cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 45 results. Next

A051342 Smallest prime factor of 1 + (product of first n primes).

Original entry on oeis.org

3, 7, 31, 211, 2311, 59, 19, 347, 317, 331, 200560490131, 181, 61, 167, 953, 73, 277, 223, 54730729297, 1063, 2521, 22093, 265739, 131, 2336993, 960703, 2297, 149, 334507, 5122427, 1543, 1951, 881, 678279959005528882498681487, 87549524399, 23269086799180847
Offset: 1

Views

Author

Keywords

Comments

Based on Euclid's proof that there are infinitely many primes.

Crossrefs

Programs

  • Maple
    a:= proc(n)
    local N, F, i;
      N:= 1 + mul(ithprime(i),i=1..n);
      F:= select(type,map(t->t[1],ifactors(N,easy)[2]),integer);
    if nops(F) >= 1 then return min(F) fi;
      min(map(t->t[1],ifactors(N)[2]))
    end proc:
    seq(a(n),n=1..40); # Robert Israel, Oct 19 2014
  • Mathematica
    Map[FactorInteger,
       Table[Product[Prime[n], {n, 1, m}] + 1, {m, 1, 36}]][[All,
    1]][[All, 1]] (* Geoffrey Critzer, Oct 19 2014 *)
    FactorInteger[#][[1,1]]&/@(FoldList[Times,Prime[Range[40]]]+1) (* Harvey P. Dale, Oct 08 2021 *)
  • PARI
    a(n) = factor(1 + prod(i=1, n, prime(i)))[1, 1]; \\ Michel Marcus, Dec 10 2013

Formula

a(n) = A020639(1+A002110(n)).

Extensions

One more term from Michel Marcus, Dec 10 2013

A096177 Primes p such that primorial(p)/2 + 2 is prime.

Original entry on oeis.org

2, 3, 5, 7, 13, 29, 31, 37, 47, 59, 109, 223, 307, 389, 457, 1117, 1151, 2273, 9137, 10753, 15727, 25219, 26459, 29251, 30259, 52901, 194471
Offset: 1

Views

Author

Hugo Pfoertner, Jun 27 2004

Keywords

Comments

a(27) > 172000. - Robert Price, May 10 2019
Some of the results were computed using the PrimeFormGW (PFGW) primality-testing program. - Hugo Pfoertner, Nov 16 2019

Examples

			a(3)=7 because primorial(7)/2 + 2 = A070826(4) + 2 = 2*3*5*7/2 + 2 = 107 is prime.
		

Crossrefs

Cf. A070826, A096178 primes of the form primorial(p)/2+2, A096547 primes p such that primorial(p)/2-2 is prime, A067024 smallest p+2 that has n distinct prime factors, A014545 primorial primes, A087398.

Programs

  • Mathematica
    k = 1; Do[If[PrimeQ[n], k = k*n; If[PrimeQ[k/2 + 2], Print[n]]], {n, 2, 100000}] (* Ryan Propper, Jul 03 2005 *)
  • PARI
    P=1/2;forprime(p=2,1e4,if(isprime((P*=p)+2), print1(p", "))) \\ Charles R Greathouse IV, Mar 14 2011

Extensions

7 additional terms, corresponding to probable primes, from Ryan Propper, Jul 03 2005
Edited by T. D. Noe, Oct 30 2008
a(26) from Robert Price, May 10 2019
a(27) from Tyler Busby, Mar 17 2024

A128421 Numbers k such that p(k)# + p(k+1)# + 1 is prime, where p(k)# is the product of first k primes (A002110).

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 20, 56, 101, 108, 141, 202, 265, 364, 401, 1035, 1588, 3062, 4191, 4579, 10373
Offset: 1

Views

Author

Pierre CAMI, Mar 02 2007

Keywords

Crossrefs

Programs

Extensions

Corrected by Emeric Deutsch, Mar 06 2007
Edited by Ray Chandler, Mar 13 2007
a(21) from Michael S. Branicky, Oct 01 2024

A370129 Triangle read by rows: T(n,k) = A003415(A002110(n)+A002110(k)), 0 <= k <= n; arithmetic derivatives of the sums of two primorial numbers.

Original entry on oeis.org

1, 1, 4, 1, 12, 16, 1, 80, 60, 92, 1, 216, 540, 608, 704, 1, 3740, 3100, 4548, 6324, 8164, 568, 60080, 40060, 56292, 116208, 61768, 110752, 33975, 1021040, 1041768, 794468, 2415104, 1091004, 1357128, 1942844, 28300, 9789116, 29099520, 19722884, 18576860, 35347200, 35779644, 26575580, 37935056, 704080, 335024060
Offset: 0

Views

Author

Antti Karttunen, Feb 29 2024

Keywords

Comments

Apart from those positions (A014545) at the left edge where a(n) = 1, a(n) <= A087112(1+n) only at n=2, 4 and 5, i.e., never after the third row.

