cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 69 results. Next

A280611 Number of degree n products of distinct cyclotomic polynomials.

Original entry on oeis.org

1, 2, 4, 6, 10, 14, 24, 34, 52, 70, 102, 134, 194, 254, 352, 450, 610, 770, 1036, 1302, 1716, 2130, 2770, 3410, 4406, 5402, 6892, 8382, 10600, 12818, 16120, 19422, 24216, 29010, 35932, 42854, 52832, 62810, 76944, 91078, 111008, 130938
Offset: 0

Views

Author

Christopher J. Smyth, Jan 06 2017

Keywords

Comments

a(n) is also the number monic integer polynomials of degree n all of whose roots are distinct and of modulus 1. This follows from a classical result of Kronecker -- see link.

Examples

			a(3) = 6 because there are six degree-3 products of distinct cyclotomic polynomials, namely (z-1)(z^2+z+1), (z-1)(z^2+1), (z-1)(z^2-z+1), (z+1)(z^2+z+1), (z+1)(z^2+1) and (z+1)(z^2-z+1).
		

References

  • Boyd, David W.(3-BC); Montgomery, Hugh L.(1-MI), Cyclotomic partitions. In Number theory (Banff, AB, 1988), 7-25. Walter de Gruyter & Co., Berlin, 1990 ISBN:3-11-011723-1, MR1106647. [Asymptotics]

Crossrefs

Cf. A014197, A280709 (variant where z, as well as cyclotomic polynomials, is allowed in the product), A120963 (variant where repeated roots are allowed), A051894 (variant where both z and repeated roots are allowed), A280712 (Inverse Euler transform of sequence).

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + x^EulerPhi@ i), {i, n E^2}], {x, 0, n}], {n, 0, 92}] (* Michael De Vlieger, Jan 10 2017 *)

Formula

G.f.: Product_{i>=1} (1 + x^phi(i)) = Product_{j>=1} (1 + x^j)^A014197(j), where phi(i)=A000010(i) is Euler's totient function.
This is also the Euler transform of A280712.
a(n) ~ exp(sqrt(105*zeta(3)*n/2)/Pi) * (105*zeta(3)/2)^(1/4) / (4*Pi*n^(3/4)). - Vaclav Kotesovec, Sep 02 2021

A362485 Number of numbers k such that iphi(k) = n, where iphi is the infinitary totient function A091732.

Original entry on oeis.org

2, 2, 2, 2, 0, 4, 0, 4, 0, 2, 0, 6, 0, 0, 2, 4, 0, 4, 0, 2, 0, 2, 0, 10, 0, 0, 0, 2, 0, 6, 0, 4, 0, 0, 0, 8, 0, 0, 0, 4, 0, 2, 0, 2, 2, 2, 0, 14, 0, 0, 0, 2, 0, 2, 0, 2, 0, 2, 0, 10, 0, 0, 0, 4, 0, 4, 0, 0, 0, 2, 0, 14, 0, 0, 0, 0, 0, 2, 0, 8, 0, 2, 0, 4, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Apr 22 2023

Keywords

Comments

a(n) is even for all n, because if k is a solution to iphi(k) = n, and A007814(k) is even, then 2*k is also a solution, i.e., iphi(2*k) = n.

Crossrefs

Row lengths of A362484.
Cf. A007814, A091732, A362486 (positions of 0's), A362487 (indices of records).
Similar sequences: A014197, A063740, A361967, A362181.

Programs

  • Mathematica
    a[n_] := Length[invIPhi[n]]; Array[a, 100] (* using the function invIPhi from A362484 *)

Formula

a(A362486(n)) = 0.

A051894 Number of monic polynomials with integer coefficients of degree n with all roots in unit disc.

Original entry on oeis.org

1, 3, 9, 19, 43, 81, 159, 277, 501, 831, 1415, 2253, 3673, 5675, 8933, 13447, 20581, 30335, 45345, 65611, 96143, 136941, 197221, 276983, 392949, 545119, 763081, 1046835, 1448085, 1966831, 2691697, 3622683, 4909989, 6553615, 8804153
Offset: 0

Views

Author

Pantelis Damianou, Dec 17 1999

Keywords

Comments

The number of polynomials of a given degree that satisfy the conditions 1) monic, 2) integer coefficients and 3) all roots in the unit disc is finite. This is an old theorem of Kronecker.
The irreducible polynomials with this property consist of f(x)=x plus the cyclotomic polynomials. - Franklin T. Adams-Watters, Jul 19 2006
First differences give A120963. - Joerg Arndt, Nov 22 2014

Examples

			a(1)=3 because the only monic, linear, polynomials with coefficients in Z and all their roots in the unit disc are f(z)=z, g(z)=z-1, h(z)=z+1.
		

