cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A056547 a(n) = 6*n*a(n-1) + 1 with a(0)=1.

Original entry on oeis.org

1, 7, 85, 1531, 36745, 1102351, 39684637, 1666754755, 80004228241, 4320228325015, 259213699500901, 17108104167059467, 1231783500028281625, 96079113002205966751, 8070645492185301207085, 726358094296677108637651
Offset: 0

Views

Author

Henry Bottomley, Jun 20 2000

Keywords

Examples

			a(2) = 6*2*a(1) + 1 = 12*7 + 1 = 85.
		

Crossrefs

Cf. A000522, A010844, A010845, A056545, A056546 for analogs. A056547/(A000142*A000400) is an increasingly good approximation to 6th root of e.

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,6a(n+1)+1}; NestList[nxt,{0,1},20][[;;,2]] (* Harvey P. Dale, Jul 17 2024 *)

Formula

a(n) = floor(e^(1/6)*6^n*n!).
a(n) = n!*Sum_{k=0..n} 6^(n-k)/k!. E.g.f.: exp(x)/(1 - 6*x). - Philippe Deléham, Mar 14 2004
From Peter Bala, Mar 01 2017: (Start)
a(n) = Integral_{x = 0..inf} (6*x + 1)^n*exp(-x) dx.
The e.g.f. y = exp(x)/(1 - 6*x) satisfies the differential equation (1 - 6*x)*y' = (7 - 6*x)*y.
a(n) = (6*n + 1)*a(n-1) - 6*(n - 1)*a(n-2).
The sequence b(n) := 6^n*n! also satisfies the same recurrence with b(0) = 1, b(1) = 6. This leads to the continued fraction representation a(n) = 6^n*n!*( 1 + 1/(6 - 6/(13 - 12/(19 - ... - (6*n - 6)/(6*n + 1) )))) for n >= 2. Taking the limit gives the continued fraction representation exp(1/6) = 1 + 1/(6 - 6/(13 - 12/(19 - ... - (6*n - 6)/((6*n + 1) - ... )))). Cf. A010844. (End)

Extensions

More terms from James Sellers, Jul 04 2000

A082032 Expansion of e.g.f.: exp(2*x)/(1-2*x).

Original entry on oeis.org

1, 4, 20, 128, 1040, 10432, 125248, 1753600, 28057856, 505041920, 10100839424, 222218469376, 5333243269120, 138664325005312, 3882601100165120, 116478033004986368, 3727297056159629312, 126728099909427527680, 4562211596739391258624, 173364040676096868352000, 6934561627043874735128576
Offset: 0

Views

Author

Paul Barry, Apr 02 2003

Keywords

Comments

Binomial transform of A010844. a(n) = b such that Integral_{x=0..1} (2*x)^n*exp(-x) dx = c - b*exp(-1). - Francesco Daddi, Jul 31 2011

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[2x]/(1-2x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Aug 02 2021 *)
  • PARI
    my(x='x + O('x^25)); Vec(serlaplace(exp(2*x)/(1-2*x))) \\ Michel Marcus, Jan 27 2019

Formula

E.g.f.: exp(2*x)/(1-2*x)
a(n) = 2^n*A000522(n). - Vladeta Jovovic, Oct 29 2003
a(n) = 2n*a(n)+2^n, n>0, a(0)=1. - Paul Barry, Aug 26 2004
a(n) +2*(-n-1)*a(n-1) +4*(n-1)*a(n-2)=0. - R. J. Mathar, Nov 26 2012
G.f.: 1/Q(0), where Q(k)= 1 - 2*x - 2*x*(k+1)/(1-2*x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
G.f.: 1/Q(0), where Q(k) = 1 - 4*x*(k+1) - 4*x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
a(n) = 2^n*hypergeometric_U(1,n+2,1). - Peter Luschny, Nov 26 2014

Extensions

More terms from Michel Marcus, Jan 27 2019

A263823 a(n) = n!*Sum_{k=0..n} Fibonacci(k-1)/k!, where Fibonacci(-1) = 1, Fibonacci(n) = A000045(n) for n>=0.

Original entry on oeis.org

1, 1, 3, 10, 42, 213, 1283, 8989, 71925, 647346, 6473494, 71208489, 854501957, 11108525585, 155519358423, 2332790376722, 37324646028162, 634518982479741, 11421341684636935, 217005492008104349, 4340109840162091161, 91142306643403921146, 2005130746154886276158
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 27 2015

Keywords

Examples

			For n = 3, a(3) = 3!*(Fibonacci(-1)/0! + Fibonacci(0)/1! + Fibonacci(1)/2! + Fibonacci(2)/3!) = 6*(1 + 0 + 1/2 + 1/6) = 10.
For n = 5, Gamma(5+1, phi)*exp(phi) = 120*sqrt(5) + 333 = 240*phi + 213, so a(5) = 213.
G.f. = 1 + x + 3*x^2 + 10*x^3 + 42*x^4 + 213*x^5 + 1283*x^6 + 8989*x^7 + 71925*x^8 + ...
		