Examples

			Triangle begins as:
      1;
      1,       4;
      1,      12,       16;
      1,      80,       60,       92;
      1,     216,      540,      608,      704;
      1,    3740,     3100,     4548,     6324,     8164;
    568,   60080,    40060,    56292,   116208,    61768,   110752;
  33975, 1021040,  1041768,   794468,  2415104,  1091004,  1357128,  1942844;
  28300, 9789116, 29099520, 19722884, 18576860, 35347200, 35779644, 26575580, 37935056;
		

Crossrefs

Cf. A014545 (positions of 1's at the left edge), A087112.
Cf. also A024451 (arithmetic derivatives of primorials).

Programs

Formula

a(n) = A003415(A370121(n)).
For n, k >= 1, T(n,k) = A002110(k)*A370136(n,k) + A024451(k)*A370135(n,k).

A057706 Smaller of twin primes whose average is a primorial number.

Original entry on oeis.org

5, 29, 2309
Offset: 1

Views

Author

Labos Elemer, Oct 24 2000

Keywords

Comments

According to Caldwell, the next term, if it exists, has more than 100000 digits. - T. D. Noe, May 08 2012

Examples

			(5+7)/2 = 6 = 2*3, (29+31)/2 = 30 = 2*3*5, (2309+2311)/2 = 2310 = 2*3*5*7*11.
		

Crossrefs

Cf. A000040 (primes), A002110 (primorials, p#).
Cf. A006862 (Euclid, p#+1), A005234 (prime p#+1), A014545 (index prime p#+1).
Cf. A057588 (Kummer, p#-1), A006794 (prime p#-1), A057704 (index prime p#-1).

Programs

  • Mathematica
    Select[FoldList[Times, Prime@ Range@ 40], AllTrue[# + {-1, 1}, PrimeQ] &] - 1 (* Michael De Vlieger, Jul 15 2017 *)
  • Python
    from sympy import isprime, prime, primerange
    def auptoprimorial(limit):
      phash, alst = 1, []
      for p in primerange(1, prime(limit)+1):
        phash *= p
        if isprime(phash-1) and isprime(phash+1): alst.append(phash-1)
      return alst
    print(auptoprimorial(5)) # Michael S. Branicky, May 29 2021

Extensions

Offset corrected by Arkadiusz Wesolowski, May 08 2012

A096547 Primes p such that primorial(p)/2 - 2 is prime.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 23, 31, 41, 53, 71, 103, 167, 431, 563, 673, 727, 829, 1801, 2699, 4481, 6121, 7283, 9413, 10321, 12491, 17807, 30307, 31891, 71917, 172517
Offset: 1

Views

Author

Hugo Pfoertner, Jun 27 2004

Keywords

Comments

Some of the results were computed using the PrimeFormGW (PFGW) primality-testing program. - Hugo Pfoertner, Nov 14 2019
a(32) > 180000. - Tyler Busby, Mar 29 2024

Examples

			Prime 7 is a term because primorial(7)/2 - 2 = A034386(7)/2 - 2 = 2*3*5*7/2 - 2 = 103 is prime.
		

Crossrefs

Cf. A070826, A096177 primes p such that primorial(p)/2+2 is prime, A096178 primes of the form primorial(p)/2+2, A014545 primorial primes, A087398.
Cf. A034386.

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n=0, 1, `if`(isprime(n), n, 1)*b(n-1)) end:
    q:= p-> isprime(p) and isprime(b(p)/2-2):
    select(q, [$1..500])[];
  • Mathematica
    k = 1; Do[k *= Prime[n]; If[PrimeQ[k - 2], Print[Prime[n]]], {n, 2, 3276}] (* Ryan Propper, Oct 25 2005 *)
    Prime[#]&/@Flatten[Position[FoldList[Times,Prime[Range[1000]]]/2-2,?PrimeQ]] (* _Harvey P. Dale, Jun 09 2023 *)

Extensions

5 more terms from Ryan Propper, Oct 25 2005
a(29)-a(31) from Tyler Busby, Mar 16 2024

A136351 Primorial numbers p# such that p# + 1 is a prime.

Original entry on oeis.org

1, 2, 6, 30, 210, 2310, 200560490130
Offset: 1

Views

Author

Enoch Haga, Dec 25 2007

Keywords

Comments

This sequence is different from A121069 and A002110.
a(8) = A002110(75) has 154 digits and is too long to be listed. - R. J. Mathar, Jul 23 2008

Examples

			a(6)=2310 is followed by prime 2311 whereas 30030 is not followed by a prime.
		

