A056547
a(n) = 6*n*a(n-1) + 1 with a(0)=1.
Original entry on oeis.org
1, 7, 85, 1531, 36745, 1102351, 39684637, 1666754755, 80004228241, 4320228325015, 259213699500901, 17108104167059467, 1231783500028281625, 96079113002205966751, 8070645492185301207085, 726358094296677108637651
Offset: 0
a(2) = 6*2*a(1) + 1 = 12*7 + 1 = 85.
-
nxt[{n_,a_}]:={n+1,6a(n+1)+1}; NestList[nxt,{0,1},20][[;;,2]] (* Harvey P. Dale, Jul 17 2024 *)
A082032
Expansion of e.g.f.: exp(2*x)/(1-2*x).
Original entry on oeis.org
1, 4, 20, 128, 1040, 10432, 125248, 1753600, 28057856, 505041920, 10100839424, 222218469376, 5333243269120, 138664325005312, 3882601100165120, 116478033004986368, 3727297056159629312, 126728099909427527680, 4562211596739391258624, 173364040676096868352000, 6934561627043874735128576
Offset: 0
-
With[{nn=30},CoefficientList[Series[Exp[2x]/(1-2x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Aug 02 2021 *)
-
my(x='x + O('x^25)); Vec(serlaplace(exp(2*x)/(1-2*x))) \\ Michel Marcus, Jan 27 2019
A263823
a(n) = n!*Sum_{k=0..n} Fibonacci(k-1)/k!, where Fibonacci(-1) = 1, Fibonacci(n) = A000045(n) for n>=0.
Original entry on oeis.org
1, 1, 3, 10, 42, 213, 1283, 8989, 71925, 647346, 6473494, 71208489, 854501957, 11108525585, 155519358423, 2332790376722, 37324646028162, 634518982479741, 11421341684636935, 217005492008104349, 4340109840162091161, 91142306643403921146, 2005130746154886276158
Offset: 0
For n = 3, a(3) = 3!*(Fibonacci(-1)/0! + Fibonacci(0)/1! + Fibonacci(1)/2! + Fibonacci(2)/3!) = 6*(1 + 0 + 1/2 + 1/6) = 10.
For n = 5, Gamma(5+1, phi)*exp(phi) = 120*sqrt(5) + 333 = 240*phi + 213, so a(5) = 213.
G.f. = 1 + x + 3*x^2 + 10*x^3 + 42*x^4 + 213*x^5 + 1283*x^6 + 8989*x^7 + 71925*x^8 + ...
-
Table[n! Sum[Fibonacci[k-1]/k!, {k, 0, n}], {n, 0, 22}]
Round@Table[(E^(1-GoldenRatio) GoldenRatio Gamma[n+1, 1-GoldenRatio] + E^GoldenRatio Gamma[n+1, GoldenRatio]/GoldenRatio)/Sqrt[5], {n, 0, 22}]
A308876
Expansion of e.g.f. exp(x)*(1 - x)/(1 - 2*x).
Original entry on oeis.org
1, 2, 7, 40, 317, 3166, 37987, 531812, 8508985, 153161722, 3063234431, 67391157472, 1617387779317, 42052082262230, 1177458303342427, 35323749100272796, 1130359971208729457, 38432239021096801522, 1383560604759484854775, 52575302980860424481432
Offset: 0
-
a:= n-> n! * add(ceil(2^(n-k-1))/k!, k=0..n):
seq(a(n), n=0..23); # Alois P. Heinz, Sep 12 2019
-
nmax = 19; CoefficientList[Series[Exp[x] (1 - x)/(1 - 2 x), {x, 0, nmax}], x] Range[0, nmax]!
Table[1 + Sum[Binomial[n,k] 2^(k - 1) k!, {k, 1, n}], {n, 0, 19}]
Original entry on oeis.org
1, 4, 21, 142, 1201, 12336, 149989, 2113546, 33926337, 611660476, 12243073621, 269456124774, 6468249055921, 168191402251432, 4709596238204901, 141291441773619106, 4521383010795364609, 153727989225714801396, 5534225015581836134677
Offset: 0
-
CoefficientList[Series[E^x/(1-3*x+2*x^2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 02 2013 *)
A320031
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of the e.g.f. exp(x)/(1 - k*x).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 13, 16, 1, 1, 5, 25, 79, 65, 1, 1, 6, 41, 226, 633, 326, 1, 1, 7, 61, 493, 2713, 6331, 1957, 1, 1, 8, 85, 916, 7889, 40696, 75973, 13700, 1, 1, 9, 113, 1531, 18321, 157781, 732529, 1063623, 109601, 1, 1, 10, 145, 2374, 36745, 458026, 3786745, 15383110, 17017969, 986410, 1
Offset: 0
E.g.f. of column k: A_k(x) = 1 + (k + 1)*x/1! + (2*k^2 + 2*k + 1)*x^2/2! + (6*k^3 + 6*k^2 + 3*k + 1)*x^3/3! + (24*k^4 + 24*k^3 + 12*k^2 + 4*k + 1)*x^4/4! + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 5, 13, 25, 41, 61, ...
