cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A002808 The composite numbers: numbers n of the form x*y for x > 1 and y > 1.

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88
Offset: 1

Views

Author

Keywords

Comments

The natural numbers 1,2,... are divided into three sets: 1 (the unit), the primes (A000040) and the composite numbers (A002808).
The number of composite numbers <= n (A065855) = n - pi(n) (A000720) - 1.
n is composite iff sigma(n) + phi(n) > 2n. This is a nice result of the well known theorem: For all positive integers n, n = Sum_{d|n} phi(d). For the proof see my contribution to puzzle 76 of Carlos Rivera's Primepuzzles. - Farideh Firoozbakht, Jan 27 2005, Jan 18 2015
The composite numbers have the semiprimes A001358 as primitive elements.
A211110(a(n)) > 1. - Reinhard Zumkeller, Apr 02 2012
A060448(a(n)) > 1. - Reinhard Zumkeller, Apr 05 2012
A086971(a(n)) > 0. - Reinhard Zumkeller, Dec 14 2012
Composite numbers n which are the product of r=A001222(n) prime numbers are sometimes called r-almost primes. Sequences listing r-almost primes are: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), A069274 (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011
a(n) = A056608(n) * A160180(n). - Reinhard Zumkeller, Mar 29 2014
Degrees for which there are irreducible polynomials which are reducible mod p for all primes p, see Brandl. - Charles R Greathouse IV, Sep 04 2014
An integer is composite if and only if it is the sum of strictly positive integers in arithmetic progression with common difference 2: 4 = 1 + 3, 6 = 2 + 4, 8 = 3 + 5, 9 = 1 + 3 + 5, etc. - Jean-Christophe Hervé, Oct 02 2014
This statement holds since k+(k+2)+...+k+2(n-1) = n*(n+k-1) = a*b with arbitrary a,b (taking n=a and k=b-a+1 if b>=a). - M. F. Hasler, Oct 04 2014
For n > 4, these are numbers n such that n!/n^2 = (n-1)!/n is an integer (see A056653). - Derek Orr, Apr 16 2015
Let f(x) = Sum_{i=1..x} Sum_{j=2..i-1} cos((2*Pi*x*j)/i). It is known that the zeros of f(x) are the prime numbers. So these are the numbers n such that f(n) > 0. - Michel Lagneau, Oct 13 2015
Numbers n that can be written as solutions of the Diophantine equation n = (x+2)(y+2) where {x,y} in N^2, pairs of natural numbers including zero (cf. Mathematica code and Davis). - Ron R Spencer and Bradley Klee, Aug 15 2016
Numbers n with a partition (containing at least two summands) so that its summands also multiply to n. If n is prime, there is no way to find those two (or more) summands. If n is composite, simply take a factor or several, write those divisors and fill with enough 1's so that they add up to n. For example: 4 = 2*2 = 2+2, 6 = 1*2*3 = 1+2+3, 8 = 1*1*2*4 = 1+1+2+4, 9 = 1*1*1*3*3 = 1+1+1+3+3. - Juhani Heino, Aug 02 2017

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 2.
  • A. E. Bojarincev, Asymptotic expressions for the n-th composite number, Univ. Mat. Zap. 6:21-43 (1967). - In Russian.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 127.
  • Martin Davis, "Algorithms, Equations, and Logic", pp. 4-15 of S. Barry Cooper and Andrew Hodges, Eds., "The Once and Future Turing: Computing the World", Cambridge 2016.
  • R. K. Guy, Unsolved Problems Number Theory, Section A.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 2.
  • D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 66.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 51.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A008578. - Omar E. Pol, Dec 16 2016
Cf. A073783 (first differences), A073445 (second differences).
Boustrophedon transforms: A230954, A230955.
Cf. A163870 (nontrivial divisors).
Related sequences:
Primes (p) and composites (c): A000040, A002808, A000720, A065855.
Primes between p(n) and 2*p(n): A063124, A070046; between c(n) and 2*c(n): A376761; between n and 2*n: A035250, A060715, A077463, A108954.
Composites between p(n) and 2*p(n): A246514; between c(n) and 2*c(n): A376760; between n and 2*n: A075084, A307912, A307989, A376759.