Crossrefs

Programs

  • Mathematica
    Select[FoldList[Times, 1, Prime[Range[18]]],PrimeQ[#+1]&] (* James C. McMahon, May 08 2025 *)
  • PARI
    S=[];for(n=0, 80, k=vecprod(primes(n)); if(isprime(k+1), S=concat(S,k))); S \\ Miles Englezou, Oct 28 2024

Formula

{A002110(j): A002110(j)+1 in A000040}. - R. J. Mathar, Jul 23 2008
a(n) = A002110(A014545(n)). - Michel Marcus, Apr 05 2021
a(n) = A018239(n) - 1. - James C. McMahon, May 08 2025

Extensions

Changed a(1) from 4 to 2 and edited by R. J. Mathar, Jul 23 2008
a(1)=1 inserted by James C. McMahon, May 08 2025

A087398 Primes of the form primorial(P(k))/2-2.

Original entry on oeis.org

13, 103, 1153, 15013, 255253, 4849843, 111546433, 100280245063, 152125131763603, 16294579238595022363, 278970415063349480483707693, 11992411764462614086353260819346129198103, 481473710367991963528473107950567214598209565303106537707981745633
Offset: 1

Views

Author

Cino Hilliard, Oct 21 2003

Keywords

Comments

Twinmorial numbers are the partial products of twin primes. Sum of reciprocals = 0.08756985926348207565388288916..
The next term (a(14)) has 174 digits. - Harvey P. Dale, Mar 30 2013

Crossrefs

Cf. A096177 primes k such that primorial(k)/2+2 is prime, A096178 primes of the form primorial(k)/2+2, A096547 Primes k such that primorial(k)/2-2 is prime, A067024 smallest p+2 that has n distinct prime factors, A014545 primorial primes.

Programs

  • Mathematica
    Select[#/2-2&/@Rest[FoldList[Times,1,Prime[Range[100]]]],PrimeQ] (* Harvey P. Dale, Mar 30 2013 *)
  • PARI
    twimorial(n) = { s=0; p=3; forprime(x=5,n, if(isprime(x-2),c1++); p=p*x; if(isprime(p-2), print1(p-2","); c2++; s+=1.0/(p-2); ) ); print(); print(s) }
    
  • PARI
    v=[];pr=1; forprime(p=3,2357,pr*=p; if(ispseudoprime(pr-2),v=concat(v,pr-2))) \\ Charles R Greathouse IV, Feb 14 2011

Formula

Twins 3*5 = 15 = p+2. p=13.

Extensions

Description corrected by Hugo Pfoertner, Jun 25 2004
One more term (a(13)) added by Harvey P. Dale, Mar 30 2013

A096178 Primes of the form primorial(p)/2+2.

Original entry on oeis.org

3, 5, 17, 107, 15017, 3234846617, 100280245067, 3710369067407, 307444891294245707, 961380175077106319537, 139867498408927468089138080936033904837498617
Offset: 1

Views

Author

Hugo Pfoertner, Jun 27 2004

Keywords

Comments

Primes of the form A070826(n)+2.

Examples

			a(4) = 107 because 107 is a prime of the form primorial(7)/2 + 2 = A070826(4) + 2 = 2*3*5*7/2 + 2.
		

Crossrefs

Cf. A070826, A096177 (primorial(p)/2+2 is prime), A096547 (primorial(p)/2-2 is prime), A067024 (smallest p+2 that has n distinct prime factors), A014545 (primorial primes), A087398.

Programs

  • PARI
    for(n=1,30,p=prod(k=1,n,prime(k))/2+2;if(ispseudoprime(p),print1(p,", "))) \\ Hugo Pfoertner, Dec 26 2019

Formula

a(n) = A070826(A096177(n)) + 2. - Amiram Eldar, Dec 26 2019

Extensions

a(1) inserted by Amiram Eldar, Dec 26 2019

A118370 Divisorial primes: Primes p such that p = 1 + Product_{d|n} d for some n (ordered by n).

Original entry on oeis.org

2, 3, 37, 101, 197, 331777, 677, 8503057, 9834497, 5477, 59969537, 8837, 17957, 21317, 562448657, 916636177, 42437, 3208542737, 3782742017, 5006411537, 7676563457, 98597, 106277, 11574317057, 19565295377, 416806419029812551937, 148997, 34188010001, 38167092497
Offset: 1

Views

Author

Rick L. Shepherd, Apr 25 2006

Keywords

Comments

See A118369 for the corresponding n. These are primes in the sequence 1 + A007955. (The suggested name "divisorial prime" is obviously analogous to that of factorial primes (A088332) and primorial primes (A014545).).

Examples

			The prime 37 is a(3) as there exists a number, A118369(3)=6, such that 37 = 6*3*2*1 + 1, where {1,2,3,6} are all the positive divisors of 6.
		

Crossrefs

Cf. A258455 (sorted).

Programs

  • Mathematica
    Reap[For[n = 1, n <= 500, n++, p = Times @@ Divisors[n]; If[PrimeQ[p+1], Sow[p+1]]]][[2, 1]] (* Jean-François Alcover, Oct 07 2016 *)
  • PARI
    for(n=1,2500, s=1; fordiv(n,d,s=s*d); if(isprime(s+1), print1(s+1,", ")))
Previous Showing 11-20 of 45 results. Next