A104275
Numbers k such that 2k-1 is not prime.
Original entry on oeis.org
1, 5, 8, 11, 13, 14, 17, 18, 20, 23, 25, 26, 28, 29, 32, 33, 35, 38, 39, 41, 43, 44, 46, 47, 48, 50, 53, 56, 58, 59, 60, 61, 62, 63, 65, 67, 68, 71, 72, 73, 74, 77, 78, 80, 81, 83, 85, 86, 88, 89, 92, 93, 94, 95, 98, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 113
Offset: 1
a(1) = 1 because 2*1-1=1, not prime.
a(2) = 5 because 2*5-1=9, not prime (2, 3 and 4 give 3, 5 and 7 which are primes).
From _Vincenzo Librandi_, Jan 15 2013: (Start)
As a triangular array (apart from term 1):
5;
8, 13;
11, 18, 25;
14, 23, 32, 41;
17, 28, 39, 50, 61;
20, 33, 46, 59, 72, 85;
23, 38, 53, 68, 83, 98, 113;
26, 43, 60, 77, 94, 111, 128, 145;
29, 48, 67, 86, 105, 124, 143, 162, 181;
32, 53, 74, 95, 116, 137, 158, 179, 200, 221; etc.
which is obtained by (2*h*k + k + h + 1) with h >= k >= 1. (End)
The above array, which contains the same terms as A053726 but in different order and with some duplicates, has its own entry A144650. - _Antti Karttunen_, Apr 17 2015
-
[n: n in [1..220]| not IsPrime(2*n-1)]; // Vincenzo Librandi, Jan 28 2011
-
remove(t -> isprime(2*t-1), [$1..1000]); # Robert Israel, Apr 17 2015
-
Select[Range[115], !PrimeQ[2#-1] &] (* Robert G. Wilson v, Apr 18 2005 *)
-
select( {is_A104275(n)=!isprime(n*2-1)}, [1..115]) \\ M. F. Hasler, Aug 02 2022
-
from sympy import isprime
def ok(n): return not isprime(2*n-1)
print(list(filter(ok, range(1, 114)))) # Michael S. Branicky, May 08 2021
-
from sympy import primepi
def A104275(n):
if n <= 2: return ((n-1)<<2)+1
m, k = n-1, (r:=primepi(n-1)) + n - 1 + (n-1>>1)
while m != k:
m, k = k, (r:=primepi(k)) + n - 1 + (k>>1)
return r+n-1 # Chai Wah Wu, Aug 02 2024
-
[n for n in (1..250) if not is_prime(2*n-1)] # G. C. Greubel, Oct 17 2023
-
(define (A104275 n) (if (= 1 n) 1 (A053726 (- n 1)))) ;; More code in A053726. - Antti Karttunen, Apr 17 2015
A045751
Numbers k such that 4*k + 1 is not prime.
Original entry on oeis.org
0, 2, 5, 6, 8, 11, 12, 14, 16, 17, 19, 20, 21, 23, 26, 29, 30, 31, 32, 33, 35, 36, 38, 40, 41, 42, 44, 46, 47, 50, 51, 52, 53, 54, 55, 56, 59, 61, 62, 63, 65, 66, 68, 71, 72, 74, 75, 76, 77, 80, 81, 82, 83, 85, 86, 89, 90, 91, 92, 94, 95, 96, 98, 101, 103, 104, 106, 107, 109
Offset: 1
Distribution of the positive terms in the following triangular array:
2;
*, 6;
5, *, 12;
*, 11, *, 20;
8, *, 19, *, 30;
*, 16, *, 29, *, 42;
11, *, 26, *, 41, *, 56;
*, 21, *, 38, *, 55, *, 72;
14, *, 33, *, 52, *, 71, *, 90;
*, 26, *, 47, *, 68, *, 89, *, 110;
17, *, 40, *, 63, *, 86, *, 109, *, 132;
etc., where * marks the noninteger values of (2*h*k + k + h)/2 with h >= k >= 1. - _Vincenzo Librandi_, Jan 14 2013
-
[n: n in [0..220]| not IsPrime(4*n+1)]; // Vincenzo Librandi, Jan 28 2011
-
for n from 0 to 100 do
if irem(factorial(4*n), 4*n+1) = 0 then print(n); end if;
end do: # Peter Bala, Jan 25 2017
-
Select[Range[0, 200], ! PrimeQ[4 # + 1] &]
-
is(n)=!isprime(4*n+1) \\ Charles R Greathouse IV, Jul 29 2016
A095277
Numbers k such that 4k + 3 is composite.
