[Prime[n] + 1][[1]][[2]], {n, 2, 100}]] (* Clark Kimberling, Oct 01 2013 *)
    IntegerExponent[Prime[Range[100]] + 1, 2] (* Zak Seidov, Apr 25 2014 *)
  • PARI
    a(n)=valuation(prime(n)+1,2);
    vector(100,n,a(n)) \\ Joerg Arndt, Mar 11 2014

Formula

a(n) = A007814(A008864(n)). - Amiram Eldar, Mar 14 2025

Extensions

Corrected by Yasutoshi Kohmoto, Feb 25 2005
Edited by N. J. A. Sloane, Dec 23 2006

A131992 a(n) = 1 + prime(n) + prime(n)^2 + prime(n)^3 + prime(n)^4.

Original entry on oeis.org

31, 121, 781, 2801, 16105, 30941, 88741, 137561, 292561, 732541, 954305, 1926221, 2896405, 3500201, 4985761, 8042221, 12326281, 14076605, 20456441, 25774705, 28792661, 39449441, 48037081, 63455221, 89451461, 105101005, 113654321
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 06 2007

Keywords

Comments

Thébault shows that a(2) = 121 is the only square in this sequence. - Charles R Greathouse IV, Jul 23 2013
Giovanni Resta has found that 28792661 is the first Sophie Germain prime of this form (and actually of the form p = (n^m-1)/(n-1) for any p-1 > n, m > 1). - M. F. Hasler, Mar 03 2020

Examples

			a(1) = 31 because prime(1) = 2 and 1 + 2 + 2^2 + 2^3 + 2^4 = 1 + 2 + 4 + 8 + 16 = 31.
		

References

  • Victor Thébault, Curiosités arithmétiques, Mathesis 62 (1953), pp. 120-129.

Crossrefs

Equals A053699 restricted to prime indices. Subsequence of primes is A190527.

Programs

Formula

a(n) = 1 + A131991(n)*A000040(n).
a(n) = (A050997(n) - 1)/A006093(n).
a(n) = A000203(prime(n)^4). - R. J. Mathar, Mar 15 2018
a(n) = (prime(n)^5 - 1)/(prime(n) - 1) = A053699(prime(n)). (This is also meant by the 2nd formula.) - M. F. Hasler, Mar 03 2020

A140353 a(n) = prime(n) + 9.

Original entry on oeis.org

11, 12, 14, 16, 20, 22, 26, 28, 32, 38, 40, 46, 50, 52, 56, 62, 68, 70, 76, 80, 82, 88, 92, 98, 106, 110, 112, 116, 118, 122, 136, 140, 146, 148, 158, 160, 166, 172, 176, 182, 188, 190, 200, 202, 206, 208, 220, 232, 236, 238, 242, 248, 250, 260, 266, 272, 278, 280, 286
Offset: 1

Views

Author

Odimar Fabeny, May 30 2008

Keywords

Comments

a(n) = A000040(n) + 9 = A008864(n) + 8 = A052147(n) + 7 = A113395(n) + 6 = A175221(n) + 5 = A175222(n) + 4 = A139049(n) + 3 = A175223(n) + 2 = A175224(n) + 1 = A175225(n) - 1. - Jaroslav Krizek, Mar 06 2010

Crossrefs

Programs

  • GAP
    Filtered([1..300], k-> IsPrime(k) ) +9 # G. C. Greubel, May 20 2019
  • Magma
    [NthPrime(n)+9: n in [1..70]]; // G. C. Greubel, May 20 2019
    
  • Mathematica
    9 + Prime[Range[70]] (* G. C. Greubel, May 20 2019 *)
  • PARI
    A140353(n) = prime(n)+9
    
  • Sage
    [nth_prime(n) +9 for n in (1..70)] # G. C. Greubel, May 20 2019
    

Extensions

Edited by Michael B. Porter, Jan 28 2010

A167053 a(1)=3; for n > 1, a(n) = 1 + a(n-1) + gcd( a(n-1)*(a(n-1)+2), A073829(a(n-1)) ).

