cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 61 results. Next

A129333 Fourth column of PE^4.

Original entry on oeis.org

0, 0, 0, 1, 16, 200, 2320, 26460, 303968, 3557904, 42676320, 526076100, 6673368240, 87148818328, 1171554274800, 16206294360620, 230561544221120, 3371256518888480, 50628767109223872, 780358333403627796
Offset: 0

Views

Author

Gottfried Helms, Apr 08 2007

Keywords

Comments

Base matrix is in A011971; second power is in A078937; third power is in A078938; fourth power is in A078939.

Crossrefs

Programs

Formula

PE=exp(matpascal(5))/exp(1); A = PE^4; a(n)= A[ n,4 ] with exact integer arithmetic: PE=exp(matpascal(5)-matid(6)); A = PE^4; a(n)=A[ n,4]

Extensions

More terms from R. J. Mathar, May 30 2008

A094577 Central Peirce numbers. Number of set partitions of {1,2,..,2n+1} in which n+1 is the smallest of its block.

Original entry on oeis.org

1, 3, 27, 409, 9089, 272947, 10515147, 501178937, 28773452321, 1949230218691, 153281759047387, 13806215066685433, 1408621900803060705, 161278353358629226675, 20555596673435403499083, 2896227959507289559616217, 448371253145121338801335489
Offset: 0

Views

Author

Vladeta Jovovic, May 12 2004

Keywords

Comments

Let P(n,k) be the number of set partitions of {1,2,..,n} in which k is the smallest of its block. These numbers were introduced by C. S. Peirce (see reference, page 48). If this triangle is displayed as in A123346 (or A011971) then a(n) = A011971(2n, n) are the central Pierce numbers. - Peter Luschny, Jan 18 2011
Named after the American philosopher, logician, mathematician and scientist Charles Sanders Peirce (1839-1914). - Amiram Eldar, Jun 11 2021

Examples

			n = 1, S = {1, 2, 3}. k = n+1 = 2. Thus a(1) = card { 13|2, 1|23, 1|2|3 } = 3. - _Peter Luschny_, Jan 18 2011
		

References

  • Donald E. Knuth, The Art of Computer Programming, Vol. 4, Section 7.2.1.5.

Crossrefs

Main diagonal of array in A011971.

Programs

  • Maple
    seq(add(binomial(n, k)*(bell(n+k)), k=0..n), n=0..14); # Zerinvary Lajos, Dec 01 2006
    # The objective of this implementation is efficiency.
    # m -> [a(0), a(1), ..., a(m-1)] for m > 0.
    A094577_list := proc(m)
       local A, R, M, n, k, j;
       M := m+m-1; A := array(1..M);
       j := 1; R := 1; A[1] := 1;
       for n from 2 to M do
          A[n] := A[1];
          for k from n by -1 to 2 do
             A[k-1] := A[k-1] + A[k]
          od;
          if is(n,odd) then
             j := j+1; R := R,A[j] fi
       od;
    [R] end:
    A094577_list(100); # example call - Peter Luschny, Jan 17 2011
  • Mathematica
    f[n_] := Sum[Binomial[n, k]*BellB[2 n - k], {k, 0, n}]; Array[f, 15, 0]
  • Python
    # requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
    from itertools import accumulate
    A094577_list, blist, b = [1], [1], 1
    for n in range(2,502):
        blist = list(accumulate([b]+blist))
        b = blist[-1]
        blist = list(accumulate([b]+blist))
        b = blist[-1]
        A094577_list.append(blist[-n])
    # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*Bell(2*n-k).
a(n) = Sum_{k=0..n} (-1)^k*binomial(n, k)*Bell(2*n-k+1).
a(n) = exp(-1)*Sum_{k>=0} (k(k+1))^n/k!. - Benoit Cloitre, Dec 30 2005
a(n) = Sum_{k=0..n} binomial(n,k)*Bell(n+k). - Vaclav Kotesovec, Jul 29 2022

A011968 Apply (1+Shift) to Bell numbers.

