cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A214299 Triangle d_k(n) read by rows: number of n-th order Feynman diagrams with k interactions, 0<=k<=n.

Original entry on oeis.org

1, 2, 4, 24, 16, 80, 720, 288, 480, 3552, 40320, 11520, 11520, 28416, 271104, 3628800, 806400, 576000, 852480, 2711040, 31342080, 479001600, 87091200, 48384000, 51148800, 97597440, 376104960, 5087692800, 87178291200
Offset: 0

Views

Author

R. J. Mathar, Jul 11 2012

Keywords

Examples

			Triangle starts in row n=0 as:
1;
2,     4;
24,    16,    80;
720,   288,   480,   3552;
40320, 11520, 11520, 28416, 271104;
		

Crossrefs

Cf. A009445 (row sums), A214298 (main diagonal).

Programs

  • Maple
    b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, (x+y)/y, 1) +
                       b(x-1, y+1, true)  ))
        end:
    T:= (n, k) -> k!*2^k*b(2*k, 0, false)*binomial(n,k)*(2*n-2*k)!:
    seq(seq(T(n,k), k=0..n), n=0..10);  # Alois P. Heinz, May 23 2015
  • Mathematica
    b[x_, y_, t_] := b[x, y, t] = If[y>x || y<0, 0, If[x == 0, 1, b[x-1, y-1, False] * If[t, (x+y)/y, 1] + b[x-1, y+1, True]]]; T[n_, k_] := k!*2^k*b[2*k, 0, False] * Binomial[n, k]*(2*n - 2*k)!; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jun 22 2015, after Alois P. Heinz *)

Formula

d_k(n) = A214298(k)*binomial(n,k)*(2n-2k)!.

A107252 a(n) = Product_{k=0..n-1} (n+k)!/(k+1)!.

Original entry on oeis.org

1, 1, 6, 1440, 36288000, 184354652160000, 309071606732292096000000, 254046582743105184577722777600000000, 142518177743863255019484504453155074867200000000000
Offset: 0

Views

Author

Henry Bottomley, May 14 2005

Keywords

Examples

			a(3) = 1!*2!*3!*4!*5!/(1!*2!*3!*1!*2!) = 34560/24 = 1440.
		

Crossrefs

Programs

  • Magma
    [1] cat [(&*[Factorial(n+k)/Factorial(k+1): k in [0..n-1]]): n in [1..10]]; // G. C. Greubel, May 21 2019
    
  • Mathematica
    Table[Product[(n+k)!/(k+1)!,{k,0,n-1}],{n,0,10}] (* Alexander Adamchuk, Jul 10 2006 *)
    a[n_] := (BarnesG[1 + 2 n] n! ((BarnesG[2 + n] Gamma[2 + n])/ BarnesG[3 + n])^(-1 + n))/BarnesG[2 + n]^2; Table[a[n], {n, 0, 10}] (* Peter Luschny, May 20 2019 *)
  • PARI
    {a(n) = prod(k=0,n-1, (n+k)!/(k+1)!)}; \\ G. C. Greubel, May 21 2019
    
  • Sage
    [product(factorial(n+k)/factorial(k+1) for k in (0..n-1)) for n in (0..10)] # G. C. Greubel, May 21 2019

Formula

a(n) = (n+1)!*(n+2)!*...*(2n-1)!/(1!*2!*...*(n-1)!).
a(n) = A000178(2n-1)/(A000178(n)*A000178(n-1)).
a(n) = A079478(n)/A001813(n).
a(n) = A079478(n-1)*A006963(n+1).
a(n) = A107251(n)/A000108(n).
a(n) = A107251(n-1)*A009445(n-1).
a(n) = A107254(n)/A000142(n).
a(n) = A009963(2n-1, n-1).
a(n) = A009963(2n-1, n).
a(n) = (G(1+2*n)*n!*((G(2+n)*Gamma(2+n))/G(3+n))^(n-1))/G(2+n)^2, where G(x) is the Barnes G function. - Peter Luschny, May 20 2019
a(n) ~ A * 2^(2*n^2 - 7/12) * n^(n^2 - n - 5/12) / (sqrt(Pi) * exp(3*n^2/2 - n + 1/12)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, May 21 2019

A138896 Ratio of (2n-1)! to number of zeros in Sylvester matrix of polynomial of n degree with all nonzero coefficients.