Programs

  • Haskell
    a002808 n = a002808_list !! (n-1)
    a002808_list = filter ((== 1) . a066247) [2..]
    -- Reinhard Zumkeller, Feb 04 2012
    
  • Magma
    [n: n in [2..250] | not IsPrime(n)]; // G. C. Greubel, Feb 24 2024
    
  • Maple
    t := []: for n from 2 to 20000 do if isprime(n) then else t := [op(t),n]; fi; od: t; remove(isprime,[$3..89]); # Zerinvary Lajos, Mar 19 2007
    A002808 := proc(n) option remember ; local a ; if n = 1 then 4; else for a from procname(n-1)+1 do if not isprime(a) then return a; end if; end do ; end if; end proc; # R. J. Mathar, Oct 27 2009
  • Mathematica
    Select[Range[2,100], !PrimeQ[#]&] (* Zak Seidov, Mar 05 2011 *)
    With[{nn=100},Complement[Range[nn],Prime[Range[PrimePi[nn]]]]] (* Harvey P. Dale, May 01 2012 *)
    Select[Range[100], CompositeQ] (* Jean-François Alcover, Nov 07 2021 *)
  • PARI
    A002808(n)=for(k=0,primepi(n),isprime(n++)&&k--);n \\ For illustration only: see below. - M. F. Hasler, Oct 31 2008
    
  • PARI
    A002808(n)= my(k=-1); while(-n + n += -k + k=primepi(n),); n \\ For n=10^4 resp. 3*10^4, this is about 100 resp. 500 times faster than the former; M. F. Hasler, Nov 11 2009
    
  • PARI
    forcomposite(n=1, 1e2, print1(n, ", ")) \\ Felix Fröhlich, Aug 03 2014
    
  • PARI
    for(n=1, 1e3, if(bigomega(n) > 1, print1(n, ", "))) \\ Altug Alkan, Oct 14 2015
    
  • Python
    from sympy import primepi
    def A002808(n):
        m, k = n, primepi(n) + 1 + n
        while m != k:
            m, k = k, primepi(k) + 1 + n
        return m # Chai Wah Wu, Jul 15 2015, updated Apr 14 2016
    
  • Python
    from sympy import isprime
    def ok(n): return n > 1 and not isprime(n)
    print([k for k in range(89) if ok(k)]) # Michael S. Branicky, Nov 07 2021
    
  • Python
    next_A002808=lambda n: next(n for n in range(n,n*5)if not isprime(n)) # next composite >= n > 0; next_A002808(n)==n <=> iscomposite(n). - M. F. Hasler, Mar 28 2025
    is_A002808=lambda n:not isprime(n) and n>1 # where isprime(n) can be replaced with: all(n%d for d in range(2, int(n**.5)+1))
    # generators of composite numbers:
    A002808_upto=lambda stop=1<<59: filter(is_A002808, range(2,stop))
    A002808_seq=lambda:(q:=2)and(n for p in primes if (o:=q)<(q:=p) for n in range(o+1,p)) # with, e.g.: primes=filter(isprime,range(2,1<<59)) # M. F. Hasler, Mar 28 2025
    
  • SageMath
    [n for n in (2..250) if not is_prime(n)] # G. C. Greubel, Feb 24 2024

Formula

a(n) = pi(a(n)) + 1 + n, where pi is the prime counting function.
a(n) = A136527(n, n).
A000005(a(n)) > 2. - Juri-Stepan Gerasimov, Oct 17 2009
A001222(a(n)) > 1. - Juri-Stepan Gerasimov, Oct 30 2009
A000203(a(n)) < A007955(a(n)). - Juri-Stepan Gerasimov, Mar 17 2011
A066247(a(n)) = 1. - Reinhard Zumkeller, Feb 05 2012
Sum_{n>=1} 1/a(n)^s = Zeta(s)-1-P(s), where P is prime zeta. - Enrique Pérez Herrero, Aug 08 2012
n + n/log n + n/log^2 n < a(n) < n + n/log n + 3n/log^2 n for n >= 4, see Panaitopol. Bojarincev gives an asymptotic version. - Charles R Greathouse IV, Oct 23 2012
a(n) > n + A000720(n) + 1. - François Huppé, Jan 08 2025

Extensions

Deleted an incomplete and broken link. - N. J. A. Sloane, Dec 16 2010

A014076 Odd nonprimes.