Original entry on oeis.org
3, 6, 8, 9, 12, 13, 15, 18, 21, 22, 23, 24, 27, 28, 29, 30, 33, 35, 36, 38, 39, 42, 43, 45, 46, 48, 50, 51, 53, 54, 57, 58, 60, 61, 63, 64, 66, 68, 69, 71, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 85, 87, 88, 90, 92, 93, 96, 97, 98, 99, 100, 101, 102, 103, 105, 106, 108
Offset: 1
Distribution of the positive terms in the following triangular array:
*;
3, *;
*, 8, *;
6, *, 15, *;
*, 13, *, 24, *;
9, *, 22, *, 35, *;
*, 18, *, 33, *, 48, *;
etc., where * marks the noninteger values of (2*h*k + k + h-1)/2 with h >= k >= 1. - _Vincenzo Librandi_, Apr 22 2014
A153088
Numbers k such that 5*k - 1 is not prime.
Original entry on oeis.org
1, 2, 3, 5, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 77, 79, 80, 81, 83, 85, 86, 87, 89, 91, 92, 93
Offset: 1
Distribution of the even terms in the following triangular array:
2;
*, *;
*, *, 10;
*, *, *, *;
*, *, *, 20, *;
8, *, *, *, *, 34;
*, *, *, *, *, *, *;
*, *, 24, *, *, *, *, 58;
*, *, *, *, 42, *, *, *, *;
*, *, *, 38, *, *, *, *, 80, *;
14, *, *, *, *, 60, *, *, *, *, 106;
etc., where * marks the noninteger values of (4*h*k + 2*k + 2*h + 2)/5 with h >= k >= 1. - _Vincenzo Librandi_, Jan 15 2013
-
[n: n in [1..100] | not IsPrime(5*n-1)]; // Vincenzo Librandi, Oct 11 2012
-
# produces the sequence apart from the initial terms 1 and 2
for n from 0 to 100 do
if irem(factorial(5*n), 5*n+4) = 0 then print(n+1); end if;
end do: # Peter Bala, Jan 25 2017
-
Select[Range[1, 200], !PrimeQ[5 # - 1] &] (* Vincenzo Librandi, Oct 11 2012 *)
First 29 replaced with 20, 4 replaced with 44, extended by
R. J. Mathar, Jan 05 2009
A153170
Numbers k such that 3*k + 2 is not prime.
Original entry on oeis.org
2, 4, 6, 8, 10, 11, 12, 14, 16, 18, 20, 21, 22, 24, 25, 26, 28, 30, 31, 32, 34, 36, 38, 39, 40, 41, 42, 44, 46, 47, 48, 50, 51, 52, 53, 54, 56, 58, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78, 80, 81, 82, 84, 86, 88, 90, 91, 92, 94, 95, 96, 98, 99, 100, 101, 102
Offset: 1
Distribution of the odd terms in the following triangular array:
*;
*, *;
*, 11, *;
*, *, *, *;
*, *, 25, *, *;
*, 21, *, *, 47, *;
*, *, *, *, *, *, *;
*, *, 39, *, *, 73, *, *;
*, 31, *, *, 69, *, *, 107, *;
*, *, *, *, *, *, *, *, *, *;
*, *, 53, *, *, 99, *, *, 145, *, *;
*, 41, *, *, 91, *, *, 141, *, *, 191, *;
etc., where * marks the noninteger values of (4*h*k + 2*k + 2*h - 1)/3 with h >= k >= 1. - _Vincenzo Librandi_, Jan 15 2013
-
[n: n in [1..110] | not IsPrime(3*n + 2)]; // Vincenzo Librandi, Oct 11 2012
-
for n from 0 to 100 do
if irem(factorial(3*n), 3*n+2) = 0 then print(n); end if;
end do: # Peter Bala, Jan 25 2017
-
Select[Range[1, 200], !PrimeQ[3*# + 2] &] (* Vincenzo Librandi, Oct 11 2012 *)
-
for(n=1,200,if(!isprime(3*n+2), print1(n,", "))) \\ Joerg Arndt, Nov 27 2010
A203069
Lexicographically earliest sequence of distinct positive numbers such that a(n-1)+a(n) is odd and composite.
