cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 47 results. Next

A355538 Partial sum of A001221 (number of distinct prime factors) minus 1, ranging from 2 to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 5, 6, 6, 7, 8, 9, 9, 10, 10, 11, 11, 12, 12, 14, 14, 14, 15, 16, 17, 18, 18, 19, 20, 21, 21, 23, 23, 24, 25, 26, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 34, 35, 35, 37, 37, 38, 39, 39, 40, 42, 42, 43, 44, 46, 46
Offset: 1

Views

Author

Gus Wiseman, Jul 23 2022

Keywords

Comments

For initial terms up to 30 we have a(n) = Log_2 A355537(n).

Crossrefs

The sum of the same range is A000096.
The product of the same range is A000142, Heinz number A070826.
For divisors (not just prime factors) we get A002541, also A006218, A077597.
A shifted variation is A013939.
The unshifted version is A022559, product A327486, w/o multiplicity A355537.
The ranges themselves are the rows of A131818 (shifted).
Partial sums of A297155 (shifted).
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A066843 gives partial sums of A000005.

Programs

  • Mathematica
    Table[Total[(PrimeNu[#]-1)&/@Range[2,n]],{n,1,100}]

Formula

a(n) = A013939(n) - n + 1.

A368613 a(n) = Sum_{k=2..n} pi(k-1) * floor(n/k).

Original entry on oeis.org

0, 0, 1, 3, 5, 9, 12, 18, 23, 29, 33, 44, 49, 58, 67, 79, 85, 100, 107, 123, 135, 147, 155, 179, 190, 204, 218, 238, 247, 273, 283, 306, 322, 339, 355, 388, 399, 418, 436, 468, 480, 514, 527, 555, 582, 604, 618, 663, 681, 711, 733, 764, 779, 819, 841, 881, 905, 930
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 31 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[PrimePi[k - 1] Floor[n/k], {k, 2, n}], {n, 100}]

Formula

a(n) = A368611(n) - A013939(n).

A082287 a(1) = 1; for n > 1, n appears omega(n) times, where omega(n)=A001221(n) is the number of distinct prime factors of n, a(1)=1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 15, 16, 17, 18, 18, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25, 26, 26, 27, 28, 28, 29, 30, 30, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 38, 38, 39, 39, 40, 40, 41, 42, 42, 42, 43, 44, 44, 45, 45, 46, 46, 47
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 07 2003

Keywords

Comments

A027748(n) divides a(n) and a(n)=A027748(n) iff a(n) is prime; a(A013939(n)+1)=n.

Crossrefs

Cf. A082288.

Programs

  • Mathematica
    Join[{1},Flatten[Table[PadRight[{},PrimeNu[n],n],{n,2,50}]]] (* Harvey P. Dale, Jan 08 2020 *)
  • PARI
    a(n)=if(n<0,0,t=1;while(sum(k=1,t,floor(t/prime(k)))Benoit Cloitre, Nov 08 2009

Formula

a(n) is the least k such that Sum_{p<=k} floor(k/p) >= n where p runs through the primes. - Benoit Cloitre, Nov 08 2009

A181967 Sum of the sizes of the normalizers of all prime order cyclic subgroups of the alternating group A_n.

Original entry on oeis.org

0, 0, 3, 24, 180, 1440, 12600, 120960, 1270080, 14515200, 179625600, 2634508800, 37362124800, 566658892800, 9807557760000, 167382319104000, 3023343138816000, 57621363351552000, 1155628453883904000, 25545471085854720000, 587545834974658560000, 13488008733331292160000
Offset: 1

Views

Author

Olivier Gérard, Apr 04 2012

Keywords

Comments

The first 11 terms of this sequence are the same as A317527. - Andrew Howroyd, Jul 30 2018

Crossrefs

Cf. A181951 for the number of such subgroups.
Cf. A181966 is the symmetric group case.

Programs

  • GAP
    List([1..7], n->Sum(Filtered( ConjugacyClassesSubgroups( AlternatingGroup(n)), x->IsPrime( Size( Representative(x))) ), x->Size(x)*Size( Normalizer( AlternatingGroup(n), Representative(x))) )); # Andrew Howroyd, Jul 30 2018
    
  • GAP
    a:=function(n) local total, perm, g, p, k;
      total:= 0; g:= AlternatingGroup(n);
      for p in Filtered([2..n], IsPrime) do for k in [1..QuoInt(n,p)] do
         if p>2 or IsEvenInt(k) then
           perm:=PermList(List([0..p*k-1], i->i - (i mod p) + ((i + 1) mod p) + 1));
           total:=total + Size(Normalizer(g, perm)) * Factorial(n) / (p^k * (p-1) * Factorial(k) * Factorial(n-k*p));
         fi;
      od; od;
      return total;
    end; # Andrew Howroyd, Jul 30 2018
    
  • PARI
    a(n)={n!*sum(p=2, n, if(isprime(p), if(p==2, n\4, n\p)))/2} \\ Andrew Howroyd, Jul 30 2018

Formula

a(n) = n! * (A013939(n) - floor((n + 2)/4)) / 2. - Andrew Howroyd, Jul 30 2018

Extensions

Some incorrect conjectures removed by Andrew Howroyd, Jul 30 2018
Terms a(9) and beyond from Andrew Howroyd, Jul 30 2018

A241419 Number of numbers m <= n that have a prime divisor greater than sqrt(n) (i.e., A006530(m)>sqrt(n)).