Original entry on oeis.org

3, 15, 280, 11340, 798336, 86486400, 13343616000, 2778808032000, 750895681536000, 255454710858547200, 106826515449937920000, 53858368206010368000000, 32215590089995124736000000, 22555515290152300904448000000, 18272974787062050706056806400000, 16959604724241965811558973440000000
Offset: 2

Views

Author

Artur Jasinski, Apr 02 2008

Keywords

Comments

(2n-1)! = A009445(n-1) is the number of monomials in determinant of symbolic square matrix of size 2n-1 X 2n-1 without zeros.
Denominators in the series expansion of (1/2)*(Pi/(2*x))^(1/2)* (x*BesselI(1/2, x) - BesselI(3/2, x)). - Abdallah Daddi-Moussa-Ider, Jul 25 2024

Crossrefs

Programs

  • Mathematica
    Table[(2 n - 1)!/(2 (n - 1)^2), {n, 2, 20}]

Formula

a(n) = (2*n - 1)!/(2*(n - 1)^2).
Sum_{n=2..oo} 1/a(n) = (e^2 - 3)/(4*e) = 0.40366087623617955676434290... . - Stefano Spezia, Jul 25 2024, simplified by Vaclav Kotesovec, Aug 19 2025
Sum_{n>=2} (-1)^n/a(n) = cos(1)/2. - Amiram Eldar, Aug 19 2025

Extensions

a(15)-a(17) from Stefano Spezia, Jul 25 2024

A138897 Ratio of (2n-1)! to number of zeros in upper part of Sylvester matrix of polynomial of degree n with all nonzero coefficients.

Original entry on oeis.org

3, 20, 420, 18144, 1330560, 148262400, 23351328000, 4940103168000, 1351612226764800, 464463110651904000, 195848611658219520000, 99430833611096064000000, 59828953024276660224000000, 42103628541617628354969600000, 34261827725741345073856512000000, 31923961833867229762934538240000000
Offset: 2

Views

Author

Artur Jasinski, Apr 02 2008

Keywords

Comments

From Anthony Hernandez, Oct 24 2017: (Start)
If (n,n-1) is the two-part partition of any odd integer greater than 1 then a(n-1) is the number of permutations of shape (n,n-1). For example, the two-part partition of 11 with shape (n,n-1) is (6,5). Pictorially we can draw this as a standard Young diagram with cells populated by hook lengths:
(6,5) = 7 6 5 4 3 1
5 4 3 2 1
and there are a(6-1) = a(5) = 1330560 permutations with shape (6,5). (End)

Crossrefs

Programs

  • Maple
    A138897:=n->(2*n - 1)!/(n*(n - 1)): seq(A138897(n), n=2..20); # Wesley Ivan Hurt, Nov 25 2017
  • Mathematica
    Table[(2 n - 1)!/(n (n - 1)), {n, 2, 20}]
  • PARI
    a(n) = (2*n - 1)!/(n*(n - 1)); \\ Michel Marcus, Oct 28 2017

Formula

a(n) = (2n - 1)!/(n*(n - 1)).
Sum_{n>=2} 1/a(n) = (1 + e^2)/(8*e) = 0.38577015870381094461947640518926542... . - Stefano Spezia, Jul 27 2024
Sum_{n>=2} (-1)^n/a(n) = (2*sin(1) - cos(1))/4. - Amiram Eldar, Aug 19 2025

Extensions

More terms from Michel Marcus, Oct 28 2017

A138898 Ratio of (2*n-1)! to number of zeros in lower part of Sylvester matrix for polynomial of degree n with all nonzero coefficients.

Original entry on oeis.org

60, 840, 30240, 1995840, 207567360, 31135104000, 6351561216000, 1689515283456000, 567677135241216000, 235018333989863424000, 117509166994931712000000, 69800445194989436928000000, 48581109855712648101888000000, 39156374543704394370121728000000, 36180490078382860397992476672000000, 37989514582302003417892100505600000000, 44979585265445572046784246998630400000000, 59642930061980828534035911520183910400000000
Offset: 3

Views

Author

Artur Jasinski, Apr 02 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(2 n - 1)!/((n - 1)(n - 2)), {n, 3, 20}] (* R. J. Mathar, Apr 30 2008 *)

Formula

a(n) = (2*n-1)!/((n-1)*(n-2)). - R. J. Mathar, Apr 30 2008
Sum_{n=3..oo} 1/a(n) = (3*cosh(1) + 10*sinh(1) - 6*e)/4 = 0.0178907175323686230239526350278045532... . - Stefano Spezia, Jul 27 2024
Equivalently, Sum_{n=3..oo} 1/a(n) = (e^2 - 7)/(8*e). - Vaclav Kotesovec, Aug 19 2025
Sum_{n>=3} (-1)^(n+1)/a(n) = (2*sin(1) - 3*cos(1))/4. - Amiram Eldar, Aug 19 2025

Extensions

Edited and corrected by R. J. Mathar, Apr 30 2008

A256881 a(n) = n!/ceiling(n/2).