Crossrefs

Cf. A009102, A009551, A000142, A000166, A000522, A000023, A053486, A010844 (incomplete Gamma function values at other points).

Programs

  • Mathematica
    Table[n! Sum[Fibonacci[k-1]/k!, {k, 0, n}], {n, 0, 22}]
    Round@Table[(E^(1-GoldenRatio) GoldenRatio Gamma[n+1, 1-GoldenRatio] + E^GoldenRatio Gamma[n+1, GoldenRatio]/GoldenRatio)/Sqrt[5], {n, 0, 22}]

Formula

a(n) = (Gamma(n+1, 1-phi)*exp(1-phi)*phi+Gamma(n+1, phi)*exp(phi)/phi)/sqrt(5), where Gamma(a, x) is the upper incomplete Gamma function, phi=(1+sqrt(5))/2.
a(n) = (phi^(n-1)*hypergeom([1,-n], [], 1-phi)-(-phi)^(1-n)*hypergeom([1,-n], [], phi))/sqrt(5).
Gamma(n+1, phi)*exp(phi) = A111139(n)*phi + a(n).
E.g.f.: (exp(phi*x)/phi+exp(-x/phi)*phi)/(sqrt(5)*(1-x)) = exp(x/2)*(cosh(x*sqrt(5)/2)-sinh(x*sqrt(5)/2)/sqrt(5))/(1-x).
Recurrence: a(0) = 1, a(1) = 1, a(2) = 3, a(n) = (n+1)*a(n-1)+(2-n)*a(n-2)+(2-n)*a(n-3).
a(n) ~ 2*exp(phi-n)*n^(n+1/2)*(1+exp(-sqrt(5))*phi^2)*sqrt(Pi/10)/phi.
0 = a(n)*(+a(n+1) + a(n+2) - 4*a(n+3) + a(n+4)) + a(n+1)*(+a(n+1) + 3*a(n+2) - 5*a(n+3) + a(n+4)) + a(n+2)*(+2*a(n+2) - a(n+4)) + a(n+3)*(+a(n+3)) if n>=0. - Michael Somos, Oct 30 2015

A308876 Expansion of e.g.f. exp(x)*(1 - x)/(1 - 2*x).

Original entry on oeis.org

1, 2, 7, 40, 317, 3166, 37987, 531812, 8508985, 153161722, 3063234431, 67391157472, 1617387779317, 42052082262230, 1177458303342427, 35323749100272796, 1130359971208729457, 38432239021096801522, 1383560604759484854775, 52575302980860424481432
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 29 2019

Keywords

Comments

Binomial transform of A002866.

Crossrefs

Programs

  • Maple
    a:= n-> n! * add(ceil(2^(n-k-1))/k!, k=0..n):
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 12 2019
  • Mathematica
    nmax = 19; CoefficientList[Series[Exp[x] (1 - x)/(1 - 2 x), {x, 0, nmax}], x] Range[0, nmax]!
    Table[1 + Sum[Binomial[n,k] 2^(k - 1) k!, {k, 1, n}], {n, 0, 19}]

Formula

a(n) = 1 + Sum_{k=1..n} binomial(n,k) * 2^(k-1) * k!.
a(n) = A010844(n) - A067273(n).
a(n) ~ n! * 2^(n-1) * exp(1/2). - Vaclav Kotesovec, Jun 29 2019
a(n) = Sum_{k=0..n} k! * A271705(n,k). - Alois P. Heinz, Sep 12 2019

A053482 Binomial transform of A029767.

Original entry on oeis.org

1, 4, 21, 142, 1201, 12336, 149989, 2113546, 33926337, 611660476, 12243073621, 269456124774, 6468249055921, 168191402251432, 4709596238204901, 141291441773619106, 4521383010795364609, 153727989225714801396, 5534225015581836134677
Offset: 0

Views

Author

N. J. A. Sloane, Jan 15 2000

Keywords

Comments

This is the column k=3 of an array T(n,k) = A181783(n,k) defined by T(n,0)=T(0,k)=1 and T(n,k) = n*(k-1)*T(n-1,k) +T(n,k-1), which starts
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
1, 1, 2, 4, 7, 11, 16, 22, 29, 37, 46,...
1, 1, 5, 21, 63, 151, 311, 575, 981,1573,2401,...
1, 1, 16, 142, 709,2521,7186,17536,38137,75889,140716,...
1, 1, 65,1201,9709,50045,193765,614629,1682465,4110913,9176689,...
Column k=2 is A000522. The e.g.f. for column k is E_k(z) = E_(k-1)(z)/[1-(k-1)] = exp(z)/prod_{j=1..k-1} (1-j*z). - Richard Choulet, Dec 17 2012

