cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 52 results. Next

A074323 Coefficient of the highest power of q in the expansion of nu(0)=1, nu(1)=b and for n>=2, nu(n)=b*nu(n-1)+lambda*(n-1)_q*nu(n-2) with (b,lambda)=(1,2), where (n)_q=(1+q+...+q^(n-1)) and q is a root of unity.

Original entry on oeis.org

1, 1, 3, 2, 6, 4, 12, 8, 24, 16, 48, 32, 96, 64, 192, 128, 384, 256, 768, 512, 1536, 1024, 3072, 2048, 6144, 4096, 12288, 8192, 24576, 16384, 49152, 32768, 98304, 65536, 196608, 131072, 393216, 262144, 786432, 524288, 1572864, 1048576
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002

Keywords

Comments

Instead of listing the coefficients of the highest power of q in each nu(n), if we list the coefficients of the smallest power of q (i.e., constant terms), we get a weighted Fibonacci numbers described by f(0)=1, f(1)=1, for n>=2, f(n)=f(n-1)+2f(n-2).
The highest powers are given by the quarter-squares A002620(n-1). - Paul Barry, Mar 11 2007

Examples

			nu(0)=1;
nu(1)=1;
nu(2)=3;
nu(3)=5+2q;
nu(4)=11+8q+6q^2;
nu(5)=21+22q+20q^2+14q^3+4q^4;
nu(6)=43+60q+70q^2+64q^3+54q^4+28q^5+12q^6;
by listing the coefficients of the highest power in each nu(n), we get 1,1,3,2,6,4,12,...
		

Crossrefs

Cf. A001045.

Programs

Formula

For given b and lambda, the recurrence relation is given by; t(0)=1, t(1)=b, t(2)=b^2+lambda and for n>=3, t(n)=lambda*t(n-2).
G.f.: (1+x+x^2)/(1-2*x^2); a(n)=2^floor(n/2)+2^((n-2)/2)*(1+(-1)^n)/2-0^n/2. - Paul Barry, Mar 11 2007
a(0)=0, a(2n+1) = A000079, a(2n+2) = 3a(2n+1). a(2n)-a(2n+1) = A131577. - Paul Curtz, Mar 05 2008
a(2n+1) = 2^n = A000079(n), a(2n+2) = 3*A000079(n). Also a(2n)-a(2n+1) = A131577. a(2n+1)-a(2n)=2^n for n>0. - Paul Curtz, Apr 09 2008
a(n+1) = A010684(n)*A016116(n). - R. J. Mathar, Jul 08 2009

Extensions

More terms from Paul Barry, Mar 11 2007

A126116 a(n) = a(n-1) + a(n-3) + a(n-4), with a(0)=a(1)=a(2)=a(3)=1.

Original entry on oeis.org

1, 1, 1, 1, 3, 5, 7, 11, 19, 31, 49, 79, 129, 209, 337, 545, 883, 1429, 2311, 3739, 6051, 9791, 15841, 25631, 41473, 67105, 108577, 175681, 284259, 459941, 744199, 1204139, 1948339, 3152479, 5100817, 8253295, 13354113, 21607409, 34961521
Offset: 0

Views

Author

Luis A Restrepo (luisiii(AT)mac.com), Mar 05 2007

Keywords

Comments

This sequence has the same growth rate as the Fibonacci sequence, since x^4 - x^3 - x - 1 has the real roots phi and -1/phi.
The Ca1 sums, see A180662 for the definition of these sums, of triangle A035607 equal the terms of this sequence without the first term. - Johannes W. Meijer, Aug 05 2011

Examples

			G.f. = 1 + x + x^2 + x^3 + 3*x^4 + 5*x^5 + 7*x^6 + 11*x^7 + 19*x^8 + 31*x^9 + ...
		

References

  • S. Wolfram, A New Kind of Science. Champaign, IL: Wolfram Media, pp. 82-92, 2002

Crossrefs

Cf. Fibonacci numbers A000045; Lucas numbers A000032; tribonacci numbers A000213; tetranacci numbers A000288; pentanacci numbers A000322; hexanacci numbers A000383; 7th-order Fibonacci numbers A060455; octanacci numbers A079262; 9th-order Fibonacci sequence A127193; 10th-order Fibonacci sequence A127194; 11th-order Fibonacci sequence A127624, A128429.