Original entry on oeis.org

1, 2, 3, 12, 40, 240, 1260, 10080, 72576, 725760, 6652800, 79833600, 889574400, 12454041600, 163459296000, 2615348736000, 39520825344000, 711374856192000, 12164510040883200, 243290200817664000, 4644631106519040000, 102181884343418880000, 2154334728240414720000
Offset: 1

Views

Author

M. F. Hasler, Apr 22 2015

Keywords

Comments

Original name was: n!/round(n/2). - Robert Israel, Sep 03 2018

Crossrefs

Programs

  • Magma
    [Factorial(n)/Round(n/2): n in [1..30]]; // Vincenzo Librandi, Apr 23 2015
  • Maple
    A256881 := n!/round(n/2);
  • Mathematica
    Function[x, 1/x] /@
    CoefficientList[Series[(Sinh[x] + x*Exp[x])/2, {x, 0, 20}], x] (* Pierre-Alain Sallard, Dec 15 2018 *)
  • PARI
    A256881(n)=n!/round(n/2)
    

Formula

a(2n) = 2*A009445(n) = A052612(2n-1) = A052616(2n-1) = A052849(2n-1) = A098558(2n-1) = A081457(3n-1) = A208529(2n+1) = A256031(2n-1).
a(2n+1) = A110468(n) = A107991(2n+2) = A229244(2n+1), n>=0.
From Robert Israel, Sep 03 2018: (Start)
E.g.f.: -(1+1/x)*log(1-x^2).
n*(n+1)*(n+2)*a(n)+(n+2)*a(n+1)-(n+3)*a(n+2)=0. (End)
a(n) = 2/([x^n](sinh(x) + x*exp(x))). - Pierre-Alain Sallard, Dec 15 2018
Sum_{n>=1} 1/a(n) = (3*e-1/e)/4 = (e + sinh(1))/2. - Amiram Eldar, Feb 02 2023

Extensions

Definition clarified by Robert Israel, Sep 03 2018

A334378 Decimal expansion of Sum_{k>=0} 1/((2*k+1)!)^2.

Original entry on oeis.org

1, 0, 2, 7, 8, 4, 7, 2, 6, 1, 5, 9, 7, 4, 1, 5, 7, 9, 9, 6, 9, 2, 6, 8, 8, 4, 9, 3, 0, 8, 0, 7, 9, 2, 3, 6, 3, 7, 3, 0, 3, 4, 3, 3, 1, 0, 2, 8, 3, 4, 2, 5, 7, 2, 5, 4, 7, 1, 2, 4, 5, 0, 2, 2, 8, 2, 6, 7, 2, 5, 6, 9, 2, 7, 3, 2, 3, 3, 2, 8, 1, 8, 8, 5, 7, 3, 5, 2, 7, 8, 8, 3, 5, 1, 5, 2, 8, 2, 6, 6, 4, 6, 7, 6, 7, 9, 2, 3, 7, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 25 2020

Keywords

Examples

			1/1!^2 + 1/3!^2 + 1/5!^2 + 1/7!^2 + ... = 1.027847261597415799692...
Continued fraction: 1 + 1/(36 - 36/(401 - 400/(1765 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (2*n*(2*n + 1))^2 for n >= 1. - _Peter Bala_, Feb 22 2024
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(BesselI[0, 2] - BesselJ[0, 2])/2, 10, 110] [[1]]
  • PARI
    suminf(k=0, 1/((2*k+1)!)^2) \\ Michel Marcus, Apr 26 2020
    
  • PARI
    (besseli(0,2) - besselj(0,2))/2 \\ Michel Marcus, Apr 26 2020

Formula

Equals (BesselI(0,2) - BesselJ(0,2))/2.

A204420 Triangle T(n,k) giving number of degree-2n permutations which decompose into exactly k cycles of even length, k=0..n.

Original entry on oeis.org

1, 0, 1, 0, 6, 3, 0, 120, 90, 15, 0, 5040, 4620, 1260, 105, 0, 362880, 378000, 132300, 18900, 945, 0, 39916800, 45571680, 18711000, 3534300, 311850, 10395, 0, 6227020800, 7628100480, 3511347840, 794593800, 94594500, 5675670, 135135
Offset: 0

Views

Author

José H. Nieto S., Jan 15 2012

Keywords

Comments

The row polynomials t(n,x):= sum(T(n,k)*x^k, k=0..n) satisfy the recurrence relation t(n,x) = (2n-1)*(x+2n-2)*t(n-1,x), with t(0,x)=1, hence t(n,x)=(2n-1)!!*x(x+2)(x+4)...(x+2n-2).

