A129333
Fourth column of PE^4.
Original entry on oeis.org
0, 0, 0, 1, 16, 200, 2320, 26460, 303968, 3557904, 42676320, 526076100, 6673368240, 87148818328, 1171554274800, 16206294360620, 230561544221120, 3371256518888480, 50628767109223872, 780358333403627796
Offset: 0
-
A056857 := proc(n,c) combinat[bell](n-1-c)*binomial(n-1,c) ; end: A078937 := proc(n,c) add( A056857(n,k)*A056857(k+1,c),k=0..n) ; end: A078938 := proc(n,c) add( A078937(n,k)*A056857(k+1,c),k=0..n) ; end: A078939 := proc(n,c) add( A078938(n,k)*A056857(k+1,c),k=0..n) ; end: A129333 := proc(n) A078939(n+1,3) ; end: seq(A129333(n),n=0..25) ; # R. J. Mathar, May 30 2008
-
A056857[n_, c_] := If[n <= c, 0, BellB[n - 1 - c] Binomial[n - 1, c]];
A078937[n_, c_] := Sum[A056857[n, k] A056857[k + 1, c], {k, 0, n}];
A078938[n_, c_] := Sum[A078937[n, k] A056857[k + 1, c], {k, 0, n}];
A078939[n_, c_] := Sum[A078938[n, k] A056857[k + 1, c], {k, 0, n}];
a[n_] := A078939[n + 1, 3];
a /@ Range[0, 19] (* Jean-François Alcover, Mar 24 2020, after R. J. Mathar *)
A094577
Central Peirce numbers. Number of set partitions of {1,2,..,2n+1} in which n+1 is the smallest of its block.
Original entry on oeis.org
1, 3, 27, 409, 9089, 272947, 10515147, 501178937, 28773452321, 1949230218691, 153281759047387, 13806215066685433, 1408621900803060705, 161278353358629226675, 20555596673435403499083, 2896227959507289559616217, 448371253145121338801335489
Offset: 0
n = 1, S = {1, 2, 3}. k = n+1 = 2. Thus a(1) = card { 13|2, 1|23, 1|2|3 } = 3. - _Peter Luschny_, Jan 18 2011
- Donald E. Knuth, The Art of Computer Programming, Vol. 4, Section 7.2.1.5.
-
seq(add(binomial(n, k)*(bell(n+k)), k=0..n), n=0..14); # Zerinvary Lajos, Dec 01 2006
# The objective of this implementation is efficiency.
# m -> [a(0), a(1), ..., a(m-1)] for m > 0.
A094577_list := proc(m)
local A, R, M, n, k, j;
M := m+m-1; A := array(1..M);
j := 1; R := 1; A[1] := 1;
for n from 2 to M do
A[n] := A[1];
for k from n by -1 to 2 do
A[k-1] := A[k-1] + A[k]
od;
if is(n,odd) then
j := j+1; R := R,A[j] fi
od;
[R] end:
A094577_list(100); # example call - Peter Luschny, Jan 17 2011
-
f[n_] := Sum[Binomial[n, k]*BellB[2 n - k], {k, 0, n}]; Array[f, 15, 0]
-
# requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
from itertools import accumulate
A094577_list, blist, b = [1], [1], 1
for n in range(2,502):
blist = list(accumulate([b]+blist))
b = blist[-1]
blist = list(accumulate([b]+blist))
b = blist[-1]
A094577_list.append(blist[-n])
# Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014
A011968
Apply (1+Shift) to Bell numbers.
Original entry on oeis.org
1, 2, 3, 7, 20, 67, 255, 1080, 5017, 25287, 137122, 794545, 4892167, 31858034, 218543759, 1573857867, 11863100692, 93345011951, 764941675963, 6514819011216, 57556900440429, 526593974392123, 4981585554604074, 48658721593531669, 490110875149889635
Offset: 0
a(3)=7 because the set {1,3,4,5} has 7 different partitions into blocks of nonconsecutive integers: 14/35, 135/4, 1/35/4, 13/4/5, 14/3/5, 15/3/4, 1/3/4/5.
- Olivier Gérard and Karol Penson, A budget of set partitions statistics, in preparation, unpublished as of Sep 22 2011
- Chai Wah Wu, Table of n, a(n) for n = 0..500 n = 0..200 from Vincenzo Librandi.
- Cohn, Martin; Even, Shimon; Menger, Karl, Jr.; Hooper, Philip K.; On the Number of Partitionings of a Set of n Distinct Objects, Amer. Math. Monthly 69 (1962), no. 8, 782--785. MR1531841.
- Cohn, Martin; Even, Shimon; Menger, Karl, Jr.; Hooper, Philip K.; On the Number of Partitionings of a Set of n Distinct Objects, Amer. Math. Monthly 69 (1962), no. 8, 782--785. MR1531841. [Annotated scanned copy]
- Augustine O. Munagi, Extended set partitions with successions, European J. Combin. 29(5) (2008), 1298--1308.
- Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29.