Programs

  • GAP
    a:=[1,1,1,1];; for n in [5..50] do a[n]:=a[n-1]+a[n-3]+a[n-4]; od; a; # G. C. Greubel, Jul 15 2019
  • Magma
    [n le 4 select 1 else Self(n-1) + Self(n-3) + Self(n-4): n in [1..50]]; // Vincenzo Librandi, Dec 25 2015
    
  • Maple
    # From R. J. Mathar, Jul 22 2010: (Start)
    A010684 := proc(n) 1+2*(n mod 2) ; end proc:
    A000032 := proc(n) coeftayl((2-x)/(1-x-x^2),x=0,n) ; end proc:
    A126116 := proc(n) ((-1)^floor(n/2)*A010684(n)+2*A000032(n))/5 ; end proc: seq(A126116(n),n=0..80) ; # (End)
    with(combinat): A126116 := proc(n): fibonacci(n-1) + fibonacci(floor((n-4)/2)+1)* fibonacci(ceil((n-4)/2)+2) end: seq(A126116(n), n=0..38); # Johannes W. Meijer, Aug 05 2011
  • Mathematica
    LinearRecurrence[{1,0,1,1},{1,1,1,1},50] (* Harvey P. Dale, Nov 08 2011 *)
  • PARI
    Vec((x-1)*(1+x+x^2)/((x^2+x-1)*(x^2+1)) + O(x^50)) \\ Altug Alkan, Dec 25 2015
    
  • Sage
    ((1-x)*(1+x+x^2)/((1-x-x^2)*(1+x^2))).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jul 15 2019
    

Formula

From R. J. Mathar, Jul 22 2010: (Start)
G.f.: (1-x)*(1+x+x^2)/((1-x-x^2)*(1+x^2)).
a(n) = ( (-1)^floor(n/2) * A010684(n) + 2*A000032(n))/5.
a(2*n) = A061646(n). (End)
From Johannes W. Meijer, Aug 05 2011: (Start)
a(n) = F(n-1) + A070550(n-4) with F(n) = A000045(n).
a(n) = F(n-1) + F(floor((n-4)/2) + 1)*F(ceiling((n-4)/2) + 2). (End)
a(n) = (1/5)*((sqrt(5)-1)*(1/2*(1+sqrt(5)))^n - (1+sqrt(5))*(1/2*(1-sqrt(5)))^n + sin((Pi*n)/2) - 3*cos((Pi*n)/2)). - Harvey P. Dale, Nov 08 2011
(-1)^n * a(-n) = a(n) = F(n) - A070550(n - 6). - Michael Somos, Feb 05 2012
a(n)^2 + 3*a(n-2)^2 + 6*a(n-5)^2 + 3*a(n-7)^2 = a(n-8)^2 + 3*a(n-6)^2 + 6*a(n-3)^2 + 3*a(n-1)^2. - Greg Dresden, Jul 07 2021
a(n) = A293411(n)-A293411(n-1). - R. J. Mathar, Jul 20 2025

Extensions

Edited by Don Reble, Mar 09 2007

A153643 Jacobsthal numbers A001045 incremented by 2.

Original entry on oeis.org

2, 3, 3, 5, 7, 13, 23, 45, 87, 173, 343, 685, 1367, 2733, 5463, 10925, 21847, 43693, 87383, 174765, 349527, 699053, 1398103, 2796205, 5592407, 11184813, 22369623, 44739245, 89478487, 178956973, 357913943, 715827885, 1431655767, 2863311533, 5726623063
Offset: 0

Views

Author

Paul Curtz, Dec 30 2008

Keywords

Crossrefs

Programs

  • GAP
    a:=[2,3,3];; for n in [4..40] do a[n]:=2*a[n-1]+a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Apr 02 2019
    
  • Magma
    I:=[2,3,3]; [n le 3 select I[n] else 2*Self(n-1) +Self(n-2) -2*Self(n-3): n in [1..40]]; // G. C. Greubel, Apr 02 2019
    
  • Mathematica
    LinearRecurrence[{1,2},{0,1}, 40] + 2 (* Harvey P. Dale, May 26 2014 *)
    LinearRecurrence[{2,1,-2},{2,3,3}, 40] (* Georg Fischer, Apr 02 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec( (2-x-5*x^2)/((1-x^2)*(1-2*x)) ) \\ G. C. Greubel, Apr 02 2019
    
  • Python
    def A153643(n): return ((1<Chai Wah Wu, Apr 18 2025
  • Sage
    ((2-x-5*x^2)/((1-x^2)*(1-2*x))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 02 2019
    

Formula

a(n) = 2 + A001045(n) = A001045(n) + A007395(n) = 1 + A128209(n).
a(n) - A010684(n) = A078008(n), first differences of A001045. - Paul Curtz, Jan 17 2009
G.f.: (2 - x - 5*x^2)/((1+x)*(1-x)*(1-2*x)). - R. J. Mathar, Jan 23 2009
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) for n >= 3. - Andrew Howroyd, Feb 26 2018

Extensions

Edited and extended by R. J. Mathar, Jan 23 2009

A166956 a(n) = 2^n +(-1)^n - 2.