Original entry on oeis.org

1, 2, 3, 7, 20, 67, 255, 1080, 5017, 25287, 137122, 794545, 4892167, 31858034, 218543759, 1573857867, 11863100692, 93345011951, 764941675963, 6514819011216, 57556900440429, 526593974392123, 4981585554604074, 48658721593531669, 490110875149889635
Offset: 0

Views

Author

Keywords

Comments

Number of set partitions of n+2 with at least one singleton and the smallest element in any singleton is exactly n. The maximum number of singletons is therefore 3. Alternatively, number of set partitions of n+2 with at least one singleton and the largest element in any singleton is exactly 3 (or n+2 if n+2 < 3). For example, a(3)=7 counts the following set partitions of [5]: {1245, 3}, {12, 3, 45}, {124, 3, 5}, {15, 24, 3}, {125, 3, 4}, {14, 25, 3}, {12, 3, 4, 5}. - Olivier Gérard, Oct 29 2007
Let V(N)={v(1),v(2),...,v(N)} denote an ordered set of increasing positive integers containing a pair of adjacent elements that differ by at least 2, that is, v(i),v(i+1) with v(i+1)-v(i) > 1. Then for n > 0, a(n) is the number of partitions of V(n+1) into blocks of nonconsecutive integers. - Augustine O. Munagi, Jul 17 2008

Examples

			a(3)=7 because the set {1,3,4,5} has 7 different partitions into blocks of nonconsecutive integers: 14/35, 135/4, 1/35/4, 13/4/5, 14/3/5, 15/3/4, 1/3/4/5.
		

References

  • Olivier Gérard and Karol Penson, A budget of set partitions statistics, in preparation, unpublished as of Sep 22 2011

Crossrefs

A diagonal of A011971 and A106436. - N. J. A. Sloane, Jul 31 2012

Programs

  • Maple
    with(combinat): seq(`if`(n>0,bell(n)+bell(n-1),1),n=0..21); # Augustine O. Munagi, Jul 17 2008
  • Python
    # requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
    from itertools import accumulate
    A011968_list, blist, b = [1,2], [1], 1
    for _ in range(10**2):
        blist = list(accumulate([b]+blist))
        A011968_list.append(b+blist[-1])
        b = blist[-1] # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014

Formula

For n >= 1, a(n+1) = exp(-1)*Sum_{k>=0} ((k+1)/k!)*k^n. - Benoit Cloitre, Mar 09 2008
For n >= 1, a(n) = Bell(n) + Bell(n-1). - Augustine O. Munagi, Jul 17 2008
G.f.: G(0) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k-1) - x*(2*k+1)*(2*k+3)*(2*x*k-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k+x-1)/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 19 2012
G.f.: 1 + x*E(0) where E(k) = 1 + 1/(1-x*k-x)/(1-x/(x+1/E(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 20 2013
G.f.: 1 + Sum_{k>=0} ( 1+1/(1-x-x*k) )*x^(k+1)/Product_{i=0..k} (1-x*i). - Sergei N. Gladkovskii, Jan 20 2013
a(n) ~ Bell(n) * (1 + LambertW(n)/n). - Vaclav Kotesovec, Jul 28 2021

A011969 Apply (1+Shift)^2 to Bell numbers.

Original entry on oeis.org

1, 3, 5, 10, 27, 87, 322, 1335, 6097, 30304, 162409, 931667, 5686712, 36750201, 250401793, 1792401626, 13436958559, 105208112643, 858286687914, 7279760687179, 64071719451645, 584150874832552, 5508179528996197
Offset: 0

Views

Author

Keywords

Comments

Starting with n=2 (a(2)=5), number of set partitions of n+2 with at least one singleton and the smallest element in any singleton is exactly n-1. The maximum number of singletons is therefore 4. Alternatively, starting with n=2, number of set partitions of n+2 with at least one singleton and the largest element in any singleton is exactly 4. E.g. a(3)=10 counts the following set partitions of [5]: {1345, 2}, {13, 2, 45}, {145, 2, 3}, {134, 2, 5}, {15, 2, 34}, {135, 2, 4}, {14, 2, 35}, {13, 2, 4, 5}, {14, 2, 3, 5}, {15, 2, 3, 4}. - Olivier Gérard, Oct 29 2007
Let V(N)={v(1),v(2),...,v(N)} denote an ordered set of increasing positive integers containing 2 pairs of adjacent elements that differ by at least 2, that is, v(i),v(i+1) with v(i+1)-v(i)>1. Then for n>1, a(n) is the number of partitions of V(n+1) into blocks of nonconsecutive integers. - Augustine O. Munagi, Jul 17 2008

Examples

			a(3)=10 because the set {1,3,5,6} has 10 different partitions into blocks of nonconsecutive integers: 15/36, 16/35, 135/6, 136/5, 1/35/6, 1/36/5, 13/5/6, 15/3/6, 16/3/5, 1/3/5/6.
		