Original entry on oeis.org
1, 8, 7, 2, 13, 12, 3, 6, 9, 16, 5, 4, 11, 10, 15, 18, 17, 22, 23, 26, 19, 14, 21, 24, 25, 20, 29, 28, 27, 30, 33, 32, 31, 34, 35, 40, 37, 38, 39, 36, 41, 44, 43, 42, 45, 46, 47, 48, 51, 54, 57, 58, 53, 52, 59, 56, 49, 50, 55, 60, 61, 62, 63, 66, 67, 68, 65
Offset: 1
a(1)=1; the smallest possible even number m such that 1+m is composite is m=8, hence a(2)=8;
the smallest possible odd number m such that 8+m is composite is m=7, hence a(3)=7;
the smallest possible even number m such that 7+m is composite is m=2, hence a(4)=2.
See
A346609 for the successive odd nonprimes that arise.
-
import Data.List (delete)
a203069 n = a203069_list !! (n-1)
a203069_list = 1 : f 1 [2..] where
f u vs = g vs where
g (w:ws) | odd z && a010051' z == 0 = w : f w (delete w vs)
| otherwise = g ws
where z = u + w
-- Reinhard Zumkeller, Jan 14 2015
-
(See link)
-
Clear[used];used={1};oc[n_]:=Module[{k=If[OddQ[n],2,1]},While[ !CompositeQ[ n+k]||MemberQ[used,k],k+=2];Flatten[AppendTo[used,k]];k] (* Harvey P. Dale, Aug 16 2021 *)
-
@cached_function
def A203069(n):
if n == 1: return 1
used = set(A203069(i) for i in [1..n-1])
works = lambda an: (A203069(n-1)+an) % 2 == 1 and len(divisors((A203069(n-1)+an))) > 2
return next(k for k in PositiveIntegers() if k not in used and works(k)) # D. S. McNeil, Dec 28 2011
A056653
Composite numbers together with 1 but excluding 4.
Original entry on oeis.org
1, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95
Offset: 1
-
for n from 1 to 100 do
if irem(factorial(n-1),n) = 0 then print(n) end if;
end do: # Peter Bala, Jan 24 2017
-
Select[ Range[ 1, 100 ], Mod[ (# - 1)!, # ] == 0 & ]
Join[{1},Select[Range[5,100],CompositeQ]] (* Harvey P. Dale, Jun 14 2024 *)
-
from sympy import composite
def A056653(n): return composite(n) if n>1 else 1 # Chai Wah Wu, Jul 31 2024
A153329
Numbers k such that 5*k + 1 is not prime.
Original entry on oeis.org
0, 1, 3, 4, 5, 7, 9, 10, 11, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 37, 39, 40, 41, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 60, 61, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 85, 87
Offset: 1
Distribution of the even terms in the following triangular array:
*;
*, *;
4, *, *;
*, *, *, 16;
*, *, *, *, 24;
*, *, 18, *, *, *;
*, *, *, *, *, *, *;
10, *, *, *, *, 44, *, *;
*, *, *, 34, *, *, *, *, 72;
*, *, *, *, 46, *, *, *, *, 88;
*, *, 32, *, *, *, *, 78, *, *, *;
etc., where * marks the noninteger values of (4*h*k + 2*k + 2*h)/5 with h >= k >= 1. - _Vincenzo Librandi_, Jan 17 2013
-
[n: n in [0..150] | not IsPrime(5*n + 1)]; // Vincenzo Librandi, Jan 12 2013
-
for n from 0 to 100 do
if irem(factorial(5*n), 5*n+1) = 0 then print(n); end if;
end do: # Peter Bala, Jan 25 2017
-
Select[Range[0, 200], !PrimeQ[5*# + 1]&] (* Vincenzo Librandi, Jan 12 2013 *)
A153343
Numbers k such that 5*k + 4 is not prime.