Programs

  • Mathematica
    CoefficientList[Series[E^x/(1-3*x+2*x^2), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 02 2013 *)

Formula

E.g.f.: exp(x)*(2/(1-2x)-1/(1-x))=exp(x)/(1-3x+2x^2); a(n)=sum{k=0..n, C(n,k)*k!*(2^(k+1)-1)}; a(n)=n!*sum{k=0..n, (2^(n-k+1)-1)/k!}; a(n)=int(x^n*(exp((1-x)/2)-exp(1-x)),x,1,infty); a(n)=2*A010844(n)-A000522(n); - Paul Barry, Jan 28 2008
Conjecture: a(n) -(3*n+1)*a(n-1) +(2*n+3)*(n-1)*a(n-2) -2*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Sep 29 2012
a(n) = 3*n*a(n-2)-2*n*(n-1)*a(n-2)+1, derived from the array defined in the comment, which proves the previous conjecture. - Richard Choulet, Dec 17 2012
a(n) ~ n! * 2^(n+1)*exp(1/2). - Vaclav Kotesovec, Oct 02 2013

A320031 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of the e.g.f. exp(x)/(1 - k*x).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 13, 16, 1, 1, 5, 25, 79, 65, 1, 1, 6, 41, 226, 633, 326, 1, 1, 7, 61, 493, 2713, 6331, 1957, 1, 1, 8, 85, 916, 7889, 40696, 75973, 13700, 1, 1, 9, 113, 1531, 18321, 157781, 732529, 1063623, 109601, 1, 1, 10, 145, 2374, 36745, 458026, 3786745, 15383110, 17017969, 986410, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 03 2018

Keywords

Examples

			E.g.f. of column k: A_k(x) = 1 + (k + 1)*x/1! + (2*k^2 + 2*k + 1)*x^2/2! + (6*k^3 + 6*k^2 + 3*k + 1)*x^3/3! + (24*k^4 + 24*k^3 + 12*k^2 + 4*k + 1)*x^4/4! + ...
Square array begins:
  1,    1,     1,      1,       1,       1,  ...
  1,    2,     3,      4,       5,       6,  ...
  1,    5,    13,     25,      41,      61,  ...
  1,   16,    79,    226,     493,     916,  ...
  1,   65,   633,   2713,    7889,   18321,  ...
  1,  326,  6331,  40696,  157781,  458026,  ...
		

Crossrefs

Columns k=0..6 give A000012, A000522, A010844, A010845, A056545, A056546, A056547.
Main diagonal gives A277452.

Programs

  • Maple
    A := (n, k) -> simplify(hypergeom([1, -n], [], -k)):
    for n from 0 to 5 do seq(A(n, k), k=0..8) od; # Peter Luschny, Oct 03 2018
    # second Maple program:
    A:= proc(n, k) option remember;
          1 + `if`(n>0, k*n*A(n-1, k), 0)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, May 09 2020
  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[x]/(1 - k x), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
    Table[Function[k, HypergeometricPFQ[{1, -n}, {}, -k]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten

Formula

E.g.f. of column k: exp(x)/(1 - k*x).
A(n,k) = Sum_{j=0..n} binomial(n,j)*j!*k^j.
A(n,k) = hypergeom_2F0([1, -n], [], -k).
A(n,k) = 1 + [n > 0] * k * n * A(n-1,k). - Alois P. Heinz, May 09 2020
A(n,k) = floor(n!*k^n*exp(1/k)), k > 0, n + k > 1. - Peter McNair, Dec 20 2021
From Werner Schulte, Apr 14 2024: (Start)
The LU decomposition of this array is given by the upper triangular matrix U which is the transpose of A007318 and the lower triangular matrix L = A371898, i.e., A(n, k) = Sum_{i=0..k} binomial(k, i) * A371898(n, i).
Conjecture: E.g.f. of row n is exp(x) * (Sum_{k=0..n} A371898(n, k) * x^k / k!). (End)

A336804 a(n) = (n!)^2 * Sum_{k=0..n} 2^(n-k) / (k!)^2.

Original entry on oeis.org

1, 3, 25, 451, 14433, 721651, 51958873, 5091969555, 651772103041, 105587080692643, 21117416138528601, 5110414705523921443, 1471799435190889375585, 497468209094520608947731, 195007537965052078707510553, 87753392084273435418379748851, 44929736747147998934210431411713
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!^2 Sum[2^(n - k)/k!^2, {k, 0, n}], {n, 0, 16}]
    nmax = 16; CoefficientList[Series[BesselI[0, 2 Sqrt[x]]/(1 - 2 x), {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

Sum_{n>=0} a(n) * x^n / (n!)^2 = BesselI(0,2*sqrt(x)) / (1 - 2*x).
a(0) = 1; a(n) = 2 * n^2 * a(n-1) + 1.

