A214299 Triangle d_k(n) read by rows: number of n-th order Feynman diagrams with k interactions, 0<=k<=n.
1, 2, 4, 24, 16, 80, 720, 288, 480, 3552, 40320, 11520, 11520, 28416, 271104, 3628800, 806400, 576000, 852480, 2711040, 31342080, 479001600, 87091200, 48384000, 51148800, 97597440, 376104960, 5087692800, 87178291200
Offset: 0
Examples
Triangle starts in row n=0 as: 1; 2, 4; 24, 16, 80; 720, 288, 480, 3552; 40320, 11520, 11520, 28416, 271104;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- F. Battaglia, T. F. George, A Pascal type triangle for the number of topologically distinct many-electron Feynman diagrams, J. Math. Chem. 2 (1988) 241-247, triangle d_k(n).
Programs
-
Maple
b:= proc(x, y, t) option remember; `if`(y>x or y<0, 0, `if`(x=0, 1, b(x-1, y-1, false)*`if`(t, (x+y)/y, 1) + b(x-1, y+1, true) )) end: T:= (n, k) -> k!*2^k*b(2*k, 0, false)*binomial(n,k)*(2*n-2*k)!: seq(seq(T(n,k), k=0..n), n=0..10); # Alois P. Heinz, May 23 2015
-
Mathematica
b[x_, y_, t_] := b[x, y, t] = If[y>x || y<0, 0, If[x == 0, 1, b[x-1, y-1, False] * If[t, (x+y)/y, 1] + b[x-1, y+1, True]]]; T[n_, k_] := k!*2^k*b[2*k, 0, False] * Binomial[n, k]*(2*n - 2*k)!; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jun 22 2015, after Alois P. Heinz *)
Formula
d_k(n) = A214298(k)*binomial(n,k)*(2n-2k)!.
Comments