References

  • Olivier Gérard and Karol Penson, A budget of set partitions statistics, in preparation, unpublished as of Sep 22 2011

Crossrefs

A diagonal of A011971 and A106436. - N. J. A. Sloane, Jul 31 2012

Programs

  • Maple
    with(combinat): 1,3,seq(`if`(n>1,bell(n)+2*bell(n-1)+bell(n-2),NULL),n=2..22); # Augustine O. Munagi, Jul 17 2008
  • Mathematica
    Join[{1,3},#[[1]]+2#[[2]]+#[[3]]&/@Partition[BellB[Range[0,30]],3,1]] (* Harvey P. Dale, May 05 2023 *)
  • Python
    # requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
    from itertools import accumulate
    A011969_list, blist, b, b2 = [1,3], [1], 1, 1
    for _ in range(10**2):
        blist = list(accumulate([b]+blist))
        A011969_list.append(2*b+b2+blist[-1])
        b2, b = b, blist[-1]
    # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014

Formula

For n >= 1, a(n+2) = exp(-1)*Sum_{k>=0} (k+1)^2/k!*k^n. - Benoit Cloitre, Mar 09 2008
If n>1, then a(n) = Bell(n) + 2*Bell(n-1) + Bell(n-2). - Augustine O. Munagi, Jul 17 2008
G.f.: -(1+2*x)*(1+x)^2*Sum_{k>=0} x^(2*k)*(4*x*k^2-2*k-2*x-1)/((2*k+1)*(2*x*k-1))*A(k)/B(k) where A(k) = Product_{p=0..k} (2*p+1), B(k) = Product_{p=0..k} (2*p-1)*(2*x*p-x-1)*(2*x*p-2*x-1). - Sergei N. Gladkovskii, Jan 03 2013 [corrected by Jason Yuen, Apr 03 2025]
G.f.: G(0)*(1+x) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k-1) - x*(2*k+1)*(2*k+3)*(2*x*k-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k+x-1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 03 2013
a(n) ~ Bell(n) * (1 + 2*LambertW(n)/n). - Vaclav Kotesovec, Jul 28 2021

A011970 Apply (1+Shift)^3 to Bell numbers.

Original entry on oeis.org

1, 4, 8, 15, 37, 114, 409, 1657, 7432, 36401, 192713, 1094076, 6618379, 42436913, 287151994, 2042803419, 15229360185, 118645071202, 963494800557, 8138047375093, 71351480138824, 648222594284197, 6092330403828749
Offset: 0

Views

Author

Keywords

Comments

Starting with n=3 (a(3)=15), number of set partitions of n+2 with at least one singleton and the smallest element in any singleton is exactly n-2. The maximum number of singletons is therefore 5. Alternatively, starting with n=3, number of set partitions of n+2 with at least one singleton and the largest element in any singleton is exactly 5. - Olivier Gérard, Oct 29 2007
Let V(N)={v(1),v(2),...,v(N)} denote an ordered set of increasing positive integers containing 3 pairs of adjacent elements that differ by at least 2, that is, v(i),v(i+1) with v(i+1)-v(i)>1. Then for n>2, a(n) is the number of partitions of V(n+1) into blocks of nonconsecutive integers. - Augustine O. Munagi, Jul 17 2008

Examples

			a(3)=15 because the set {1,3,5,7} has 15 different partitions which are necessarily into blocks of nonconsecutive integers.
		

References

  • Olivier Gérard and Karol Penson, A budget of set partitions statistics, in preparation, unpublished as of Sep 22 2011

Crossrefs

Cf. A000110.
A diagonal of A011971 and A106436. - N. J. A. Sloane, Jul 31 2012

Programs

  • Maple
    with(combinat): 1,4,8,seq(`if`(n>2,bell(n)+3*bell(n-1)+3*bell(n-2)+bell(n-3),NULL),n=3..22); # Augustine O. Munagi, Jul 17 2008
  • Python
    # requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
    from itertools import accumulate
    A011970_list, blist, b, b2, b3 = [1,4,8], [1, 2], 2, 1, 1
    for _ in range(498):
        blist = list(accumulate([b]+blist))
        A011970_list.append(3*(b+b2)+b3+blist[-1])
        b3, b2, b = b2, b, blist[-1]
    # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014

Formula

If n>2, then bell(n)+3*bell(n-1)+3*bell(n-2)+bell(n-3). - Augustine O. Munagi, Jul 17 2008

A073146 Triangle of numbers {a(n,k), n >= 0, 0 <= k <= n} defined by a(0,0)=1, a(n,0)=A000670(n), a(n,n)=A000629(n), a(n,k) = a(n,k-1) + a(n-1,k-1); a(n+1,0) = Sum_{k=0..n} a(n,k).