Original entry on oeis.org
0, 1, 2, 4, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 22, 23, 24, 25, 26, 28, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 72, 73, 74, 76, 78, 79, 80, 82, 84, 85, 86, 88
Offset: 1
Distribution of the odd terms in the following triangular array:
1;
*, *;
*, *, 9;
*, *, *, *;
*, *, *, 19, *;
7, *, *, *, *, 33;
*, *, *, *, *, *, *;
*, *, 23, *, *, *, *, 57;
*, *, *, *, 41, *, *, *, *;
*, *, *, 37, *, *, *, *, 79, *;
13, *, *, *, *, 59, *, *, *, *, 105;
etc., where * marks the noninteger values of (4*h*k + 2*k + 2*h - 3)/5 with h >= k >= 1. - _Vincenzo Librandi_, Jan 17 2013
-
[n: n in [0..150] | not IsPrime(5*n + 4)]; // Vincenzo Librandi, Jan 12 2013
-
# produces the sequence apart from the initial terms 0 and 1
for n from 0 to 100 do
if irem(factorial(5*n), 5*n+4) = 0 then print(n); end if;
end do: # Peter Bala, Jan 25 2017
-
Select[Range[0, 200], !PrimeQ[5*# + 4]&] (* Vincenzo Librandi, Jan 12 2013 *)
A093183
Number of consecutive runs of just 1 odd nonprime congruent to 1 mod 4 below 10^n.
Original entry on oeis.org
0, 3, 74, 1114, 13437, 151311, 1642197, 17405273, 181925434, 1883327626, 19364371468, 198115934511, 2019328584101
Offset: 1
a(3) = 74 because 74 single nonprime runs occur below 10^3, each run interrupted by a nonprime congruent to 3 mod 4.
Below 10^2 = 100, there are only a(2) = 3 isolated odd nonprimes congruent to 1 mod 4: 33, 57 and 93. (Credits: _Peter Munn_, SeqFan list.) - _M. F. Hasler_, Sep 30 2018
-
A014076 := proc(n)
option remember;
if n = 1 then
1;
else
for a from procname(n-1)+2 by 2 do
if not isprime(a) then
return a;
end if;
end do:
end if;
end proc:
isA091113 := proc(n)
option remember;
if modp(n,4) = 1 and not isprime(n) then
true;
else
false;
end if;
end proc:
isA091236 := proc(n)
option remember;
if modp(n,4) = 3 and not isprime(n) then
true;
else
false;
end if;
end proc:
ct := 0 :
n := 1 :
for i from 2 do
odnpr := A014076(i) ;
prev := A014076(i-1) ;
nxt := A014076(i+1) ;
if isA091113(odnpr) and isA091236(prev) and isA091236(nxt) then
ct := ct+1 ;
end if;
if odnpr< 10^n and nxt >= 10^n then
print(n,ct) ;
n := n+1 ;
end if;
end do: # R. J. Mathar, Oct 02 2018
-
A091113 = Select[4 Range[0, 10^5] + 1, ! PrimeQ[#] &];
A091236 = Select[4 Range[0, 10^5] + 3, ! PrimeQ[#] &];
lst = {}; Do[If[Length[s = Select[A091113,Between[{A091236[[i]], A091236[[i + 1]]}]]] == 1, AppendTo[lst, s]], {i, Length[A091236] - 1}]; Table[Count[Flatten[lst], x_ /; x < 10^n], {n, 5}] (* Robert Price, May 30 2019 *)
Comments