References

  • Pantelis A. Damianou, Monic polynomials in Z[x] with roots in the unit disc, Technical Report TR\16\1999, University of Cyprus.

Crossrefs

Programs

  • Mathematica
    max = 40; CoefficientList[Product[1/(1 - x^EulerPhi[k]), {k, 1, 5max}] + O[x]^max, x] // Accumulate (* Jean-François Alcover, Apr 14 2017 *)
  • PARI
    N=66; x='x+O('x^N); Ph(n)=if(n==0,1,eulerphi(n));
    Vec(1/prod(n=0,N,1-x^Ph(n))) \\ Joerg Arndt, Jul 10 2015

Formula

Euler transform of b(n) where b(n) = A014197(n) except for n=1, where b(n) = 3 instead of 2; cumulative sum of A120963. - Franklin T. Adams-Watters, Jul 19 2006
log(a(n)) ~ sqrt(105*zeta(3)*n)/Pi. - Vaclav Kotesovec, Sep 02 2021

Extensions

More terms from Franklin T. Adams-Watters, Jul 19 2006

A055486 Number of solutions to sigma(x) = n!.

Original entry on oeis.org

1, 0, 1, 3, 4, 15, 33, 111, 382, 1195, 3366, 14077, 53265, 229603, 910254, 4524029, 18879944, 91336498, 561832582, 2801857644, 14652294729, 78894985156, 408373652461, 2378940665083, 11939275822636, 71931330299023, 392274481206066, 2626331088771946
Offset: 1

Views

Author

Labos Elemer, Jun 28 2000

Keywords

Examples

			For n = 9, solutions to sigma(x) = n! = 362880 form a set {97440, ..., 361657} of size 382, so a(9) = 382.
		

References

  • R. K. Guy (1981): Unsolved Problems In Number Theory, B39.

Crossrefs

Programs

  • Maple
    with(numtheory): for f from 1 to 9 do fac := f!: k := 0:for n from 1 to fac do if sigma(n)=fac then k := k+1: fi: od: print( k); od:

Formula

a(n) = A054973(n!) = Cardinality[{x; A000203(x) = A000142(n)}].

Extensions

More terms from Jud McCranie, Oct 09 2000
a(13)-a(14) from Donovan Johnson, Nov 22 2008
a(15) from Ray Chandler, Jan 13 2009
a(16)-a(28) from Max Alekseyev, Jan 23 2012

A055506 Number of solutions to the equation phi(x) = n!.

Original entry on oeis.org

2, 3, 4, 10, 17, 49, 93, 359, 1138, 3802, 12124, 52844, 182752, 696647, 2852886, 16423633, 75301815, 367900714, 1531612895, 8389371542, 40423852287, 213232272280, 1295095864798, 7991762413764, 42259876674716, 252869570952706, 1378634826630301, 8749244047999717
Offset: 1

Views

Author

Labos Elemer, Jun 29 2000

Keywords

Comments

Note that if phi(x) = n!, then x must be a product of primes p such that p - 1 divides n!. - David Wasserman, Apr 30 2002
Gives the row lengths of the table A165773 (see example). All solutions to phi(x)=n! are in the interval [n!,(n+1)!] with the smallest/largest solutions given in A055487/A165774 respectively. - M. F. Hasler, Oct 04 2009

Examples

			n = 5, phi(x) = 5! = 120 holds for the following 17 numbers: { 143, 155, 175, 183, 225, 231, 244, 248, 286, 308, 310, 350, 366, 372, 396, 450, 462 }.
From _M. F. Hasler_, Oct 04 2009: (Start)
The table A165773 looks as follows:
  1,2, (a(1)=2 numbers for which phi(n) = 1! = 1)
  3,4,6, (a(2)=3 numbers for which phi(n) = 2! = 2)
  7,9,14,18, (a(3)=4 numbers for which phi(n) = 3! = 6)
  35,39,45,52,56,70,72,78,84,90, (a(4)=10 numbers for which phi(n) = 4! = 24)
  ... (End)
		

Crossrefs

Programs

Formula

a(n) = A014197(n!) = Cardinality({x; A000010(x) = A000142(n)}).

