A074323
Coefficient of the highest power of q in the expansion of nu(0)=1, nu(1)=b and for n>=2, nu(n)=b*nu(n-1)+lambda*(n-1)_q*nu(n-2) with (b,lambda)=(1,2), where (n)_q=(1+q+...+q^(n-1)) and q is a root of unity.
Original entry on oeis.org
1, 1, 3, 2, 6, 4, 12, 8, 24, 16, 48, 32, 96, 64, 192, 128, 384, 256, 768, 512, 1536, 1024, 3072, 2048, 6144, 4096, 12288, 8192, 24576, 16384, 49152, 32768, 98304, 65536, 196608, 131072, 393216, 262144, 786432, 524288, 1572864, 1048576
Offset: 0
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
nu(0)=1;
nu(1)=1;
nu(2)=3;
nu(3)=5+2q;
nu(4)=11+8q+6q^2;
nu(5)=21+22q+20q^2+14q^3+4q^4;
nu(6)=43+60q+70q^2+64q^3+54q^4+28q^5+12q^6;
by listing the coefficients of the highest power in each nu(n), we get 1,1,3,2,6,4,12,...
A126116
a(n) = a(n-1) + a(n-3) + a(n-4), with a(0)=a(1)=a(2)=a(3)=1.
Original entry on oeis.org
1, 1, 1, 1, 3, 5, 7, 11, 19, 31, 49, 79, 129, 209, 337, 545, 883, 1429, 2311, 3739, 6051, 9791, 15841, 25631, 41473, 67105, 108577, 175681, 284259, 459941, 744199, 1204139, 1948339, 3152479, 5100817, 8253295, 13354113, 21607409, 34961521
Offset: 0
Luis A Restrepo (luisiii(AT)mac.com), Mar 05 2007
G.f. = 1 + x + x^2 + x^3 + 3*x^4 + 5*x^5 + 7*x^6 + 11*x^7 + 19*x^8 + 31*x^9 + ...
- S. Wolfram, A New Kind of Science. Champaign, IL: Wolfram Media, pp. 82-92, 2002
- Seiichi Manyama, Table of n, a(n) for n = 0..4786
- K. T. Atanassov, D. R. Deford, A. G. Shannon, Pulsated Fibonacci recurrences, Fibonacci Quarterly, Vol. 52, No. 5, Dec. 2014, pp. 22-27.
- Kelley L. Ross, The Golden Ratio and The Fibonacci Numbers
- Eric Weisstein's World of Mathematics, Golden Ratio
- Wikipedia, Golden Ratio
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,1).
-
a:=[1,1,1,1];; for n in [5..50] do a[n]:=a[n-1]+a[n-3]+a[n-4]; od; a; # G. C. Greubel, Jul 15 2019
-
[n le 4 select 1 else Self(n-1) + Self(n-3) + Self(n-4): n in [1..50]]; // Vincenzo Librandi, Dec 25 2015
-
# From R. J. Mathar, Jul 22 2010: (Start)
A010684 := proc(n) 1+2*(n mod 2) ; end proc:
A000032 := proc(n) coeftayl((2-x)/(1-x-x^2),x=0,n) ; end proc:
A126116 := proc(n) ((-1)^floor(n/2)*A010684(n)+2*A000032(n))/5 ; end proc: seq(A126116(n),n=0..80) ; # (End)
with(combinat): A126116 := proc(n): fibonacci(n-1) + fibonacci(floor((n-4)/2)+1)* fibonacci(ceil((n-4)/2)+2) end: seq(A126116(n), n=0..38); # Johannes W. Meijer, Aug 05 2011
-
LinearRecurrence[{1,0,1,1},{1,1,1,1},50] (* Harvey P. Dale, Nov 08 2011 *)
-
Vec((x-1)*(1+x+x^2)/((x^2+x-1)*(x^2+1)) + O(x^50)) \\ Altug Alkan, Dec 25 2015
-
((1-x)*(1+x+x^2)/((1-x-x^2)*(1+x^2))).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jul 15 2019
A153643
Jacobsthal numbers A001045 incremented by 2.