Original entry on oeis.org

0, -1, 3, 5, 15, 29, 63, 125, 255, 509, 1023, 2045, 4095, 8189, 16383, 32765, 65535, 131069, 262143, 524285, 1048575, 2097149, 4194303, 8388605, 16777215, 33554429, 67108863, 134217725, 268435455, 536870909, 1073741823, 2147483645, 4294967295, 8589934589
Offset: 0

Views

Author

Paul Curtz, Oct 25 2009

Keywords

Comments

The inverse binomial transform yields 0,-1,5,-7,17,-31,..., a sign alternating variant of A014551.
In a table of a(n) and higher-order differences in successive rows, the main diagonal contains 0, 4, 8, 16, ... (zero followed by A020707).
Similar to the decimal representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 899", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero, which begins with 1,3,5,15,29,63,125. - Robert Price, Aug 08 2017

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Programs

  • Magma
    [2^n-2+(-1)^n: n in [0..40]]; // Vincenzo Librandi, Apr 28 2011
  • Mathematica
    LinearRecurrence[{2,1,-2},{0,-1,3},20] (* G. C. Greubel, May 29 2016 *)

Formula

a(n) = A000079(n) - A010684(n).
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
G.f.: x*(5*x -1)/((1-x)*(1-2*x)*(1+x)).
E.g.f.: exp(2*x) - 2*exp(x) + exp(-x). - G. C. Greubel, May 29 2016

Extensions

Edited and extended by R. J. Mathar, Mar 02 2010

A176014 Decimal expansion of (3+sqrt(21))/6.

Original entry on oeis.org

1, 2, 6, 3, 7, 6, 2, 6, 1, 5, 8, 2, 5, 9, 7, 3, 3, 3, 4, 4, 3, 1, 3, 4, 1, 1, 9, 8, 9, 5, 4, 6, 6, 8, 0, 8, 1, 4, 9, 7, 4, 0, 9, 4, 2, 9, 4, 6, 1, 3, 2, 8, 6, 5, 0, 4, 3, 4, 5, 4, 0, 3, 5, 3, 9, 8, 4, 4, 7, 8, 0, 7, 0, 9, 2, 4, 6, 2, 8, 4, 8, 1, 1, 0, 0, 7, 2, 6, 9, 2, 6, 5, 8, 2, 2, 4, 0, 8, 3, 8, 7, 7, 9, 6, 0
Offset: 1

Views

Author

Klaus Brockhaus, Apr 06 2010

Keywords

Comments

Continued fraction expansion of (3+sqrt(21))/6 is A010684.
Also greatest eigenvalue of the 6 X 6 matrix [[3 0 0 3 0 0][0 0 0 0 1 0][0 3 0 0 3 0][0 0 0 0 1 0][0 0 3 0 0 3][0 0 0 0 1 0]]/3. It is conjectured that this is lim_{k->infinity} A005186(k+1)/A005186(k), i.e., the asymptotic growth rate of the number of numbers with the same total stopping time in the Collatz iteration. - Hugo Pfoertner, Sep 28 2020

Examples

			(3+sqrt(21))/6 = 1.26376261582597333443...
		

Crossrefs

Cf. A010477 (decimal expansion of sqrt(21)).
Cf. A010684 (repeat 1, 3), A136210, A136211.

Programs

  • Mathematica
    RealDigits[(3+Sqrt[21])/6,10,120][[1]] (* Harvey P. Dale, Jul 21 2023 *)
  • PARI
    vecmax(mateigen([1,0,0,1,0,0; 0,0,0,0,1/3,0; 0,1,0,0,1,0; 0,0,0,0,1/3,0; 0,0,1,0,0,1; 0,0,0,0,1/3,0],1)[1]) \\ Hugo Pfoertner, Sep 28 2020

A176040 Periodic sequence: Repeat 3, 1.