Extensions

More terms from Jud McCranie, Jan 02 2001
More terms from David Wasserman, Apr 30 2002 (with the assistance of Vladeta Jovovic and Sascha Kurz)
a(21)-a(28) from Max Alekseyev, Jan 26 2012, Jul 09 2014

A071386 Numbers k such that the cardinality of the set of solutions to phi(x) = k is odd.

Original entry on oeis.org

2, 8, 20, 32, 40, 44, 48, 56, 60, 72, 92, 96, 104, 108, 116, 120, 128, 132, 140, 144, 156, 164, 192, 204, 212, 216, 220, 240, 252, 260, 272, 276, 296, 300, 332, 344, 356, 360, 368, 380, 384, 392, 396, 400, 416, 420, 440, 444, 452, 456, 476, 480, 500, 504, 512
Offset: 1

Views

Author

Labos Elemer, May 23 2002

Keywords

Examples

			k = 40 is a term: InvPhi(40) = {41,55,75,82,88,100,110,132,150} has 9 entries.
		

Crossrefs

Programs

Formula

{ k : Card(InvPhi(k)) mod 2 = 1 }.

A319048 a(n) is the greatest k such that A000010(k) divides n where A000010 is the Euler totient function.

Original entry on oeis.org

2, 6, 2, 12, 2, 18, 2, 30, 2, 22, 2, 42, 2, 6, 2, 60, 2, 54, 2, 66, 2, 46, 2, 90, 2, 6, 2, 58, 2, 62, 2, 120, 2, 6, 2, 126, 2, 6, 2, 150, 2, 98, 2, 138, 2, 94, 2, 210, 2, 22, 2, 106, 2, 162, 2, 174, 2, 118, 2, 198, 2, 6, 2, 240, 2, 134, 2, 12, 2, 142, 2, 270, 2, 6, 2, 12, 2, 158, 2, 330
Offset: 1

Views

Author

Michel Marcus, Sep 09 2018

Keywords

Comments

Sándor calls this function the totient maximum function and remarks that this function is well-defined, since a(n) can be at least 2, and cannot be greater than n^2 (when n > 6).

Crossrefs

Cf. A000010 (Euler totient), A061026 (the totient minimum function).
Cf. A319068 (the analog for the sum of divisors).
Right border of A378638.

Programs

  • Mathematica
    a[n_] := Module[{kmax = If[n <= 6, 10 n, n^2]}, For[k = kmax, True, k--, If[Divisible[n, EulerPhi[k]], Return[k]]]];
    Array[a, 80] (* Jean-François Alcover, Sep 17 2018, from PARI *)
  • PARI
    a(n) = {my(kmax = if (n<=6, 10*n, n^2)); forstep (k=kmax, 1, -1, if ((n % eulerphi(k)) == 0, return (k)););}
    
  • PARI
    \\ (The first two functions could probably be combined in a smarter way):
    A014197(n, m=1) = { n==1 && return(1+(m<2)); my(p, q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0, valuation(q=n\d, p=d+1), A014197(q\p^i, p))))} \\ From A014197 by M. F. Hasler
    A057635(n) = if(1==n,2,if((n%2),0,my(k=A014197(n),i=n); if(!k, 0, while(k, i++; if(eulerphi(i)==n, k--)); (i))));
    A319048(n) = { my(m=0); fordiv(n,d, m = max(m,A057635(d))); (m); }; \\ Antti Karttunen, Sep 09 2018
    
  • PARI
    a(n) = {my(d = divisors(n)); vecmax(vector(#d, i, invphiMax(d[i])));} \\ Amiram Eldar, Nov 29 2024, using Max Alekseyev's invphi.gp

Formula

a(n) = Max_{d|n} A057635(d). - Antti Karttunen, Sep 09 2018

A063439 a(n) = phi(n)^phi(n).