Original entry on oeis.org
2, 3, 3, 5, 7, 13, 23, 45, 87, 173, 343, 685, 1367, 2733, 5463, 10925, 21847, 43693, 87383, 174765, 349527, 699053, 1398103, 2796205, 5592407, 11184813, 22369623, 44739245, 89478487, 178956973, 357913943, 715827885, 1431655767, 2863311533, 5726623063
Offset: 0
-
a:=[2,3,3];; for n in [4..40] do a[n]:=2*a[n-1]+a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Apr 02 2019
-
I:=[2,3,3]; [n le 3 select I[n] else 2*Self(n-1) +Self(n-2) -2*Self(n-3): n in [1..40]]; // G. C. Greubel, Apr 02 2019
-
LinearRecurrence[{1,2},{0,1}, 40] + 2 (* Harvey P. Dale, May 26 2014 *)
LinearRecurrence[{2,1,-2},{2,3,3}, 40] (* Georg Fischer, Apr 02 2019 *)
-
my(x='x+O('x^40)); Vec( (2-x-5*x^2)/((1-x^2)*(1-2*x)) ) \\ G. C. Greubel, Apr 02 2019
-
def A153643(n): return ((1<Chai Wah Wu, Apr 18 2025
-
((2-x-5*x^2)/((1-x^2)*(1-2*x))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 02 2019
A166956
a(n) = 2^n +(-1)^n - 2.
Original entry on oeis.org
0, -1, 3, 5, 15, 29, 63, 125, 255, 509, 1023, 2045, 4095, 8189, 16383, 32765, 65535, 131069, 262143, 524285, 1048575, 2097149, 4194303, 8388605, 16777215, 33554429, 67108863, 134217725, 268435455, 536870909, 1073741823, 2147483645, 4294967295, 8589934589
Offset: 0
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
- Vincenzo Librandi, Table of n, a(n) for n = 0..240
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Wolfram Research, Wolfram Atlas of Simple Programs
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2)
A176014
Decimal expansion of (3+sqrt(21))/6.
Original entry on oeis.org
1, 2, 6, 3, 7, 6, 2, 6, 1, 5, 8, 2, 5, 9, 7, 3, 3, 3, 4, 4, 3, 1, 3, 4, 1, 1, 9, 8, 9, 5, 4, 6, 6, 8, 0, 8, 1, 4, 9, 7, 4, 0, 9, 4, 2, 9, 4, 6, 1, 3, 2, 8, 6, 5, 0, 4, 3, 4, 5, 4, 0, 3, 5, 3, 9, 8, 4, 4, 7, 8, 0, 7, 0, 9, 2, 4, 6, 2, 8, 4, 8, 1, 1, 0, 0, 7, 2, 6, 9, 2, 6, 5, 8, 2, 2, 4, 0, 8, 3, 8, 7, 7, 9, 6, 0
Offset: 1
(3+sqrt(21))/6 = 1.26376261582597333443...
Cf.
A010477 (decimal expansion of sqrt(21)).
-
RealDigits[(3+Sqrt[21])/6,10,120][[1]] (* Harvey P. Dale, Jul 21 2023 *)
-
vecmax(mateigen([1,0,0,1,0,0; 0,0,0,0,1/3,0; 0,1,0,0,1,0; 0,0,0,0,1/3,0; 0,0,1,0,0,1; 0,0,0,0,1/3,0],1)[1]) \\ Hugo Pfoertner, Sep 28 2020
A176040
Periodic sequence: Repeat 3, 1.
Original entry on oeis.org
3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 3
Offset: 0
Cf.
A153284,
A010701 (all 3's sequence),
A000012 (all 1's sequence),
A090458 (decimal expansion of (3+sqrt(21))/2),
A010684 (repeat 1, 3),
A014601 (congruent to 0 or 3 mod 4),
A020707 (2^(n+2)),
A052919,
A007582 (2^(n-1)*(1+2^n)),
A008619.
-
&cat[ [3, 1]: n in [0..52] ];
[ 2+(-1)^n: n in [0..104] ];
-
PadRight[{},120,{3,1}] (* or *) LinearRecurrence[{0,1},{3,1},120] (* Harvey P. Dale, Mar 11 2015 *)
A332439
Primitive period of the partial sums of the periodic unsigned Schick sequence for N = 7 (A130794), taken modulo 14, and the related Euler tour using all regular 14-gon vertices.