Original entry on oeis.org

3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3
Offset: 0

Views

Author

Klaus Brockhaus, Apr 07 2010

Keywords

Comments

Interleaving of A010701 and A000012.
Also continued fraction expansion of (3+sqrt(21))/2.
Also decimal expansion of 31/99.
Essentially first differences of A014601.
Inverse binomial transform of 3 followed by A020707.
Second inverse binomial transform of A052919 without initial term 2.
Third inverse binomial transform of A007582 without initial term 1.
Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 2*x^2 + 2*x^3 + 3*x^4 + 3*x^5 + ... is the o.g.f. for A008619. - Peter Bala, Mar 13 2015

Crossrefs

Cf. A153284, A010701 (all 3's sequence), A000012 (all 1's sequence), A090458 (decimal expansion of (3+sqrt(21))/2), A010684 (repeat 1, 3), A014601 (congruent to 0 or 3 mod 4), A020707 (2^(n+2)), A052919, A007582 (2^(n-1)*(1+2^n)), A008619.

Programs

  • Magma
    &cat[ [3, 1]: n in [0..52] ];
    [ 2+(-1)^n: n in [0..104] ];
  • Mathematica
    PadRight[{},120,{3,1}] (* or *) LinearRecurrence[{0,1},{3,1},120] (* Harvey P. Dale, Mar 11 2015 *)

Formula

a(n) = 2+(-1)^n.
a(n) = a(n-2) for n > 1; a(0) = 3, a(1) = 1.
a(n) = -a(n-1)+4 for n > 0; a(0) = 3.
a(n) = 3*((n+1) mod 2)+(n mod 2).
a(n) = A010684(n+1).
G.f.: (3+x)/((1-x)*(1+x)).
From Amiram Eldar, Jan 01 2023: (Start)
Multiplicative with a(2^e) = 3, and a(p^e) = 1 for p >= 3.
Dirichlet g.f.: zeta(s)*(1+2^(1-s)). (End)

A332439 Primitive period of the partial sums of the periodic unsigned Schick sequence for N = 7 (A130794), taken modulo 14, and the related Euler tour using all regular 14-gon vertices.

Original entry on oeis.org

0, 1, 6, 9, 10, 1, 4, 5, 10, 13, 0, 5, 8, 9, 0, 3, 4, 9, 12, 13, 4, 7, 8, 13, 2, 3, 8, 11, 12, 3, 6, 7, 12, 1, 2, 7, 10, 11, 2, 5, 6, 11
Offset: 0

Views

Author

Wolfdieter Lang, Apr 04 2020

Keywords

Comments

The unsigned Schick sequences SBBseq(N, q0) (BB for Brändli and Beyne) are defined by the recurrence q_j(N) = |N - 2*q_{j-1}(N)|, for odd N >= 3, and j >= 1, with certain initial odd values q0 with gcd(q0, N) = 1. They are periodic with primitive period length ppl(n) = A003558((N-1)/2) (pes = pes(N) in Schick's book). One starts with initial value q0 = 1. If not all odd elements of the smallest positive reduced residue system modulo N (RRSodd(N)) are present then one takes the smallest missing odd number as next initial value q0, etc., until all elements of RRSodd(N) have been reached. The number of necessary distinct initial values q0 is A135303((N-1)/2) (called B = B(N) by Schick).
The present sequence is the instance N = 7. SBBseq(7, 1) = repeat(1,5,3,) = A130794, ppl(7) = 3, RRSodd(7)= {1, 3, 5}, B(7) = 1. The start has been taken as a(0) = 0 with offset 0 (not a(42) = 0, with offset 1). The primitive period length of SBBseq(7, 1) is (2*7)*3 = 42.
The primitive periods of the B(N) sequences, each of length ppl(N), define the set SBB(N). The entries of these periods can be interpreted as odd vertex labels in a regular 2*N-gon, with start vertex V^{(2*N)})_{0} (in Cartesian coordinates (r, 0), with r the radius of the circumscribing circle). The other vertices V^{(2*N)}_k, for k = 1..2*N-1, are taken in the positive (counterclockwise) sense.
In the present case N = 7 there are three directed diagonals (arrows) d_1 = s = arrow(V14_0, V14_1) of length r*0.4450418..., d_3 = arrow(V14_0, V14_3) of length r*1.2469796..., and d_5 = arrow(V14_0, V14_5), of length r*1.8019377... (V14 is shorthand for a 14-gon vertex, and s is the side).
A trail with these three arrows (considered as free vectors) in the order d1, d5, and d3, with tails following the present sequence, leads to an Euler tour, involving all vertices of the 14-gon, each visited thrice. Therefore this is a simple regular digraph with 14 vertices each of degree 6 (out-degree = in-degree = 3), and 42 arrows each used once in the tour from V14_0 to V14_0 (or starting from any other vertex). See the figure in the link.
The vertex-vertex 14 X 14 incidence matrix of this directed Euler graph is cyclic with first row [0,1,0,1,0,1,0_8] (0_k for k zeros) shifted by one step to the right, with last row [1, 0, 1, 0, 1, 0_9].
The 14 triples of positions of the vertex labels k, for k from 0 to 13, in the present sequence are given in A332440.
For N = 3, SBBseq(3, 1) = A000012 (sequence of 1's). The primitive period modulo 6 is [0, 1, 2, 3, 4, 5], and the Euler tour, using as diagonal only the side, is the digraph C_6 (circle graph, trail in the positive sense).
For N=5, SBBseq(5, 1) = repeat(1,3,) = A010684. The primitive period modulo 10 is [0, 1, 4, 5, 8, 9, 2, 3, 6, 7]. The simple digraph, using alternatively the two diagonals d1 (side) and d3 in the regular 10-gon, is regular with degree 2.