Original entry on oeis.org

3, 19, 39, 81, 165, 333, 335, 673, 1347, 1349, 1351, 1353, 1355, 1357, 1359, 2721, 2723, 2725, 2727, 5457, 5459, 5461, 5463, 5465, 5467, 5469, 10941, 10943, 10945, 10947, 21897, 21899, 21901, 21903, 21905, 21907, 21909, 43821, 43823, 43825, 43827, 43829, 43831
Offset: 1

Views

Author

Vladimir Shevelev, Oct 27 2009

Keywords

Comments

The first differences are 16, 20, 42, etc. They are either 2 or in A075369 or in A008864, see A167054.
A proof follows from Clement's criterion of twin primes.

Examples

			a(2) = 1 + 3 + gcd(3*5, 4*(2! + 1) + 3) = 19.
		

References

  • E. Trost, Primzahlen, Birkhäuser-Verlag, 1953, pages 30-31.

Crossrefs

Programs

  • Maple
    A073829 := proc(n) n+4*((n-1)!+1) ; end proc:
    A167053 := proc(n) option remember ; local aprev; if n = 1 then 3; else aprev := procname(n-1) ; 1+aprev+gcd(aprev*(aprev+2),A073829(aprev)) ; end if; end proc:
    seq(A167053(n),n=1..60) ; # R. J. Mathar, Dec 17 2009
  • Mathematica
    A073829[n_] := 4((n-1)! + 1) + n;
    a[1] = 3;
    a[n_] := a[n] = 1 + a[n-1] + GCD[a[n-1] (a[n-1] + 2), A073829[a[n-1]]];
    Array[a, 60] (* Jean-François Alcover, Mar 25 2020 *)

Extensions

Definition shortened and values from a(4) on replaced by R. J. Mathar, Dec 17 2009

A355927 Square array A(n, k) = sigma(A246278(n, k)), read by falling antidiagonals.

Original entry on oeis.org

3, 7, 4, 12, 13, 6, 15, 24, 31, 8, 18, 40, 48, 57, 12, 28, 32, 156, 96, 133, 14, 24, 78, 72, 400, 168, 183, 18, 31, 48, 248, 112, 1464, 252, 307, 20, 39, 121, 84, 684, 216, 2380, 360, 381, 24, 42, 124, 781, 144, 1862, 280, 5220, 480, 553, 30, 36, 104, 342, 2801, 240, 3294, 432, 7240, 720, 871, 32, 60, 56, 372, 1064, 16105, 336, 6140, 600, 12720, 960, 993, 38
Offset: 1

Views

Author

Antti Karttunen, Jul 22 2022

Keywords

Comments

Each column is strictly monotonic.

Examples

			The top left corner of the array:
   k=  1    2    3      4    5      6    7       8      9     10    11      12
  2k=  2    4    6      8   10     12   14      16     18     20    22      24
----+--------------------------------------------------------------------------
  1 |  3,   7,  12,    15,  18,    28,  24,     31,    39,    42,   36,     60,
  2 |  4,  13,  24,    40,  32,    78,  48,    121,   124,   104,   56,    240,
  3 |  6,  31,  48,   156,  72,   248,  84,    781,   342,   372,  108,   1248,
  4 |  8,  57,  96,   400, 112,   684, 144,   2801,  1064,   798,  160,   4800,
  5 | 12, 133, 168,  1464, 216,  1862, 240,  16105,  2196,  2394,  288,  20496,
  6 | 14, 183, 252,  2380, 280,  3294, 336,  30941,  4298,  3660,  420,  42840,
  7 | 18, 307, 360,  5220, 432,  6140, 540,  88741,  6858,  7368,  576, 104400,
  8 | 20, 381, 480,  7240, 600,  9144, 640, 137561, 11060, 11430,  760, 173760,
  9 | 24, 553, 720, 12720, 768, 16590, 912, 292561, 20904, 17696, 1008, 381600,
Note: See A355941 for the corresponding numbers in A246278 at which points the value in this array divides the term immediately below.
		

Crossrefs

Cf. A008864 (column 1), A062731 (row 1).
Cf. also A341605, A355925, A355941.

Programs

  • PARI
    up_to = 105;
    A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
    A355927sq(row,col) = sigma(A246278sq(row,col));
    A355927list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A355927sq(col,(a-(col-1))))); (v); };
    v355927 = A355927list(up_to);
    A355927(n) = v355927[n];

Formula

A(n, k) = A000203(A246278(n, k)).
A(n, k) = A341605(n, k) * A355925(n, k).
Previous Showing 51-60 of 200 results. Next