Original entry on oeis.org
0, 1, 6, 9, 10, 1, 4, 5, 10, 13, 0, 5, 8, 9, 0, 3, 4, 9, 12, 13, 4, 7, 8, 13, 2, 3, 8, 11, 12, 3, 6, 7, 12, 1, 2, 7, 10, 11, 2, 5, 6, 11
Offset: 0
- Carl Schick, Trigonometrie und unterhaltsame Zahlentheorie, Bokos Druck, Zürich, 2003 (ISBN 3-9522917-0-6). Tables 3.1 to 3.10, for odd p = 3..113 (with gaps), pp. 158-166.
-
get(v, j) = my(x=lift(Mod(j, #v))); if (x==0, x = #v); v[x];
vector(42, k, k--; sum(j=1, k, get([1,5,3], j)) % 14) \\ Michel Marcus, Jun 11 2020
A274912
Square array read by antidiagonals upwards in which each new term is the least nonnegative integer distinct from its neighbors.
Original entry on oeis.org
0, 1, 2, 0, 3, 0, 1, 2, 1, 2, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 0
The corner of the square array begins:
0, 2, 0, 2, 0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, 3, 1, 3, 1, ...
0, 2, 0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, 3, 1, ...
0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, ...
0, 2, 0, 2, ...
1, 3, 1, ...
0, 2, ...
1, ...
...
The sequence written as a triangle begins:
0;
1, 2;
0, 3, 0;
1, 2, 1, 2;
0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2;
0, 3, 0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2, 1, 2;
0, 3, 0, 3, 0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2, 1, 2, 1, 2;
...
-
ListTools:-Flatten([seq([[0,3]$i,0,[1,2]$(i+1)],i=0..10)]); # Robert Israel, Nov 14 2016
-
Table[Boole@ EvenQ@ # + 2 Boole@ EvenQ@ k &[n - k + 1], {n, 14}, {k, n}] // Flatten (* Michael De Vlieger, Nov 14 2016 *)
A274913
Square array read by antidiagonals upwards in which each new term is the least positive integer distinct from its neighbors.
Original entry on oeis.org
1, 2, 3, 1, 4, 1, 2, 3, 2, 3, 1, 4, 1, 4, 1, 2, 3, 2, 3, 2, 3, 1, 4, 1, 4, 1, 4, 1, 2, 3, 2, 3, 2, 3, 2, 3, 1, 4, 1, 4, 1, 4, 1, 4, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3
Offset: 1
The corner of the square array begins:
1, 3, 1, 3, 1, 3, 1, 3, 1, 3, ...
2, 4, 2, 4, 2, 4, 2, 4, 2, ...
1, 3, 1, 3, 1, 3, 1, 3, ...
2, 4, 2, 4, 2, 4, 2, ...
1, 3, 1, 3, 1, 3, ...
2, 4, 2, 4, 2, ...
1, 3, 1, 3, ...
2, 4, 2, ...
1, 3, ...
2, ...
...
The sequence written as a triangle begins:
1;
2, 3;
1, 4, 1;
2, 3, 2, 3;
1, 4, 1, 4, 1;
2, 3, 2, 3, 2, 3;
1, 4, 1, 4, 1, 4, 1;
2, 3, 2, 3, 2, 3, 2, 3;
1, 4, 1, 4, 1, 4, 1, 4, 1;
2, 3, 2, 3, 2, 3, 2, 3, 2, 3;
...
-
Table[1 + Boole@ EvenQ@ # + 2 Boole@ EvenQ@ k &[n - k + 1], {n, 14}, {k, n}] // Flatten (* Michael De Vlieger, Nov 14 2016 *)
A060590
Numerator of the expected time to finish a random Tower of Hanoi problem with n disks using optimal moves.
Original entry on oeis.org
0, 2, 2, 14, 10, 62, 42, 254, 170, 1022, 682, 4094, 2730, 16382, 10922, 65534, 43690, 262142, 174762, 1048574, 699050, 4194302, 2796202, 16777214, 11184810, 67108862, 44739242, 268435454, 178956970, 1073741822, 715827882, 4294967294
Offset: 0
a(2)=2 since there are nine equally likely possibilities, with times required of 0,1,1,2,2,3,3,3,3 giving an average of 18/9 = 2/1.
Comments