References

  • Carl Schick, Trigonometrie und unterhaltsame Zahlentheorie, Bokos Druck, Zürich, 2003 (ISBN 3-9522917-0-6). Tables 3.1 to 3.10, for odd p = 3..113 (with gaps), pp. 158-166.

Crossrefs

Programs

  • PARI
    get(v, j) = my(x=lift(Mod(j, #v))); if (x==0, x = #v); v[x];
    vector(42, k, k--; sum(j=1, k, get([1,5,3], j)) % 14) \\ Michel Marcus, Jun 11 2020

Formula

a(n) = (Sum_{j=0..n} A130794(j)) mod 14, for n >= 1 with the periodic sequence SBBseq(7, 1) = repeat(1,5,3,) = A130794, with offset 0, and a(0) = 0 (= a(42)).

A274912 Square array read by antidiagonals upwards in which each new term is the least nonnegative integer distinct from its neighbors.

Original entry on oeis.org

0, 1, 2, 0, 3, 0, 1, 2, 1, 2, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 0

Views

Author

Omar E. Pol, Jul 11 2016

Keywords

Comments

In the square array we have that:
Antidiagonal sums give A168237.
Odd-indexed rows give A010673.
Even-indexed rows give A010684.
Odd-indexed columns give A000035.
Even-indexed columns give A010693.
Odd-indexed antidiagonals give the initial terms of A010674.
Even-indexed antidiagonals give the initial terms of A000034.
Main diagonal gives A010674.
This is also a triangle read by rows in which each new term is the least nonnegative integer distinct from its neighbors.
In the triangle we have that:
Row sums give A168237.
Odd-indexed columns give A000035.
Even-indexed columns give A010693.
Odd-indexed diagonals give A010673.
Even-indexed diagonals give A010684.
Odd-indexed rows give the initial terms of A010674.
Even-indexed rows give the initial terms of A000034.
Odd-indexed antidiagonals give the initial terms of A010673.
Even-indexed antidiagonals give the initial terms of A010684.

Examples

			The corner of the square array begins:
0, 2, 0, 2, 0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, 3, 1, 3, 1, ...
0, 2, 0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, 3, 1, ...
0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, ...
0, 2, 0, 2, ...
1, 3, 1, ...
0, 2, ...
1, ...
...
The sequence written as a triangle begins:
0;
1, 2;
0, 3, 0;
1, 2, 1, 2;
0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2;
0, 3, 0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2, 1, 2;
0, 3, 0, 3, 0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2, 1, 2, 1, 2;
...
		

Crossrefs

Programs

  • Maple
    ListTools:-Flatten([seq([[0,3]$i,0,[1,2]$(i+1)],i=0..10)]); # Robert Israel, Nov 14 2016
  • Mathematica
    Table[Boole@ EvenQ@ # + 2 Boole@ EvenQ@ k &[n - k + 1], {n, 14}, {k, n}] // Flatten (* Michael De Vlieger, Nov 14 2016 *)

Formula

a(n) = A274913(n) - 1.
From Robert Israel, Nov 14 2016: (Start)
G.f.: 3*x/(1-x^2) - Sum_{k>=0} (2*x^(2*k^2+3*k+1)-x^(2*k^2+5*k+3))/(1+x).
G.f. as triangle: x*(1+2*y+3*x*y)/((1-x^2*y^2)*(1-x^2)). (End)

A274913 Square array read by antidiagonals upwards in which each new term is the least positive integer distinct from its neighbors.