A353546 Expansion of e.g.f. -log(1-2*x) * exp(x)/2.

Original entry on oeis.org

0, 1, 4, 17, 96, 729, 7060, 83033, 1146656, 18164625, 324488068, 6450956929, 141233271872, 3376008830505, 87480173354964, 2442396780039817, 73089894980585408, 2333809837398044321, 79198287879591647364, 2846319497398561356913
Offset: 0

Views

Author

Seiichi Manyama, May 27 2022

Keywords

Crossrefs

Cf. A346394.
Essentially partial sums of A010844.

Programs

  • PARI
    my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-log(1-2*x)*exp(x)/2)))
    
  • PARI
    a(n) = n!*sum(k=0, n-1, 2^(n-1-k)/((n-k)*k!));
    
  • PARI
    a_vector(n) = my(v=vector(n+1, i, if(i==2, 1, 0))); for(i=2, n, v[i+1]=(2*i-1)*v[i]-2*(i-1)*v[i-1]+1); v;

Formula

a(n) = n! * Sum_{k=0..n-1} 2^(n-1-k) / ((n-k) * k!).
a(0) = 0, a(1) = 1, a(n) = (2 * n - 1) * a(n-1) - 2 * (n-1) * a(n-2) + 1.
a(n) ~ (n-1)! * exp(1/2) * 2^(n-1). - Vaclav Kotesovec, Jun 08 2022

A007566 a(n+1) = (2n+3)*a(n) - 2n*a(n-1) + 8n, a(0) = 1, a(1) = 3.

Original entry on oeis.org

1, 3, 21, 151, 1257, 12651, 151933, 2127231, 34035921, 612646867, 12252937701, 269564629863, 6469551117241, 168208329048891, 4709833213369677, 141294996401091151, 4521439884834917793, 153728956084387206051, 5534242419037939419061, 210301211923441697925687
Offset: 0

Views

Author

Keywords

Examples

			1 + 3*x + 21*x^2 + 151*x^3 + 1257*x^4 + 12651*x^5 + 151933*x^6 + 2127231*x^7 + ...
		

References

  • M. E. Larsen, Summa Summarum, A. K. Peters, Wellesley, MA, 2007; see p. 36. [From N. J. A. Sloane, Jan 29 2009]
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A010844.

Programs

  • Maple
    a:=proc(n) option remember; if n = 0 then RETURN(1); fi; if n = 1 then RETURN(3); fi; (2*n+1)*a(n-1)-(2*n-2)*a(n-2) + 8*(n-1); end;

Formula

a(n) = 2*n*a(n-1) + (2*n-1)^2 = 2 * floor(e^(1/2) * n! * 2^n) - (2*n+1) = 2*A010844(n) - (2n+1). - Michael Somos, Mar 26 1999

A056541 a(n) = 2n*a(n-1) + 1 with a(0)=0.

Original entry on oeis.org

0, 1, 5, 31, 249, 2491, 29893, 418503, 6696049, 120528883, 2410577661, 53032708543, 1272785005033, 33092410130859, 926587483664053, 27797624509921591, 889523984317490913, 30243815466794691043
Offset: 0

Views

Author

Henry Bottomley, Jun 20 2000

Keywords

Comments

if s(n) is a sequence defined as s(0)=x, s(n) = 2n*s(n-1)+k, n>0, then s(n) = 2^n*n!*x + a(n)*k. - Gary Detlefs, Feb 20 2010

Examples

			a(3) = 2*3*a(2)+1 = 6*5+1 = 31.
		

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,2a(n+1)+1}; NestList[nxt,{0,0},20][[All,2]] (* or *) With[{nn=20},CoefficientList[Series[(Exp[x]-1)/(1-2x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Aug 08 2021 *)

Formula

a(n) = floor[(sqrt(e)-1)*2^n*n! ] = A010844(n)-A000165(n).
a(n) = Sum[P(n, k) * 2^k {k=0 to n-1}] - Ross La Haye, Sep 15 2004
Conjecture: a(n) +(-2*n-1)*a(n-1) +2*(n-1)*a(n-2)=0. - R. J. Mathar, May 29 2013
E.g.f.: (exp(x)-1)/(1-2*x) = -12*x/(Q(0)+6*x-3*x^2)/(1-2*x), where Q(k) = 2*(4*k+1)*(32*k^2+16*k+x^2-6) - x^4*(4*k-1)*(4*k+7)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Nov 18 2013

Extensions

More terms from James Sellers, Jul 04 2000
Previous Showing 11-20 of 33 results. Next