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 13, 16, 20, 26, 75, 88, 104, 124, 150, 541, 616, 704, 808, 932, 1082, 4683, 5224, 5840, 6544, 7352, 8284, 9366, 47293, 51976, 57200, 63040, 69584, 76936, 85220, 94586, 545835, 593128, 645104, 702304, 765344, 834928, 911864
Offset: 0

Views

Author

Paul D. Hanna, Jul 18 2002

Keywords

Comments

Related to preferential arrangements of n elements (A000670) and necklaces of sets of labeled beads (A000629).
Row sums are 1, 3, 13, 75, 541, ... (A000670 starting from A000670(1), the second "1"). - Gary W. Adamson, May 31 2005

Examples

			Triangle begins:
    1;
    1,   2;
    3,   4,   6;
   13,  16,  20,  26;
   75,  88, 104, 124, 150;
  541, 616, 704, 808, 932, 1082;
  ...
		

Crossrefs

Main diagonal is in A098696.

Programs

  • Mathematica
    Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Fubini[0, 1] = 1;
    a[n_, k_] := Sum[Binomial[k, i-n+k] Fubini[i, 1], {i, n-k, n}];
    Table[a[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 30 2016, after Vladeta Jovovic *)

Formula

From Vladeta Jovovic, Oct 15 2006: (Start)
Double-exponential generating function: Sum_{n, k} a(n-k, k) x^n/n! y^k/k! = exp(y)/(2-exp(x+y)).
a(n,k) = Sum_{i=n-k..n} binomial(k,i-n+k)*A000670(i). (End)

A108041 Triangle of numbers {a(n,k), n >= 0, 0<=k<=n} defined by a(0,0)=1, a(n,0)=a(n-1,n-1), a(n,k)=a(n,k-1) + Sum_{i=0..k-1} a(n-1,i).

Original entry on oeis.org

1, 1, 2, 2, 3, 7, 7, 9, 19, 42, 42, 49, 100, 210, 443, 443, 485, 977, 2005, 4120, 8473, 8473, 8916, 17874, 36240, 73508, 149131, 302615, 302615, 311088, 622619, 1254196, 2526758, 5090784, 10257191, 20667866, 20667866, 20970481, 41949435, 84210401, 169052379
Offset: 0

Views

Author

N. J. A. Sloane, Jun 01 2005

Keywords

Examples

			1; 1,2; 2,3,7; 7,9,19,42; 42,49,100,210,443; ...
		

Crossrefs

Borders give A108042. Row sums are A108043. Cf. A011971.

Programs

  • Maple
    f := proc(n,k) local i,t1; option remember; if n=0 and k=0 then 1 elif k=0 then f(n-1,n-1) else add(f(n,i),i=0..k-1) +f(n-1,k-1); fi: end;

A200580 Sum of dimension exponents of supercharacter of unipotent upper triangular matrices.

Original entry on oeis.org

0, 1, 10, 73, 490, 3246, 21814, 150535, 1072786, 7915081, 60512348, 479371384, 3932969516, 33392961185, 293143783762, 2658128519225, 24872012040510, 239916007100054, 2383444110867378, 24363881751014383, 256034413642582418, 2763708806499744097
Offset: 1

Views

Author

Nantel Bergeron, Nov 19 2011

Keywords

Comments

Supercharacter theory of unipotent upper triangular matrices over a finite field F(2) is indexed by set partitions S(n) of {1,2,..., n} where a set partition P of {1,2,..., n} is a subset { (i,j) : 1 <= i < j <= n}
such that (i,j) in P implies (i,k),(k,j) are not in P for all i
The dimension of the representation associated to the supercharacter indexed by P is given by 2^Dim(P) where Dim(P) = sum [ j-i , (i,j) in P ].
The sequence we have is a(n) = sum [ Dim(P) , P in S(n) ].

Crossrefs

Cf. A011971 (sequence is computed from the Aitken's array b(n,k)
a(n) = sum [ k*(n-k)*b(n,k), k=1..n-1 ]).
Cf. A200660, A200673 (other statistics related to supercharacter theory).

Programs

  • Magma
    [-2*Bell(n+3)+(n+5)*Bell(n+2): n in [1..30]]; // Vincenzo Librandi, Jul 16 2013
  • Maple
    b:=proc(n,k) option remember;
      if n=1 and k=1 then RETURN(1) fi;
      if k=1 then RETURN(b(n-1,n-1)) fi;
      b(n,k-1)+b(n-1,k-1)
    end:
    a:=proc(n) local res,k;
      res:=0;
      for k to n-1 do res:=res+k*(n-k)*b(n,k) od;
      res
    end:
    seq(a(n),n=1..34);
  • Mathematica
    Table[-2 BellB[n+3] + (n+5) BellB[n+2], {n, 1, 30}] (* Vincenzo Librandi, Jul 16 2013 *)

Formula

a(n) = -2*B(n+2) + (n+4)*B(n+1) where B(i) = Bell numbers A000110. [Chern et al.] - N. J. A. Sloane, Jun 10 2013 [for offset 2]
a(n) ~ n^3 * Bell(n) / LambertW(n)^2 * (1 - 2/LambertW(n)). - Vaclav Kotesovec, Jul 28 2021

A200660 Sum of the number of arcs describing the set partitions of {1,2,...,n}.