Original entry on oeis.org

0, 1, 2, 1, 2, 3, 4, 4, 2, 3, 4, 4, 5, 6, 7, 7, 8, 8, 9, 10, 11, 12, 13, 13, 9, 10, 10, 11, 12, 12, 13, 13, 14, 15, 16, 16, 17, 18, 19, 19, 20, 21, 22, 23, 23, 24, 25, 25, 19, 19, 20, 21, 22, 22, 23, 23, 24, 25, 26, 26, 27, 28, 28, 28, 29, 30, 31, 32, 33, 33, 34, 34, 35, 36, 36, 37, 38
Offset: 1

Views

Author

Michael De Vlieger, Aug 08 2014

Keywords

Comments

Values of n that are squares of primes p^2 seem to reduce the value of a(p^2) from the value a(p^2 - 1). Example, a(24) = 13, a(25) = 9; a(120) = 70, a(121) = 60.
a(p^2) = a(p^2-1) - p + 1 if p is prime. If n is not the square of a prime, a(n) >= a(n-1).- Robert Israel, Aug 11 2014

Examples

			a(12) = 4, because there are four values of m = {5, 7, 10, 11} that have prime divisors that exceed sqrt(12) = 3.464... These prime divisors are {5, 7, 5, 11} respectively.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get a(1) to a(N)
    MF:= map(m -> max(numtheory:-factorset(m))^2,<($1..N)>): MF[1]:= 0:
    seq(nops(select(m -> MF[m]>n, [$1..n])),n=1..N); # Robert Israel, Aug 11 2014
  • Mathematica
    a241419[n_Integer] :=
    Module[{f},
      f = Reap[For[m = 1, m <= n, m++,
         If[Max[First[Transpose[FactorInteger[m]]]] > Sqrt[n], Sow[m],
          False]]];
      If[Length[f[[2]]] == 0, Length[f[[2]]], Length[f[[2, 1]]]]]; a241419[120]
  • PARI
    isok(i, n) = {my(f = factor(i)); my(sqrn = sqrt(n)); for (k=1, #f~, if ((p=f[k, 1]) && (p>sqrn) , return (1)););}
    a(n) = sum(i=1, n, isok(i, n)); \\ Michel Marcus, Aug 11 2014
    
  • PARI
    A241419(n) = my(r=0); forprime(p=sqrtint(n)+1,n, r+=n\p); r; \\ Max Alekseyev, Nov 14 2017
    
  • Python
    from math import isqrt
    from sympy import primerange
    def A241419(n): return int(sum(n//p for p in primerange(isqrt(n)+1,n+1))) # Chai Wah Wu, Oct 06 2024

Formula

a(n) = Sum_{prime p > sqrt(n)} floor(n/p). - Max Alekseyev, Nov 14 2017

A300671 Expansion of 1/(1 - Sum_{k>=1} x^prime(k)/(1 - x^prime(k))).

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 6, 8, 15, 23, 40, 63, 108, 172, 290, 471, 782, 1280, 2119, 3474, 5741, 9432, 15557, 25590, 42180, 69413, 114371, 188276, 310136, 510637, 841045, 1384883, 2280831, 3755862, 6185457, 10185941, 16774695, 27624215, 45492412, 74916559, 123374127, 203172520, 334587577
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 11 2018

Keywords

Comments

Invert transform of A001221.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i)*nops(ifactors(i)[2]), i=1..n))
        end:
    seq(a(n), n=0..42);  # Alois P. Heinz, Feb 11 2021
  • Mathematica
    nmax = 42; CoefficientList[Series[1/(1 - Sum[x^Prime[k]/(1 - x^Prime[k]), {k, 1, nmax}]), {x, 0, nmax}], x]
    nmax = 42; CoefficientList[Series[1/(1 - Sum[PrimeNu[k] x^k, {k, 2, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[PrimeNu[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 42}]

Formula

G.f.: 1/(1 - Sum_{k>=2} A001221(k)*x^k).

A308495 a(n) is the position of the first occurrence of prime(n) in A027748.

Original entry on oeis.org

2, 3, 5, 8, 13, 16, 22, 25, 32, 41, 45, 55, 62, 66, 73, 83, 94, 98, 109, 117, 120, 132, 138, 150, 166, 173, 177, 185, 188, 196, 224, 231, 243, 247, 267, 271, 284, 295, 303, 315, 327, 331, 353, 356, 364, 368, 394, 419, 426, 430, 439, 452, 456, 475, 487, 500
Offset: 1

Views

Author

Peter Dolland, Jun 01 2019

Keywords

Examples

			For n = 5: a(5) = 13, A027748(13) = A000040(5) = 11.
		