1, 16, 79, 226, 493, 916, ...
1, 65, 633, 2713, 7889, 18321, ...
1, 326, 6331, 40696, 157781, 458026, ...
-
A := (n, k) -> simplify(hypergeom([1, -n], [], -k)):
for n from 0 to 5 do seq(A(n, k), k=0..8) od; # Peter Luschny, Oct 03 2018
# second Maple program:
A:= proc(n, k) option remember;
1 + `if`(n>0, k*n*A(n-1, k), 0)
end:
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, May 09 2020
-
Table[Function[k, n! SeriesCoefficient[Exp[x]/(1 - k x), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
Table[Function[k, HypergeometricPFQ[{1, -n}, {}, -k]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
A336804
a(n) = (n!)^2 * Sum_{k=0..n} 2^(n-k) / (k!)^2.
Original entry on oeis.org
1, 3, 25, 451, 14433, 721651, 51958873, 5091969555, 651772103041, 105587080692643, 21117416138528601, 5110414705523921443, 1471799435190889375585, 497468209094520608947731, 195007537965052078707510553, 87753392084273435418379748851, 44929736747147998934210431411713
Offset: 0
-
Table[n!^2 Sum[2^(n - k)/k!^2, {k, 0, n}], {n, 0, 16}]
nmax = 16; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - 2 x), {x, 0, nmax}], x] Range[0, nmax]!^2
A353546
Expansion of e.g.f. -log(1-2*x) * exp(x)/2.
Original entry on oeis.org
0, 1, 4, 17, 96, 729, 7060, 83033, 1146656, 18164625, 324488068, 6450956929, 141233271872, 3376008830505, 87480173354964, 2442396780039817, 73089894980585408, 2333809837398044321, 79198287879591647364, 2846319497398561356913
Offset: 0
Essentially partial sums of
A010844.
-
my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-log(1-2*x)*exp(x)/2)))
-
a(n) = n!*sum(k=0, n-1, 2^(n-1-k)/((n-k)*k!));
-
a_vector(n) = my(v=vector(n+1, i, if(i==2, 1, 0))); for(i=2, n, v[i+1]=(2*i-1)*v[i]-2*(i-1)*v[i-1]+1); v;
A007566
a(n+1) = (2n+3)*a(n) - 2n*a(n-1) + 8n, a(0) = 1, a(1) = 3.
Original entry on oeis.org
1, 3, 21, 151, 1257, 12651, 151933, 2127231, 34035921, 612646867, 12252937701, 269564629863, 6469551117241, 168208329048891, 4709833213369677, 141294996401091151, 4521439884834917793, 153728956084387206051, 5534242419037939419061, 210301211923441697925687
Offset: 0
1 + 3*x + 21*x^2 + 151*x^3 + 1257*x^4 + 12651*x^5 + 151933*x^6 + 2127231*x^7 + ...
- M. E. Larsen, Summa Summarum, A. K. Peters, Wellesley, MA, 2007; see p. 36. [From N. J. A. Sloane, Jan 29 2009]
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- D. Doster, Problem 10403, Amer. Math. Monthly, Vol. 101 (1994), p. 792; Solution, Vol. 104 (1997), p. 368.
A056541
a(n) = 2n*a(n-1) + 1 with a(0)=0.
Original entry on oeis.org
0, 1, 5, 31, 249, 2491, 29893, 418503, 6696049, 120528883, 2410577661, 53032708543, 1272785005033, 33092410130859, 926587483664053, 27797624509921591, 889523984317490913, 30243815466794691043
Offset: 0
a(3) = 2*3*a(2)+1 = 6*5+1 = 31.
-
nxt[{n_,a_}]:={n+1,2a(n+1)+1}; NestList[nxt,{0,0},20][[All,2]] (* or *) With[{nn=20},CoefficientList[Series[(Exp[x]-1)/(1-2x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Aug 08 2021 *)
Comments