Original entry on oeis.org

0, 1, 8, 49, 284, 1658, 9974, 62375, 406832, 2769493, 19668054, 145559632, 1121153604, 8974604065, 74553168520, 641808575961, 5718014325296, 52653303354906, 500515404889978, 4905937052293759, 49530189989912312, 514541524981377909, 5494885265473192914
Offset: 1

Author

Nantel Bergeron, Nov 20 2011

Keywords

Comments

Supercharacter theory of unipotent upper triangular matrices over a finite field F(2) is indexed by set partitions S(n) of {1,2,...,n} where a set partition P of {1,2,...,n} is a subset { (i,j) : 1 <= i < j <= n} such that (i,j) in P implies (i,k),(k,j) are not in P for all i < l < j.
One of the statistics used to compute the supercharacter table is the number of arcs in P (that is, the cardinality |P| of P).
The sequence we have is arcs(n) = Sum_{P in S(n)} |P|.

Crossrefs

Cf. A011971 (sequence is computed from Aitken's array b(n,k) arcs(n) = Sum_{k=1..n-1} k*b(n,k)).
Cf. A200580, A200673 (other statistics related to supercharacter table).
Cf. A367955.

Programs

  • Maple
    b:=proc(n,k) option remember;
      if n=1 and k=1 then RETURN(1) fi;
      if k=1 then RETURN(b(n-1,n-1)) fi;
      b(n,k-1)+b(n-1,k-1)
    end:
    arcs:=proc(n) local res,k;
      res:=0;
      for k to n-1 do res:=res+ k*b(n,k) od;
      res
    end:
    seq(arcs(n),n=1..34);
  • Mathematica
    b[n_, k_] := b[n, k] = Which[n == 1 && k == 1, 1, k == 1, b[n - 1, n - 1], True, b[n, k - 1] + b[n - 1, k - 1]];
    arcs[n_] := Module[{res = 0, k}, For[k = 1, k <= n-1, k++, res = res + k * b[n, k]]; res];
    Array[arcs, 34] (* Jean-François Alcover, Nov 25 2017, translated from Maple *)

Formula

a(n) = Sum_{k=1..n} Stirling2(n,k) * k * (n-k). - Ilya Gutkovskiy, Apr 06 2021
a(n) = Sum_{k=n..n*(n+1)/2} (k-n) * A367955(n,k). - Alois P. Heinz, Dec 11 2023

A298804 Triangle T(n,k) (1 <= k <= n) read by rows: A046936 with rows reversed and offset changed to 1.

Original entry on oeis.org

0, 1, 1, 3, 2, 1, 9, 6, 4, 3, 31, 22, 16, 12, 9, 121, 90, 68, 52, 40, 31, 523, 402, 312, 244, 192, 152, 121
Offset: 1

Author

N. J. A. Sloane, Jan 30 2018, following a suggestion from Don Knuth, Jan 29 2018

Keywords

Comments

This is another version of Moser's version (A046936) of Aitken's array (A011971).
Although offset 0 is better for A011971 and A046936, for this version offset 1 is more appropriate.
Comments from Don Knuth, Jan 29 2018 (Start):
a(n,k) is the number of set partitions (i.e. equivalence classes) in which (i) 1 is not equivalent to 2, ..., nor k; and (ii) the last part, when parts are ordered by their smallest element, has size 1; (iii) that last part isn't simply "1". (Equivalently, n>1.)
It's not difficult to prove this characterization of a(k,n). For example, if we know that there are 22 partitions of {1,2,3,4,5} with 1 inequivalent to 2, and 6 partitions of {1,2,3,4} with
1 inequivalent to 2, then there are 6 partitions of {1,2,3,4,5} with 1 inequivalent to 2 and 1 equivalent to 3. Hence there are 16 with 1 equivalent to neither 2 nor 3.
The same property, but leaving out conditions (ii) and (iii), characterizes Pierce's triangular array A123346. (End)

Examples

			Triangle begins:
0,
1, 1,
3, 2, 1,
9, 6, 4, 3,
31, 22, 16, 12, 9,
121, 90, 68, 52, 40, 31
523, 402, 312, 244, 192, 152, 121
...
		

Crossrefs

Previous Showing 41-50 of 61 results. Next