Original entry on oeis.org

1, 2, 3, 1, 4, 1, 2, 3, 2, 3, 1, 4, 1, 4, 1, 2, 3, 2, 3, 2, 3, 1, 4, 1, 4, 1, 4, 1, 2, 3, 2, 3, 2, 3, 2, 3, 1, 4, 1, 4, 1, 4, 1, 4, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3
Offset: 1

Views

Author

Omar E. Pol, Jul 11 2016

Keywords

Comments

This is also a triangle read by rows in which each new term is the least positive integer distinct from its neighbors.
In the square array we have that:
Antidiagonal sums give the positive terms of A008851.
Odd-indexed rows give A010684.
Even-indexed rows give A010694.
Odd-indexed columns give A000034.
Even-indexed columns give A010702.
Odd-indexed antidiagonals give the initial terms of A010685.
Even-indexed antidiagonals give the initial terms of A010693.
Main diagonal gives A010685.
This is also a triangle read by rows in which each new term is the least positive integer distinct from its neighbors.
In the triangle we have that:
Row sums give the positive terms of A008851.
Odd-indexed columns give A000034.
Even-indexed columns give A010702.
Odd-indexed diagonals give A010684.
Even-indexed diagonals give A010694.
Odd-indexed rows give the initial terms of A010685.
Even-indexed rows give the initial terms of A010693.
Odd-indexed antidiagonals give the initial terms of A010684.
Even-indexed antidiagonals give the initial terms of A010694.

Examples

			The corner of the square array begins:
1, 3, 1, 3, 1, 3, 1, 3, 1, 3, ...
2, 4, 2, 4, 2, 4, 2, 4, 2, ...
1, 3, 1, 3, 1, 3, 1, 3, ...
2, 4, 2, 4, 2, 4, 2, ...
1, 3, 1, 3, 1, 3, ...
2, 4, 2, 4, 2, ...
1, 3, 1, 3, ...
2, 4, 2, ...
1, 3, ...
2, ...
...
The sequence written as a triangle begins:
1;
2, 3;
1, 4, 1;
2, 3, 2, 3;
1, 4, 1, 4, 1;
2, 3, 2, 3, 2, 3;
1, 4, 1, 4, 1, 4, 1;
2, 3, 2, 3, 2, 3, 2, 3;
1, 4, 1, 4, 1, 4, 1, 4, 1;
2, 3, 2, 3, 2, 3, 2, 3, 2, 3;
...
		

Crossrefs

Programs

  • Mathematica
    Table[1 + Boole@ EvenQ@ # + 2 Boole@ EvenQ@ k &[n - k + 1], {n, 14}, {k, n}] // Flatten (* Michael De Vlieger, Nov 14 2016 *)

Formula

a(n) = A274912(n) + 1.

A060590 Numerator of the expected time to finish a random Tower of Hanoi problem with n disks using optimal moves.

Original entry on oeis.org

0, 2, 2, 14, 10, 62, 42, 254, 170, 1022, 682, 4094, 2730, 16382, 10922, 65534, 43690, 262142, 174762, 1048574, 699050, 4194302, 2796202, 16777214, 11184810, 67108862, 44739242, 268435454, 178956970, 1073741822, 715827882, 4294967294
Offset: 0

Views

Author

Henry Bottomley, Apr 05 2001

Keywords

Examples

			a(2)=2 since there are nine equally likely possibilities, with times required of 0,1,1,2,2,3,3,3,3 giving an average of 18/9 = 2/1.
		

Crossrefs

Denominator is A010684(n). Cf. A007798, A060586, A060589, A020988 (even bisection).

Programs

  • PARI
    a(n)={2*(2^n - 1)*(2 - (-1)^n)/3} \\ Harry J. Smith, Jul 07 2009

Formula

a(n) = 2*(2^n - 1)*(2 - (-1)^n)/3.
a(2n) = A020988(n-1).
From Ralf Stephan, Mar 07 2003: (Start)
G.f.: (4*x^3+2*x^2+2*x)/(4*x^4-5*x^2+1).
a(n+4) = 5*a(n+2) - 4*a(n). (End)
Previous Showing 21-30 of 52 results. Next