Crossrefs

Programs

  • Haskell
    -- expected to be part of A027748
    a027748_list = concat (map a027748_row [1..])
    minIdx [] _ = []
    minIdx _ [] = []
    minIdx (a:as) (b:bs)
        | a == b = 1 : (map succ (minIdx as bs))
        | otherwise = map succ (minIdx as (b:bs))
    a308495_list = minIdx a027748_list a000040_list
    a308495 n = a308495_list !! (n-1)
    
  • Maple
    b:= proc(n) option remember; `if`(n=1, 1,
          b(n-1) +nops(ifactors(n)[2]))
        end:
    a:= n-> b(ithprime(n)):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jun 06 2019
  • Mathematica
    b[n_] := b[n] = If[n == 1, 1, b[n-1] + PrimeNu[n]];
    a[n_] := b[Prime[n]];
    Array[a, 60] (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
  • PARI
    a(n) = 1 + sum(k=1, prime(n), omega(k)); \\ Michel Marcus, Jun 05 2019

Formula

A027748(a(n)) = A000040(n).
a(n) = 1 + A013939(A000040(n)). - Charlie Neder, Jun 04 2019
a(n) = A082186(A000040(n)). - Alois P. Heinz, Jun 06 2019
a(n) = 1 + Sum_{k=1..n} floor(prime(n)/prime(k)). - Benoit Cloitre, Jan 11 2025

A342173 a(n) = Sum_{j=1..n-1} floor(prime(n)/prime(j)).

Original entry on oeis.org

0, 1, 3, 6, 11, 14, 20, 23, 30, 39, 43, 53, 60, 64, 71, 81, 92, 96, 107, 115, 118, 130, 136, 148, 164, 171, 175, 183, 186, 194, 222, 229, 241, 245, 265, 269, 282, 293, 301, 313, 325, 329, 351, 354, 362, 366, 392, 417, 424, 428, 437, 450, 454, 473, 485, 498, 511
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Mar 03 2021

Keywords

Comments

a(n) is the sum of the quotients in integer division of prime(n) by all smaller primes.

Examples

			a(4) = floor(7/2) + floor(7/3) + floor(7/5) = 6.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local t,i,s;
      t:= ithprime(n);
      add(floor(t/ ithprime(i)),i=1..n-1)
    end proc:
    map(f, [$1..100]);
  • Mathematica
    Table[Sum[Floor[Prime[n]/Prime[j]],{j,n-1}],{n,64}] (* Stefano Spezia, Mar 04 2021 *)
  • PARI
    a(n) = sum(j=1, n-1, prime(n)\prime(j)); \\ Michel Marcus, Mar 04 2021

Formula

a(n) = A308495(n) - 2. - Hugo Pfoertner, Mar 04 2021
a(n) = A013939(A006093(n)). - Flávio V. Fernandes, Jan 03 2025

A346111 a(n) = Sum_{primes p <=n} sigma(floor(n/p)).

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 9, 12, 13, 14, 15, 24, 25, 23, 23, 30, 31, 35, 36, 44, 41, 37, 38, 61, 60, 48, 46, 59, 60, 71, 72, 79, 74, 63, 58, 95, 96, 79, 66, 95, 96, 102, 103, 110, 108, 98, 99, 142, 138, 114, 102, 116, 117, 136, 129, 152, 134, 110, 111, 191, 192, 154, 142
Offset: 1

Views

Author

Michel Marcus, Jul 05 2021

Keywords

Crossrefs

Cf. A000203, A013939 (with k instead of sigma(k)), A344672 (with phi instead).

Programs

  • Mathematica
    a[n_] := Plus @@ DivisorSigma[1, Floor[n/Select[Range[n], PrimeQ]]]; Array[a, 100] (* Amiram Eldar, Jul 05 2021 *)
  • PARI
    a(n) = my(s=0); forprime(p=2, n, s+=sigma(n\p)); s;

A082186 1 + sum of first n terms of A001221.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 16, 18, 20, 21, 22, 24, 25, 27, 29, 31, 32, 34, 35, 37, 38, 40, 41, 44, 45, 46, 48, 50, 52, 54, 55, 57, 59, 61, 62, 65, 66, 68, 70, 72, 73, 75, 76, 78, 80, 82, 83, 85, 87, 89, 91, 93, 94, 97, 98, 100, 102, 103, 105, 108, 109, 111, 113
Offset: 1

Views

Author

Jon Perry, May 09 2003

Keywords

Crossrefs

Equals 1 + A013939.

Programs

  • Maple
    with(numtheory): s := 1: for n from 1 to 150 do it := nops(ifactors(n)[2]): s := s+it: printf(`%d,`,s): od: # James Sellers, May 19 2003
  • Mathematica
    a082186[n_] := Block[{t = Table[0, {n}], i},
    For[i = 0, i < n, t[[i]] = 1 + Plus @@ PrimeNu /@ Range[i], i++]; t]; a082186[69] (* Michael De Vlieger, Dec 24 2014 *)

Extensions

More terms from James Sellers, May 19 2003
Previous Showing 21-30 of 47 results. Next