Original entry on oeis.org

1, 1, 4, 4, 256, 4, 46656, 256, 46656, 256, 10000000000, 256, 8916100448256, 46656, 16777216, 16777216, 18446744073709551616, 46656, 39346408075296537575424, 16777216, 8916100448256, 10000000000, 341427877364219557396646723584, 16777216, 104857600000000000000000000
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 24 2001

Keywords

Comments

Number of endofunctions over RRS[n]. Used in proof of Dirichlet theorem to derive characters: a(n) = A000312(A000010(n)). - Labos Elemer, May 27 2002
Sum_{n>=1} 1/phi(n)^phi(n) ~ 2.765711032... and so apparently equals Sum_{n>=1} A014197(n)/n^n where A014197(n) is the number of numbers m such that phi(m) = n. Is this a known result? - Gerald McGarvey, May 16 2004
The equality above is true and it is not unique for phi: for each value k = phi(n) the summand 1/phi(n)^phi(n) appears A014197(k) times, so Sum_{n>=1} 1/phi(n)^phi(n) = Sum_{k>=1} A014197(k) * (1/k^k). - Amiram Eldar, Dec 10 2024

Crossrefs

Programs

  • Magma
    [EulerPhi(n)^EulerPhi(n): n in [1..30]]; // Vincenzo Librandi, Dec 29 2019
  • Mathematica
    Table[EulerPhi[n]^EulerPhi[n], {n, 30}] (* Vincenzo Librandi, Dec 29 2019 *)
  • PARI
    { for (n=1, 200, p=eulerphi(n); write("b063439.txt", n, " ", p^p) ) } \\ Harry J. Smith, Aug 21 2009
    

Formula

n log n / (log log n) << log a(n) < n log n. - Charles R Greathouse IV, Jan 19 2012

A070633 a(n) is the number of k>0 such that phi(k) divides n.

Original entry on oeis.org

2, 5, 2, 9, 2, 9, 2, 14, 2, 7, 2, 19, 2, 5, 2, 20, 2, 13, 2, 16, 2, 7, 2, 34, 2, 5, 2, 11, 2, 13, 2, 27, 2, 5, 2, 31, 2, 5, 2, 30, 2, 13, 2, 14, 2, 7, 2, 51, 2, 7, 2, 11, 2, 15, 2, 19, 2, 7, 2, 37, 2, 5, 2, 35, 2, 13, 2, 9, 2, 9, 2, 63, 2, 5, 2, 9, 2, 11, 2, 46, 2, 7, 2, 31, 2, 5, 2, 25, 2, 17, 2
Offset: 1

Views

Author

Benoit Cloitre, May 13 2002

Keywords

Comments

Inverse Möbius transform of A014197. - Antti Karttunen, Sep 10 2018

Crossrefs

Row lengths of A378638.

Programs

  • PARI
    for(n=1,120,print1(sum(i=1,100*n,if(n%eulerphi(i),0,1)),","));
    
  • PARI
    \\ In contrast to above program, this is safe in any range 1..n:
    A014197(n, m=1) = { n==1 && return(1+(m<2)); my(p, q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0, valuation(q=n\d, p=d+1), A014197(q\p^i, p))))}; \\ From A014197 by M. F. Hasler
    A070633(n) = sumdiv(n, d, A014197(d)); \\ Antti Karttunen, Sep 10 2018
    
  • PARI
    a(n) = sumdiv(n, d, invphiNum(d)); \\ Amiram Eldar, Nov 29 2024, using Max Alekseyev's invphi.gp

Formula

From Antti Karttunen, Sep 10 2018: (Start)
a(n) = Sum_{d|n} A014197(d).
a(n) >= A069932(n).
a(A000010(n)) = A071181(n).
(End)

A072075 Smallest solution to phi(x) = 10^n where phi(x) = A000010(x).

Original entry on oeis.org

1, 11, 101, 1111, 10291, 100651, 1004251, 10165751, 100064101, 1000078501, 10000222501, 100062501601, 1000062516001, 10000062660001, 100002441447211, 1003922328562757, 10000390625025601, 100000002482366251, 1000000002851006251, 10000062500000160001
Offset: 0

Views

Author

Labos Elemer, Jun 13 2002

Keywords

Examples

			n=3: a(3)=1111 because InvPhi[1000]= {1111,1255,1375,1875,2008,2222,2500,2510,2750,3012,3750}.
		

Crossrefs

Extensions

More terms from Max Alekseyev, Apr 26 2010
a(18)-a(19) from Donovan Johnson, Feb 02 2012
Previous Showing 21-30 of 69 results. Next