-
with(combinat): seq(`if`(n>0,bell(n)+bell(n-1),1),n=0..21); # Augustine O. Munagi, Jul 17 2008
-
# requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
from itertools import accumulate
A011968_list, blist, b = [1,2], [1], 1
for _ in range(10**2):
blist = list(accumulate([b]+blist))
A011968_list.append(b+blist[-1])
b = blist[-1] # Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014
A011969
Apply (1+Shift)^2 to Bell numbers.
Original entry on oeis.org
1, 3, 5, 10, 27, 87, 322, 1335, 6097, 30304, 162409, 931667, 5686712, 36750201, 250401793, 1792401626, 13436958559, 105208112643, 858286687914, 7279760687179, 64071719451645, 584150874832552, 5508179528996197
Offset: 0
a(3)=10 because the set {1,3,5,6} has 10 different partitions into blocks of nonconsecutive integers: 15/36, 16/35, 135/6, 136/5, 1/35/6, 1/36/5, 13/5/6, 15/3/6, 16/3/5, 1/3/5/6.
- Olivier Gérard and Karol Penson, A budget of set partitions statistics, in preparation, unpublished as of Sep 22 2011
- Chai Wah Wu, Table of n, a(n) for n = 0..500 n = 0..200 from Vincenzo Librandi.
- Martin Cohn, Shimon Even, Karl Menger, Jr., and Philip K. Hooper, On the Number of Partitionings of a Set of n Distinct Objects, Amer. Math. Monthly 69 (1962), no. 8, 782--785. MR1531841.
- Martin Cohn, Shimon Even, Karl Menger, Jr., and Philip K. Hooper, On the Number of Partitionings of a Set of n Distinct Objects, Amer. Math. Monthly 69 (1962), no. 8, 782--785. MR1531841. [Annotated scanned copy]
- Augustine O. Munagi, Extended set partitions with successions, European J. Combin. 29(5) (2008), 1298--1308.
- Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29.
-
with(combinat): 1,3,seq(`if`(n>1,bell(n)+2*bell(n-1)+bell(n-2),NULL),n=2..22); # Augustine O. Munagi, Jul 17 2008
-
Join[{1,3},#[[1]]+2#[[2]]+#[[3]]&/@Partition[BellB[Range[0,30]],3,1]] (* Harvey P. Dale, May 05 2023 *)
-
# requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
from itertools import accumulate
A011969_list, blist, b, b2 = [1,3], [1], 1, 1
for _ in range(10**2):
blist = list(accumulate([b]+blist))
A011969_list.append(2*b+b2+blist[-1])
b2, b = b, blist[-1]
# Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014
A011970
Apply (1+Shift)^3 to Bell numbers.
Original entry on oeis.org
1, 4, 8, 15, 37, 114, 409, 1657, 7432, 36401, 192713, 1094076, 6618379, 42436913, 287151994, 2042803419, 15229360185, 118645071202, 963494800557, 8138047375093, 71351480138824, 648222594284197, 6092330403828749
Offset: 0
a(3)=15 because the set {1,3,5,7} has 15 different partitions which are necessarily into blocks of nonconsecutive integers.
- Olivier Gérard and Karol Penson, A budget of set partitions statistics, in preparation, unpublished as of Sep 22 2011
- Chai Wah Wu, Table of n, a(n) for n = 0..500
- Cohn, Martin; Even, Shimon; Menger, Karl, Jr.; Hooper, Philip K.; On the Number of Partitionings of a Set of n Distinct Objects, Amer. Math. Monthly 69 (1962), no. 8, 782--785. MR1531841.
- Cohn, Martin; Even, Shimon; Menger, Karl, Jr.; Hooper, Philip K.; On the Number of Partitionings of a Set of n Distinct Objects, Amer. Math. Monthly 69 (1962), no. 8, 782--785. MR1531841. [Annotated scanned copy]
- Augustine O. Munagi, Extended set partitions with successions, European J. Combin. 29(5) (2008), 1298--1308.
- Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29.
-
with(combinat): 1,4,8,seq(`if`(n>2,bell(n)+3*bell(n-1)+3*bell(n-2)+bell(n-3),NULL),n=3..22); # Augustine O. Munagi, Jul 17 2008
-
# requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
from itertools import accumulate
A011970_list, blist, b, b2, b3 = [1,4,8], [1, 2], 2, 1, 1
for _ in range(498):
blist = list(accumulate([b]+blist))
A011970_list.append(3*(b+b2)+b3+blist[-1])
b3, b2, b = b2, b, blist[-1]
# Chai Wah Wu, Sep 02 2014, updated Chai Wah Wu, Sep 20 2014
A073146
Triangle of numbers {a(n,k), n >= 0, 0 <= k <= n} defined by a(0,0)=1, a(n,0)=A000670(n), a(n,n)=A000629(n), a(n,k) = a(n,k-1) + a(n-1,k-1); a(n+1,0) = Sum_{k=0..n} a(n,k).