Original entry on oeis.org

1, 9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55, 57, 63, 65, 69, 75, 77, 81, 85, 87, 91, 93, 95, 99, 105, 111, 115, 117, 119, 121, 123, 125, 129, 133, 135, 141, 143, 145, 147, 153, 155, 159, 161, 165, 169, 171, 175, 177, 183, 185, 187, 189, 195, 201, 203, 205, 207
Offset: 1

Views

Author

Keywords

Comments

Same as A071904 except for the initial term 1 (which is not composite).
Numbers n such that product of first n odd numbers divided by sum of the first n odd numbers is an integer : 1*3*5*...*(2*n - 1) / (1 + 3 + 5 + ... + (2*n - 1)) = c. - Ctibor O. Zizka, Jun 26 2010
Conjecture: There exist infinitely many pairs [a(n), a(n)+6] such that a(n)/3 and (a(n)+6)/3 are twin primes. - Eric Desbiaux, Sep 25 2014.
Odd numbers 2*n + 1 such that (2*n)!/(2*n + 1) is an integer. Odd terms of A056653. - Peter Bala, Jan 24 2017

Crossrefs

Cf. A002808, A005408; first differences: A067970, A196274; A047846.
Cf. A056653.

Programs

  • Haskell
    a014076 n = a014076_list !! (n-1)
    a014076_list = filter ((== 0) . a010051) a005408_list
    -- Reinhard Zumkeller, Sep 30 2011
    
  • Maple
    remove(isprime, [seq(i,i=1..1000,2)]); # Robert Israel, May 25 2016
    for n from 0 to 120 do
    if irem(factorial(2*n), 2*n+1) = 0 then print(2*n+1) end if;
    end do: # Peter Bala, Jan 24 2017
  • Mathematica
    Select[Range@210, !PrimeQ@ # && OddQ@ # &] (* Robert G. Wilson v, Sep 22 2008 *)
    Select[Range[1, 199, 2], PrimeOmega[#] != 1 &] (* Alonso del Arte, Nov 19 2012 *)
  • PARI
    is(n)=n%2 && !isprime(n) \\ Charles R Greathouse IV, Nov 24 2012
    
  • Python
    from sympy import primepi
    def A014076(n):
        if n == 1: return 1
        m, k = n-1, primepi(n) + n - 1 + (n>>1)
        while m != k:
            m, k = k, primepi(k) + n - 1 + (k>>1)
        return m # Chai Wah Wu, Jul 31 2024

Formula

A000035(a(n))*(1 - A010051(a(n))) = 1. - Reinhard Zumkeller, Sep 30 2011
a(n) ~ 2n. - Charles R Greathouse IV, Jul 02 2013
(a(n+2)-1)/2 - pi(a(n+2)-1) = n. - Anthony Browne, May 25 2016. Proof from Robert Israel: This follows by induction on n. If f(n) = (a(n+2)-1)/2 - pi(a(n+2)-1), one can show f(n+1) - f(n) = 1 (there are three cases to consider, depending on primeness of a(n+2) + 2 and a(n+2) + 4).
Union of A091113 and A091236. - R. J. Mathar, Oct 02 2018

A226198 a(n) = floor((n-1)!/n).

Original entry on oeis.org

1, 0, 0, 1, 4, 20, 102, 630, 4480, 36288, 329890, 3326400, 36846276, 444787200, 5811886080, 81729648000, 1230752346352, 19760412672000, 336967037143578, 6082255020441600, 115852476579840000, 2322315553259520000, 48869596859895986086
Offset: 1

Views

Author

Vincenzo Librandi, May 31 2013

Keywords

Comments

(h-1)!/h is integer if h belongs to A056653.