Examples

			1;
0,        1,
0,        6,        3;
0,      120,       90,       15;
0,     5040,     4620,     1260,     105;
0,   362880,   378000,   132300,   18900,    945;
0, 39916800, 45571680, 18711000, 3534300, 311850, 10395;
		

Crossrefs

Row sums give: A001818. - Alois P. Heinz, Jul 21 2013

Programs

  • Maple
    T_row:= proc(n) local k; seq(doublefactorial(2*n-1)*2^(n-k)* coeff(expand(pochhammer(x, n)), x, k), k=0..n) end: seq(T_row(n), n=0..10);
  • Mathematica
    nn=12;Prepend[Map[Prepend[Select[#,#>0&],0]&,Table[(Range[0, nn]!CoefficientList[ Series[(1-x^2)^(-y/2),{x,0,nn}],{x,y}])[[n]],{n,3,nn,2}]],{1}]//Grid (* Geoffrey Critzer, Jul 21 2013 *)
  • PARI
    T(n,k) = (2*n)!/(2^n*n!)*(-2)^(n-k)*stirling(n,k,1); \\ Andrew Howroyd, Feb 12 2018

Formula

T(n,k) = (2n-1)!!*2^(n-k)*A132393(n,k).
T(n,k) = (2n-1)T(n-1,k-1) + (2n-1)(2n-2)*T(n-1,k); T(0,0)=1, T(n,0)=0 for n>0,
T(n,n) = (2n-1)!! = A001147(n).
T(n,1) = (2n-1)! = A009445(n-1).

A226731 a(n) = (2n - 1)!/(2n).

Original entry on oeis.org

20, 630, 36288, 3326400, 444787200, 81729648000, 19760412672000, 6082255020441600, 2322315553259520000, 1077167364120207360000, 596585001666576384000000, 388888194657798291456000000
Offset: 3

Views

Author

Wesley Ivan Hurt, Jun 15 2013

Keywords

Comments

For n < 3, the formula does not produce an integer.
The ratio of the product of the partition parts of 2n into exactly two parts to the sum of the partition parts of 2n into exactly two parts. For example, a(3) = 20, and 2*3 = 6 has 3 partitions into exactly two parts: (5,1), (4,2), (3,3). Forming the ratio of product to sum (of parts), we have (5*1*4*2*3*3)/(5+1+4+2+3+3) = 360/18 = 20. - Wesley Ivan Hurt, Jun 24 2013

Examples

			a(3) = (2*3 - 1)!/(2*3) = 5!/6 = 120/6 = 20.
		

Crossrefs

Programs

Formula

a(n) = A009445(n-1)/A005843(n) = A002674(n)/A001105(n). - Wesley Ivan Hurt, Jun 24 2013
a(n) ~ sqrt(Pi)*2^(2*n-1)*n^(2*n-3/2)/exp(2*n). - Ilya Gutkovskiy, Nov 01 2016
From Amiram Eldar, Mar 10 2022: (Start)
Sum_{n>=3} 1/a(n) = e - 8/3.
Sum_{n>=3} (-1)^(n+1)/a(n) = cos(1) + sin(1) - 4/3. (End)

A245602 Triangle read by rows: the negative terms of A163626.

Original entry on oeis.org

-1, -3, -7, -6, -15, -60, -31, -390, -120, -63, -2100, -2520, -127, -10206, -31920, -5040, -255, -46620, -317520, -181440, -511, -204630, -2739240, -3780000, -362880, -1023, -874500, -21538440, -59875200, -19958400, -2047
Offset: 0

Views

Author

Paul Curtz, Dec 17 2014

Keywords

Comments

These numbers a(n) are the companion of A249163(n).
Consider the Worpitzky fractions A163626(n)/A002260(n) yielding the second Bernoulli numbers A164555(n)/A027642(n):
1,
1, -1/2,
1, -3/2, +2/3,
1, -7/2, +12/3, -6/4,
etc.
From the second row on, the sum of the numerators is 0.
The absolute values of every row of the numerators triangle A163626 are 1, 2, 6, 26, ... = A000629(n).
a(n) triangle is shifted. It starts from second row and second column of triangle above.
-1,
-3,
-7, -6,
-15, -60,
-31, -390, -120,
-63, -2100, -2520,
-127, -10206, -31920, -5040,
-255, -46620, -317520, -181440,
etc.
Sum of successive rows: -1, -3, -13, -75, ... = -A000670(n+1).
Successive columns: A000225, A028244, from the Stirling numbers of second kind S(n,2), S(n,4), S(n,6), S(n,8), S(n,10), ... . See A000770, A032180, A049434, A228910, A049435, A228912, A008277.

Crossrefs

Programs

  • Mathematica
    Select[ Table[ (-1)^k*k!*StirlingS2[n+1, k+1], {n, 0, 12}, {k, 0, n}] // Flatten, Negative] (* Jean-François Alcover, Dec 26 2014 *)
Previous Showing 21-30 of 35 results. Next