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 13, 16, 20, 26, 75, 88, 104, 124, 150, 541, 616, 704, 808, 932, 1082, 4683, 5224, 5840, 6544, 7352, 8284, 9366, 47293, 51976, 57200, 63040, 69584, 76936, 85220, 94586, 545835, 593128, 645104, 702304, 765344, 834928, 911864
Offset: 0
Triangle begins:
1;
1, 2;
3, 4, 6;
13, 16, 20, 26;
75, 88, 104, 124, 150;
541, 616, 704, 808, 932, 1082;
...
-
Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Fubini[0, 1] = 1;
a[n_, k_] := Sum[Binomial[k, i-n+k] Fubini[i, 1], {i, n-k, n}];
Table[a[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 30 2016, after Vladeta Jovovic *)
A108041
Triangle of numbers {a(n,k), n >= 0, 0<=k<=n} defined by a(0,0)=1, a(n,0)=a(n-1,n-1), a(n,k)=a(n,k-1) + Sum_{i=0..k-1} a(n-1,i).
Original entry on oeis.org
1, 1, 2, 2, 3, 7, 7, 9, 19, 42, 42, 49, 100, 210, 443, 443, 485, 977, 2005, 4120, 8473, 8473, 8916, 17874, 36240, 73508, 149131, 302615, 302615, 311088, 622619, 1254196, 2526758, 5090784, 10257191, 20667866, 20667866, 20970481, 41949435, 84210401, 169052379
Offset: 0
1; 1,2; 2,3,7; 7,9,19,42; 42,49,100,210,443; ...
-
f := proc(n,k) local i,t1; option remember; if n=0 and k=0 then 1 elif k=0 then f(n-1,n-1) else add(f(n,i),i=0..k-1) +f(n-1,k-1); fi: end;
A200580
Sum of dimension exponents of supercharacter of unipotent upper triangular matrices.
Original entry on oeis.org
0, 1, 10, 73, 490, 3246, 21814, 150535, 1072786, 7915081, 60512348, 479371384, 3932969516, 33392961185, 293143783762, 2658128519225, 24872012040510, 239916007100054, 2383444110867378, 24363881751014383, 256034413642582418, 2763708806499744097
Offset: 1
A200660
Sum of the number of arcs describing the set partitions of {1,2,...,n}.
Original entry on oeis.org
0, 1, 8, 49, 284, 1658, 9974, 62375, 406832, 2769493, 19668054, 145559632, 1121153604, 8974604065, 74553168520, 641808575961, 5718014325296, 52653303354906, 500515404889978, 4905937052293759, 49530189989912312, 514541524981377909, 5494885265473192914
Offset: 1
- Seiichi Manyama, Table of n, a(n) for n = 1..500
- M. Aguiar, C. Andre, C. Benedetti, N. Bergeron, Z. Chen, P. Diaconis, A. Hendrickson, S. Hsiao, I. M. Isaacs, A. Jedwab, K. Johnson, G. Karaali, A. Lauve, T. Le, S. Lewis, H. Li, K. Magaard, E. Marberg, J-C. Novelli, A. Pang, F. Saliola, L. Tevlin, J-Y. Thibon, N. Thiem, V. Venkateswaran, C. R. Vinroot, N. Yan, and M. Zabrocki, Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras, arXiv:1009.4134 [math.CO], 2010-2011.
- C. André, Basic characters of the unitriangular group, Journal of Algebra, 175 (1995), 287-319.
Cf.
A011971 (sequence is computed from Aitken's array b(n,k) arcs(n) = Sum_{k=1..n-1} k*b(n,k)).
Cf.
A200580,
A200673 (other statistics related to supercharacter table).
-
b:=proc(n,k) option remember;
if n=1 and k=1 then RETURN(1) fi;
if k=1 then RETURN(b(n-1,n-1)) fi;
b(n,k-1)+b(n-1,k-1)
end:
arcs:=proc(n) local res,k;
res:=0;
for k to n-1 do res:=res+ k*b(n,k) od;
res
end:
seq(arcs(n),n=1..34);
-
b[n_, k_] := b[n, k] = Which[n == 1 && k == 1, 1, k == 1, b[n - 1, n - 1], True, b[n, k - 1] + b[n - 1, k - 1]];
arcs[n_] := Module[{res = 0, k}, For[k = 1, k <= n-1, k++, res = res + k * b[n, k]]; res];
Array[arcs, 34] (* Jean-François Alcover, Nov 25 2017, translated from Maple *)
A298804
Triangle T(n,k) (1 <= k <= n) read by rows: A046936 with rows reversed and offset changed to 1.
Original entry on oeis.org
0, 1, 1, 3, 2, 1, 9, 6, 4, 3, 31, 22, 16, 12, 9, 121, 90, 68, 52, 40, 31, 523, 402, 312, 244, 192, 152, 121
Offset: 1
Triangle begins:
0,
1, 1,
3, 2, 1,
9, 6, 4, 3,
31, 22, 16, 12, 9,
121, 90, 68, 52, 40, 31
523, 402, 312, 244, 192, 152, 121
...
Previous
Showing 41-50 of 61 results.
Next
Comments