Crossrefs

Cf. A001048 ((n+1)!/n), A056653, A091330 (floor((p-1)!/p), where p is prime), A175787 (prime numbers together with 4).

Programs

  • Magma
    [Floor(Factorial(n-1)/n): n in [1..25]];
  • Mathematica
    Table[Quotient[(n - 1)!, n], {n, 25}]

Extensions

Edited by Bruno Berselli, May 31 2013

A129906 n!/(n^2) when an integer.

Original entry on oeis.org

1, 20, 630, 4480, 36288, 3326400, 444787200, 5811886080, 81729648000, 19760412672000, 6082255020441600, 115852476579840000, 2322315553259520000, 1077167364120207360000, 24817936069329577574400, 596585001666576384000000, 14936720782466875392000000
Offset: 1

Views

Author

Jonathan Vos Post, Jun 09 2007

Keywords

Comments

Also see comments in A046022 = primes together with 1 and 4.

Crossrefs

Programs

  • Mathematica
    f[n_]:=If[PrimeQ[n]||n == 4,0,n!/n^2];Select[Table[f[n],{n,1,40}],#>0&]  (* Geoffrey Critzer, Oct 26 2012 *)
    Select[#!/#^2&/@Range[30],IntegerQ] (* Harvey P. Dale, Jul 17 2024 *)

Formula

a(n) = A000142(m)/A000290(m) where m = A056653(n). - Jason Yuen, Sep 20 2024

Extensions

More terms from Alois P. Heinz, Oct 26 2012

A357481 a(n) is the least integer b such that the digit representation of n in base b is equal to the digit representation in base b of the initial terms of the sets of divisors of n in increasing order, or -1 if no such b exists.

Original entry on oeis.org

2, -1, -1, -1, -1, 2, -1, 6, 6, 8, -1, 10, -1, 12, 12, 14, -1, 16, -1, 18, 18, 20, -1, 22, 20, 24, 24, 26, -1, 28, -1, 30, 30, 32, 30, 34, -1, 36, 36, 38, -1, 40, -1, 42, 42, 44, -1, 3, 42, 3, 48, 2, -1, 52, 50, 54, 54, 56, -1, 58, -1, 60, 2, 62, 60, 7, -1, 66, 66, 68, -1, 70, -1, 72, 7
Offset: 1

Views

Author

Michel Marcus, Sep 30 2022

Keywords

Comments

It appears that a(n) != -1 iff n in A056653.

Examples

			In base 10, 12 is a term of A175252, and there is no other lesser base for which 12 works, so a(12) = 10.
		

Crossrefs

Programs

  • PARI
    isok(k, b) = my(s=[]); fordiv(k, d, s=concat(s, digits(d, b)); if (fromdigits(s, b)==k, return(1)); if (fromdigits(s, b)> k, return(0)));
    a(n) = if (n==1, 2, for (b=2, n-1, if (isok(n, b), return(b))); return(-1););
    
  • Python
    from sympy import divisors
    from sympy.ntheory import digits
    def ok(n, b):
        target, s = digits(n, b)[1:], []
        if target[0] != 1: return False
        for d in divisors(n):
            s += digits(d, b)[1:]
            if len(s) >= len(target): return s == target
    def a(n):
        if n == 1: return 2
        for b in range(2, n):
            if ok(n, b): return b
        return -1
    print([a(n) for n in range(1, 76)]) # Michael S. Branicky, Oct 05 2022

A173905 {2,3} and the nonprimes A141468.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 02 2010

Keywords

Comments

Essentially the same as A002808, A141468, A018252, A065090, A171581 and A056653.

Crossrefs

Cf. A141468.

Extensions

Replaced the 4-fold negation in the definition by a simpler phrase - R. J. Mathar, Mar 05 2010
Showing 1-6 of 6 results.